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Abstract: This paper introduces the “Energy-Environmental Efficiency” concept of 

building a low-carbon dispatch model of wind-incorporated power systems from the 

perspective of environmental protection and low-carbon dispatch promotion based on the 

existing economic environmental dispatch. A rolling auto-regressive and moving-average 

model is adopted to forecast wind speeds for the next 24 h and reduce the disadvantages 

brought about to the power system dispatch by wind speed fluctuations. A fuzzy 

satisfaction-maximizing approach is employed to convert the multi-objective 

decision-making problem in the low-carbon dispatch model into a single nonlinear one. 

Particle swarm optimization with a simulated annealing algorithm hybrid is used for better 

solutions. Simulation results show that the energy-environmental efficiency concept benefits 

the optimization of the proposed power system dispatch, and the proposed low-carbon 

dispatch model is reasonable and practical. 

Keywords: wind power; wind speed forecasting; low-carbon dispatch model; PSO-SA; 

energy-environmental efficiency 
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1. Introduction 

The global energy security and environment situation has become increasingly serious in recent 

years, leading to a mounting social appeal for environmental protection and sustainable development [1]. 

One of the most promising nonpolluting renewable energy sources, wind power, has been given more 

consideration by policies because of its difference from conventional energy sources [2]. Wind power 

in China has developed in leaps and bounds in recent years. The total wind power capacity of China at 

the end of 2010 has reached 44,734 MW, exceeding the United States for the first time and ranking 

first in the World [3]. A zero-emission carbon dioxide renewable resource, wind power is expected to 

optimize the power source structure, and to promote energy savings and emission reduction in the 

power industry through large-scale research and development. However, unlike conventional power 

generation, wind power generation is intermittent and fluctuating. Hence, its integration brings several 

problems to the power system, dispatch operation being one of the most important aspects [4–7]. 

The intermittent and unpredictable nature of wind power generation can influence generation 

schedule and frequency control. For this reason, the main method currently used to deal with problems 

of grid-connected wind power generation is to integrate wind speed forecasting into dispatch operation. 

Real-time regulation of grid dispatch strategy based on wind speed and wind power forecasting can 

alleviate the adverse effects caused by wind integration to the grid, increase wind power penetration 

limits, and reduce power system operation costs. Current wind power forecast methods could be 

divided into two categories based on energy transformation perspective. The first is indirect methods, 

which provide wind speed forecasts followed by calculation of the output power of wind farm based 

on the wind speed-power function curve. The second is direct methods, which directly predict the 

output power of wind via historical wind power data. Generally, the predicted results will change 

along with the strength of object regularity. The strength of the regularity of the wind power is weaker 

than that of the wind speed. Hence, indirect methods can reflect the random fluctuation of wind speed 

more reasonably than direct methods and are also widely used in wind power prediction. Wind speed 

forecasting is classified into very short-term, short-term, and medium- and long-term forecasting [8], 

The error of very short-term forecasting (on the minutes or seconds range) is generally between 5% 

and 10% [9], while short-term forecasting (for the next 24 h) generally has an average prediction error 

varying from 25% to 40% [10]. Auto-regressive and moving-average (ARMA), artificial neural 

network, Kalman filter algorithm, fuzzy logic, and wavelet analysis are the most commonly used 

methods in wind speed forecasting. However, these methods mainly aim at very short-term forecasting, 

without considering the time sequence of wind speed data. A fairly accurate short-term forecasting is 

critical to optimal power system load dispatch. Obtaining such forecasts, typically for the next 24 h, 

will enable the dispatch department to ensure timely planning and regulation of the dispatch schedule, 

and thus improve significantly the security and economy of the power system. 

The power industry is a major CO2-emission source, accounting for approximately 40% of the CO2 

emitted by fossil fuel combustion. In many important energy-consuming countries such as the United 

States, China, and Australia, fossil fuels will serve as the main domestic sources of power generation 

in the next few decades [11,12]. The Kyoto Protocol stipulates that greenhouse gas emission reduction 

targets must be realized by 2012, which leaves many countries under severe pressure to achieve CO2 

emission reductions. With the deterioration of environmental pollution and the energy crisis, and under 
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the premise of large-scale wind power integration, optimization scheduling can effectively reduce CO2 

emissions, promote low carbon for power production, and promote sustainable development in the 

power industry. 

The traditional power system economic dispatch (ED) is usually aimed at minimum generation 

operational cost [13–16] for economic reasons, overlooking the effect of consequent pollutants on the 

ecosystem. With increasing public awareness of environmental pollution caused by fossil fuels, the 

traditional ED cannot satisfy the strategic requirements for sustainable living because of the excessive 

amount of emission pollution [17]. As an alternative, the environmental/ED (EED) is becoming 

increasingly desirable for minimizing cost and emission [18–20]. Reference [21] developed an 

improved Hopfield neural network for the EED problem. Cai et al. [22] solved the EED problems 

considering both economic and environmental issues using a multi-objective chaotic particle swarm 

optimization (PSO). Chena and Chen [23] presented a direct Newton-Raphson method based on an 

alternative Jacobian matrix to solve the EED problem with line flow constraints. Cheng [24] proposed 

a multi-objective dispatch that considers environment and fuel cost under large wind energy.  

Ummels et al. [25] proposed a new simulation method that can fully assess the effects of large-scale 

wind power on system operations from the cost, reliability, and environmental perspectives. 

Based on the ED and EED models, the present paper focuses on the low carbonization of the power 

system dispatch while maintaining moderate interest in the power generation economy from an 

ecological perspective. The energy-environmental efficiency concept is introduced into the optimal 

dispatch of wind-incorporated power systems, for which a low-carbon dispatch model considering unit 

commitment is built based on wind speed prediction. This paper is organized as follows: Section 1 

provides an introduction. Section 2 presents the ARMA-based wind speed forecasting approach and 

the wind speed-power function of wind generators is presented. Data analysis is also conducted on the 

field wind speed data of a certain wind farm. In Section 3, a low-carbon dispatch model considering 

energy-environmental efficiency is described. Section 4 introduces the basic PSO algorithm and the 

simulated annealing (SA) algorithms. The PSO with SA (PSO-SA) hybrid algorithm is presented to 

overcome the inherent defects in the PSO and SA algorithms, and to achieve optimized performance. 

In Section 5, the fuzzification method and the concrete calculation steps are pointed out for the 

aforementioned dispatch model. Section 6 analyzes the results of a six-generator system containing a 

wind farm. Finally, conclusions are drawn and discussed in Section 7. 

2. Wind Speed and Generated Power Forecasting in Wind Farm 

2.1. Wind Speed Forecasting Based on Time Series 

Time series, which contains data series and data size at the same time, presents a dynamic process 

of the physical world and reflect the objective world and its changing information. Wind speed data in 

the wind farm have the characteristics of sequence and discretization. The greatest advantage of time 

series analysis modeling is that the time series itself and its correlation provide enough  

information [26]. As long as a limited sample series is provided, a forecasting model with high 

precision can be built. Based on the abovementioned advantages, the present paper employs the time 

series method for wind speed forecasting. 

2.1.1. Time Series Models 
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The time series model is built based on the stationarity hypothesis of random series. The most 

widely used models are the autoregressive (AR) model, the moving average (MA) model, and the 

ARMA model. The AR and MA models can be transformed from each other while ARMA is the 

combination of the former two [27]. The characteristics of the three models are listed in Table 1. 

Table 1. Characteristics of time series models.  

Model type AR (p) MA (q) ARMA (p, q) 

Autocorrelation Tail-off Cut-off Tail-off 

Partial autocorrelation Cut-off Tail-off Tail-off 

The ARMA model can be expressed as: 

 1 1 1 1t t p t p t t q t qZ Z Z a a a                 (1) 

Equation (1) can be further transformed into: 

 ( ) ( )t tB Z B a   (2) 

where  tZ  represents the time series of the random variables under consideration, whose average is 

zero and satisfies stationarity; {at} is the white noise sequence whose average is zero and variance is 
2
a ; φi (i = 1, 2, …, p) is the AR coefficient; θj (j = 1, 2, …, q) is the MA coefficient; and B is the 

backward shifting operator defined as: 

 1,    j
t t t t jBZ Z B Z Z       (3) 

When q = 0, the ARMA (p, q) model is converted to the AR (p) model; when p = 0, the ARMA  

(p, q) model is changed to the MA (q) model. In practice, time series models are usually not stable 

(wind speed for example). In this case, stationarization is required for modeling. Differentiation is an 

easy but effective way to implement stationarization. Based on the above analysis, a non-stationary 

time series model, the AR-integrated MA (ARIMA) model, can be built. The ARIMA is expressed as: 

 ( ) ( )t tB Z B a    (4) 

where ( ) ( )(1 ) ( )d d
t t tB Z B B Z B Z         , 1 B    is the backward differential evolution operator. 

2.1.2. Parameter Estimation 

The parameters of the ARMA (p, q) model, φi, θj, and 2
a , are estimated by the moment estimation 

method. The estimation steps are as follows: 

(1) AR coefficient estimation 

Based on the Yule-Walker equation: 

 A B    (5) 

From Equation (5), the estimation expression of the AR coefficient φi can be deducted as: 
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 1
B A    (6) 

where φ is the AR coefficient vector, A  is the auto-covariance function vector, and B  is the 

auto-covariance function matrix. Their respective concrete expressions are as follows: 
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       (7) 

(2) To estimate the MA coefficients θj and 2
a  

Let yt be: 

 1 1ˆ ˆt t t p t py Z Z Z         (8) 

From Equations (1) and (8), yt can be deducted as: 

 1 1t t t q t qy a a a       (9) 

The model described by Equation (9) can be viewed as the MA (q) process. The following equation 

set is solved: 

 
2 2 2 2

1 2
, 2

1 1

ˆ ˆ ˆˆ (1 ),             0
ˆ ˆ ˆ ˆ ˆ ˆˆ ( ),     1,2, ,

a q
y k

a k k q k q
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k q

   
      

           



 
 (10) 

where ,ˆy k  is the auto-covariance coefficient of sequence {yt}. 

Equation (10) can be solved by the direct method (suitable for q < 3), the linear iteration method, 

and the Newton–Raphson algorithm. In the present paper, moment estimations θj and 2
a  are obtained 

by a combination of the linear iteration method and the direct method to solve Equation (10). 

2.1.3. Model Order Determination 

The partial correlation order determination method and the criterion function order determination 

method are often used to determine model order. Considering the simplicity principle of modeling, the 

values of p and q are relatively small in practice. Thus, the exhaustion method is also applicable in 

model selection. Moreover, not all the results by the criterion function order determination are accurate 

in the calculation process. Therefore, the present paper carries out each model determination one by 

one, from the lower order to the higher order, by fitting and examination using the partial correlation 

order determination method for reference. 

2.1.4. Model Examination 

Model examination involves two aspects: (1) stationarity and reversibility examination and (2) 

residual error examination. The condition for parameters to meet the stationary requirement is “no root 

of the characteristic equation of the coefficient φ(B) = 1 − φ1B − φ2B
2 − … − φpB

p = 0 is within the unit 

circle (i.e., the modulus of the roots all bigger than one).” The condition for parameters to meet the 

reversibility requirement is “no root of the characteristic equation of the coefficient θ(B) = 1 − θ1B − 
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θ2B
2 − … − θqB

q = 0 is within the unit circle.” The objective of inspecting the model’s residual error is 

to judge whether the fitting residual sequence {at} is white noise or not [28]. If it is, then this model 

can be accepted; otherwise, the model needs rebuilding. The criterion of the residual error examination 

is the slight difference between auto-covariance function and zero. 

2.1.5. Rolling Time Series Forecasting Method 

The ARMA model in this paper uses a single-step prediction method with a time interval of 1 h to 

obtain an hour-ahead-of-time wind speed forecast. As the dispatching department generally requires 

multi-step prediction results 1~3 h ahead in making power generation plan, this paper puts forward the 

rolling time-series prediction method. In the process of predicting the computation of the model, the 

value of predicted wind speed at time t is obtained in the iteration, and then the value is put into the 

model as the sample. Finally, the wind speed was predicted at the t + 1 time, which formed the rolling 

time-series prediction methods to achieve the prediction of average hourly wind speed in the next 24 h. 

2.1.6. Case Study of Wind Speed Forecasting 

Field wind speed data in the windy season of a certain wind farm in Yunan (China) are analyzed. 

The original time series consists of the hourly average wind speed. The first 216 data points are used 

for modeling while the last 24 data points are used for examination. 

First, a run-length test is conducted to examine the stationarity of the original time series. The 

method involves field data only. A hypothesis for data distribution regularity is not necessary, which 

proves to be practical. Results of the run-length test clearly show that the original sequence is shifting. 

After the first-order and second-order differential evolutions, reexaminations prove the stationarity of 

the modified first-order differential evolution sequence. Therefore, the first-order differentiation 

method is adopted for calculation. The original wind speed time series and its autocorrelation function 

and partial correlation function are shown in Figure 1. The curves in the second line reveal that the 

autocorrelation function of the first-order differentiation sequence rapidly attenuates to zero, which 

further proves that the first-order differentiation sequence is stationary. 

Figure 1 shows that the first-order differentiation sequence reveals no cyclical tendency or linear 

tendency. Thus, via zero-mean, the time series model can be established. By analyzing the character of 

the three time series models in Table 1, a general model can be set as ARIMA (p, 1, q). The 

autocorrelation and partial correlation functions in Figure 1, in reference to the partial correlation order 

determination method, show that both the values of p and q are less than or equal to 4. A fitting process 

from low-order to high-order results in a final ARIMA model (2, 1, and 4). 
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Figure 1. Wind speed series, sample autocorrelation function, and partial  

autocorrelation function. 
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The forecasting result is shown in Figure 2. Mean absolute error (MAE) and mean absolute 

percentage error (MAPE) are taken as the criteria for wind speed forecasting evaluation: 

 
1 1

1 1
MAE= , MAPE

n n
t t

t t
t t t

Z Z
Z Z

n n Z 


    (11) 

where tZ  is the predicted value, Zt is the real value, and n = 24 represents the number of  

data forecasted. 

Figure 2. Results of wind speed forecasting. 
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Analysis of the data in Figure 2 by Equation (11) demonstrates the MAE of the wind speed 

forecasting to be 1.4950 m/s and the MAPE to be 16.23%. The maximum error appearing in the 13th 

hour is 37.61%, whereas the minimum error presented in the 18th hour is 3.03%. Error analysis shows 

that wind speed forecasting performed in this paper is effective, and the result is suitable for the 

low-carbon dispatch model proposed in Section 3. 

2.2. Wind Turbine Power Output Forecasting 

This paper concentrates on wind generators with a variable pitch control strategy to obtain the 

maximum energy in case of low wind speed and improve power quality. Thus, the ideal power output 

curve can be attained theoretically [29] as expressed in Equation (12): 

 

w CI w CO

3 3
w CI

w R CI w R3 3
R CI

R w R

0,    ,

,    

,  

v v v v

v v
P P v v v

v v

P v v

 

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

 

 (12) 

where Pw and PR represent the real power output and rated power output of wind turbines, respectively, 

with the unit of kW; and vw, vCI, vCO, and vR denote the actual wind speed, cut-in wind speed, cut-out 

wind speed, and rated wind speed, respectively, with the unit of m/s. 

According to the variation trend, the wind speed forecasting curve can be partitioned into several 

parts of different periods. The approximate power expectation of the wind generator in a certain period 

can be attained by gaining the expectation of wind speed in the corresponding period: 

 
1

w
w

1

s

s

t

s st

P
P dt

t t
 


  (13) 

where wP  represents the power output in the s-th dispatch time interval; and ts and ts−1 denote the 

periods adjacent to interval s. 

3. Low-Carbon Dispatch Model Considering the Energy-Environmental Efficiency 

Based on wind speed forecasting and wind power output forecasting, the present paper establishes 

the power system low-carbon dispatch model considering the energy-environment effect. The flow 

chart for the dispatch process is shown in Figure 3. 

3.1. Objective Function 

3.1.1. Objective Function of Minimum Operational Cost 

The mathematical model used as the objective function to obtain the minimum operational cost of 

thermal units is: 

 2 1

1 1

min ( ( ) ) (1 )
T G

t t t t
i i i i i i i i

t i

F a b P c P S I I

 

         (14) 



Energies 2012, 5                    

	

1253

where T is the total scheduling period; G is the number of generators; Pi
t is the generation of the i-th 

unit at the t-th hour; Si is the hot start-up cost of unit i; Ii
t is the on/off status of the i-th unit at the t-th 

hour (1 for on, and 0 for off); and ai, bi, and ci represent the unit cost coefficients. 

Figure 3. Flow chart of low-carbon dispatch based on wind speed forecasting. 

	

3.1.2. Objective Function of Optimum Energy-Environmental Efficiency 

Greenhouse gas generated by thermal power generation, such as CO2, poses a threat to the 

environment and the continuous development of society. Unfortunately, in many important 

energy-consuming countries, fossil fuels will serve as the main domestic source for power generation 

for the next few decades. The fact is that large-scale CO2 emission reduction has much room for 

improvement. The low-carbonization campaign in thermal power generation offers a primary drive for 

the whole power industry to cut down carbon emission. Based on the “Energy Ecology index”  

in [30–32], the present paper establishes the energy-environmental efficiency model to appraise the 

energy utilization rate of different thermal units and the effect that carbonization emission inflicts on 

the ecology, as expressed by Equation (15): 

 
2

1 1

( )
max

( )

t iT G
tie r i
it i i

t i ie r i CO

P
E I

P kE




  
   

 
  

  
  (15) 

where ie  presents the generation efficiency of the i-th thermal unit; i
  denotes the net calorific 

value of the i-th generator with the unit of MJ/kg; and k designates the heat loss coefficient caused by 

pollutants such as CO2, with the unit of MJ/kg. The combustion of hydrogen and coal is compared  

in [30], which indicates the heat loss coefficient of standard coal combustion to be approximately 2; 
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2CO
iE  indicates the rated equivalent CO2 emission of other greenhouse gases (the specific conversion 

process is explained in [30]); ( )t
r iP  designates the function of the variable power Pi

t to generation 

efficiency ie , as expressed by the following equation: 

 2( ) ( )t t t
r i i i i i iP P P       (16) 

where αi, βi, and γi represent the coefficients of the efficiency function.  

The values of α, β, and γ are obtained from the running thermal power unit in the actual system. 

Conventional generator parameters are mainly determined by the capacity of the units and the 

technical factory specifications.  

The energy-environmental efficiency model represents the total energy-environmental efficiency 

index of all generators in a certain dispatch interval. It stands for the degree to which the environment 

is threatened by the consequent carbon emissions from power generation in one time unit. A higher 

index value indicates better energy-environment efficiency in the dispatch period, namely, higher 

energy conversion efficiency. 

Equations (14) and (15) constitute the low-carbon power dispatch model to which the 

energy-environment efficiency concept is introduced based on the conventional power dispatch 

strategy. The low-carbonization model of power generation is introduced based on the perspective of 

ecological continuous development. The commonly used EED model added the function of CO2 

emissions to study the environmental pollution caused by power production on the basis of the ED 

model as shown in Equation (14). The specific expression is rendered as follows: 

 2
c c c

1 1

min ( ( ) )
T G

t t t
c i i i i i i

t i

E a b P c P I
 

       (17) 

where Ec is CO2 emissions function of the thermal units; aci, bci, and cci represent the unit  

cost coefficients. Compared with the EED model, low carbon dispatching model can better  

evaluate environmental benefit and energy efficiency among different primary energies. The low 

carbon dispatching model can also reflect the destruction of ecological environment caused by  

power production comprehensively and objectively and make the result of the optimization dispatching 

more reasonable. 

3.2. System and Unit Constraints 

(1) System power balance, the transmission losses are ignored. 

Total power generation outputs at each hour must be sufficient to meet the system load demands: 

 w D
1 1

G M
t t t

i m
i m

P P P
 

   , t T  (18) 

where M is the number of wind-powered generators, w
t
mP  is the real power output of the m-th 

wind-powered generator at the t-th hour, D
tP  is the system load demand of t-th hour. 

(2) Generation power limits 

The generating power of each unit should lie between the maximum and minimum limits: 
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 min max
t

i i iP P P  , t T  (19) 

where Pimin and Pimax are the minimum and maximum generation limits, respectively, of the i-th unit. 

(3) Ramp rate limits 

The operating range of all online units is restricted by their ramp rate limits during each dispatch 

period. Thus, the subsequent dispatch output of each unit should be limited between the constraints of 

the up and down ramp rates: 

 1
up

t t
i i iP P r T   , i G t T  (20) 

 1
down

t t
i i iP P r T    , i G t T  (21) 

where riup and ridown are the ramp-up and ramp-down rate limits, respectively, of the power generation 

of the i-th unit; and ΔT represents the scheduling period. In this paper, ΔT = 1 h. 

(4) System spinning reserve requirement 

The product of wind power generation is electric energy rather than spare capacity. Thus, the 

system spinning reserve depends on the spinning reserve of available thermal units.  

 max 1 up
1

( )
G

t t t
i i D

i

P P P


  , t T  (22) 

 min 2 down
1

( )
G

t t t
i i D

i

P P P


  , t T  (23) 

where ε1 and ε2 represent the upward and downward system spinning reserve rates, respectively; max
t

iP  

and min
t

iP  are the maximum and minimum power outputs, respectively, of the i-th unit at the t-th hour; 

and up
t

DP  and down
t

DP  are the respective corresponding system loads when the upward or downward 

system spinning reserve is used. 

(5) Unit minimum up and minimum down time 

When the unit is turned on, it must maintain its on status for the minimum up time before it can be 

shut down. When the unit is turned off, it must be kept in the off-state for the minimum down time 

before it can be turned on again: 
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min

1
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1
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i

t
t t j off
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t
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


 




 

   

   




,  ,i G t T  (24) 

where min
off

iT  and min
on

iT  represent the minimum down time and minimum running time, respectively, 

of i-th unit. 
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4. Hybrid of PSO with SA Algorithm 

4.1. Basic PSO 

The PSO algorithm is an adaptive algorithm originally developed by Kennedy and Eberhart [33]. 

PSO is motivated by the social behavior of organisms such as bird flocking. Its main advantages, 

compared with those of other methods, are its fast and adjustable convergence, and its ability to 

produce similar yet better quality solutions with less fitness evaluations. The fundamental idea for the 

PSO is that the optimal solution can be found through cooperation and information sharing among 

individuals in the swarm. The classical PSO model consists of a swarm of particles moving in the 

D-dimensional space of possible problem solutions. 
Let x and v denote a particle coordinate (position) and its corresponding flight speed (velocity) in 

the search space. Each particle i has a position Xi = (xi,1, xi,2, …, xi,D) and a flight velocity  

Vi = (vi,1, vi,2, …, vi,D). Each particle keeps track of its coordinates in the solution space, which is 

associated with the best solution it has achieved so far. Moreover, a swarm contains for each particle i 

its own best position pi = (pi,1, pi,2, …, pi,D) found so far and a global best particle position  

pg = (pg,1, pg,2, …, pg,D) found among all the particles in the swarm so far. The modified velocity and 

position of each particle can be calculated using the current velocity and the distance from pbesti,D to 

gbesti,D, as shown in the following formulas: 

 1
, , 1 1 , , 2 2 , ,( ) ( )k k k k k k

i d i d i d i d g d i dv v c rn p x c rn p x            (25) 

 
1 1

, , ,
k k k
i d i d i dx x v    i = 1, 2, …, N; d = 1, 2, …, D (26) 

where N is the number of particles in a group, D is the number of members in a particle, ω is an inertia 

weight factor, c1 is a cognition weight factor, c2 is a social weight factor, rn1 and rn2 represent uniform 
random numbers between 0 and 1, ,

k
i dv  is the d-th dimension velocity of a particle i at iteration k, ,

k
i dx  

is the d-th dimension position of particle i at iteration k, ,
k
i dpbest  is the d-th dimension position of the 

own best position of particle i until iteration k, and k
dgbest  is the d-th dimension of the best particle in 

the swarm at iteration k. 

4.2. SA Algorithm 

The SA algorithm was proposed by Kirkpatrick et al. in 1983 [34]. SA is one of the most efficient 

methods for solving widely complex problems with several solution combinations. The basic idea of 

the method is that it accepts all changes that lead to improvements in the fitness of a solution to avoid 

becoming trapped in local minima. This technique is a reassertion of the gradual cooling process of a 

physical system to reach the state of minimum potential energy. The SA process consists of two steps. 

One is to increase the temperature of the heating bath to a maximum value at which the solid melts, 

and the other is to decrease the temperature of the heating bath gradually until the particles arrange 

themselves in the ground state of the solid [35]. 
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SA is an improving mechanism that starts with a primary solution (S0). The parameter that controls 

the process is temperature (T), which takes an initial value of T0. Subsequently, in the solution space, 

other solutions are searched in the following manner. 

The temperature (T) declines gradually during the calculation process, and the solution is evaluated 

by the Metropolis rule continually [36]. In each stage of the reduction, the process stops to reach a 

thermal equilibrium, which represents a better solution. During this time, a new solution (Sn) is created 

in the neighborhood of the previous solution (S). If the value of objective function [f(Sn)] is less than 

that of the previous value [f(S)], for example, for a minimum optimization problem, then the new 

solution is accepted. Otherwise, the new solution is accepted with a probability of P to escape the local 

optimum [37]. P is calculated by the formula: 

 

exp( / )

( ) ( )
100

( )
n

n

P E KT

f S f S
E

f S

 


    (27) 

where ΔE is the change in value and K is the Boltzmann constant. 

SA can receive a worse solution limitary according to the Metropolis rule when the temperature is 

high. Hence, it can escape the local solution and have a good global convergence performance. 

However, the performance of the SA algorithm largely depends on the initial solution (S0). The 

precondition of global convergence is that the initial temperature is high enough, declines slowly 

enough, and has an ending temperature that is low enough. 

4.3. PSO-SA Hybrid Algorithm 

PSO is simple and convenient, but it is easily trapped in the local optimization. SA has a strong 

ability to avoid the problem of local optimization, but its convergence rate is slow. Taking into 

consideration the characteristics of the SA and PSO algorithms, the present paper presents a novel 

combined algorithm based on PSO and SA [38,39]. The basic idea of the PSO-SA is to learn from one 

algorithm’s strong points to offset the other’s weaknesses. Regarding PSO as the principal part of the 

hybrid strategy, first the initial swarm is generated randomly. Subsequently, new individuals are 

searched [40]. Meanwhile, the annealing operation is used to update the position and velocity of  

each particle. In the PSO-SA hybrid algorithm, the inertia weight ω starts with a high value ωmax and 

linearly decreases to ωmin. For the acceleration coefficients, c1 and c2 start with a high value cmax and 

decrease to cmin. The mechanical expression is as follows: 

 max min
max

max

iter
iter

 
 


    (28) 

 max min
1 2 max

max

c c
c c c iter

iter


     (29) 

where itermax is the maximum iteration number, iter is the current iteration number, ωmax is set to 0.9, 

ωmin is set to 0.4 by experiment, cmax is set to 2.0, and cmin is set to 0.8. 

The procedures for implementing the PSO-SA hybrid algorithm are given by the following steps: 
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Step 1: Create a swarm of particles as the initial population of PSO, including random position and 

velocity, and calculate the experienced best position Pbest = (p1, p2, …, pi, …, pN), the global best  

position pg. 

Step 2: Initialize the sequence number of iteration k = 0. 

Step 3: Calculate the ω(k), c1(k), and c2(k) according to Equations (28) and (29). 

Step 4: Update the position and velocity of every particle in the population according to  

Equations (25) and (26). 

Step 5: Update the X, V, pi, and pg of the population. 

Step 6: k = k + 1, if k ≥ itermax, go to Step 7; otherwise, go back to Step 3. 

Step 7: According to the obtained Pbest, take each pi as a starting state using SA to find the optimum 

pg. Initialize the sequence number of initial solutions i = 1, and the temperature controlling parameter  

T = T0. 

Step 8: Generate a new solution pi
temp according to pi. If f(pi

temp) < f(pi), accept pi
temp to replace pi; 

otherwise, calculate P from Equation (27), generate a random number rntemp between 0 and 1. If  

rntemp < P, accept pi
temp to replace pi; otherwise, do nothing. 

Step 9: Decrease the temperature by the formula T = α × T, where α is called the cooling coefficient, 

with 0.80 ≤ α ≤ 1.0. If T > Tmin, go back to Step 8; otherwise, go to Step 10. At the end of Step 9, a new 
population temp

bestP  = (p1,temp, p2,temp, …, pi,temp, …, pN,temp) is obtained. 

Step 10: Choose the solution with the best objective function value from temp
bestP . Estimate the 

solution. If it is satisfactory, output the solution and end the calculation; otherwise, go back to Step 4. 

5. Fuzzy Processing and Solution of the Low-Carbon Dispatch Model 

5.1. Fuzzy Processing of Low-Carbon Dispatch Model 

The solution of the proposed low-carbon dispatch model belongs to the multi-objective 

decision-making (MODM) problem. In MODM, the best solution does not exist according to the 

conventional concept of optimality. Thus, the subjectivity of the decision maker must be adequately 

considered to achieve solutions that meet subjective and objective requirements [41]. Fuzzy math is an 

effective way to handle uncertain information. Considering the fuzziness and imprecision that depend 

on the subjectivity of decision makers, the present paper employs the fuzzy optimization method to 

convert the multi-objective function into a single-objective function for solutions. 

The key to the solution of the multi-objective fuzzy optimization is the membership functions of 

each single-objective function [42]. The minimum operational cost objective is cost-oriented, which is 

considered better with lower function values. The optimal energy-environment efficiency objective is 

benefit-oriented, which seeks maximization of the expression. In terms of maximization and 

minimization of the single objectives, a monotonically non-increasing function is chosen as the 

membership function for the operational cost objective, whereas a non-decreasing function is chosen 

for the energy-environment efficiency objective. The specific algorithm is expressed in Equation (30) 

and the corresponding graph is shown in Figure 4: 
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where c01 and c02 denote the minimum operational cost and best energy-environment efficiency, 

respectively; δ01 stands for an acceptable increase in operational cost; and δ02 stands for the expected 

raise in energy-environment efficiency.  

Figure 4. Maximal and minimal fuzzy membership functions. 
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The abovementioned parameters are set after scaling when each single-objective optimization is 

fulfilled. In the MODM’s fuzzification process, these parameters are given based on which feasible 

region of each function can be determined.  

Of the two membership functions of the single objectives in Equation (30), the satisfactory degree λ 

can be defined as 

  min ( ), ( )F E    (31) 

According to the maximum and minimum principal of the fuzzy set theory, the MODM can be 

converted to a max λ problem, which seeks the maximum λ without violating the constraints. The 

mathematical expression is as follows: 
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( ) ; ( )

. . 0 1

Equations (18) (24)

F E

s t
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 (32) 

By substituting μ(F) ≥ λ and μ(E) ≥ λ in Equation (32) into the feasible region of Equation (30), the 

MODM problem can be converted into a single nonlinear programming issue. The mathematical 

description is as follows: 
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5.2. Computational Flow 

(1) Input field data; employ the PSO-SA algorithm to optimize the single-objective power  

dispatch model of minimum operational cost and gain the corresponding operational cost value c01, the 

energy-environmental efficiency value 02c , the unit commitment, and the power output of the  

thermal generators. 

(2) Input field data; use the PSO-SA algorithm to solve the optimum energy-environmental 

efficiency power dispatch problem and obtain the energy-environmental efficiency value c02, the 

operational cost value 01c , the unit commitment, and the power output of each thermal unit. 

(3) Determine the value of δ01 and δ02 by scaling the resultant values based on Steps (1) and (2), 

according to the inequality 01 01 010 ( )c c     and inequality 02 02 020 ( )c c    , and thus implement 

fuzzification. With the discrepancy in preference for economy over the environment or the other way 

around, the objective value can be scaled to different degrees. In theory, δ01 and δ02 are expected to be 

minimized, which will, however, lead to an increase in calculation complexity. 

(4) Constitute the values of c01, δ01, c02, and δ02 into Equation (30) to attain the expression for the 

membership function. 

(5) Adopt the satisfaction-maximizing method to convert the multi-objective dispatch problem into 

a single nonlinear one. Take the PSO-SA algorithm to search for the solution, and obtain the unit 

commitment and power output for the maximum satisfaction in different time intervals. 

6. Numerical Simulation 

To confirm the reasonability of the low-carbon power dispatch model considering the 

energy-environmental efficiency and the practicability of the PSO-SA algorithm, a six-unit system is 

introduced to implement the simulation in a 24 h dispatch period (1 h per time interval). The 

“Renewable Energy Law” promulgated by China has set policies to support renewable energy being 

fully online. This numerical simulation first meets the full online need of wind power forecasting. 

Wind power will still run according to the prediction when the system load demand is increased or 

decreased, and the change of the load value is borne by the thermal power units. One wind farm is 

incorporated with 60 wind turbines, rated 750 kW power output, and 3 m/s, 25 m/s, and 15m/s for the 

cut-in wind speed, cut-out wind speed, and rated wind speed, respectively. The relevant data of the 

wind farm comes from the actual running wind farm in Yunnan Province, China. Considering the small 

system capacity of wind power farms and the limited power of wind forecasting in the 24 h 

dispatching periods, the reserve requirements based on present-day values is prescribed as 5% of the 

load. The control parameters of the PSO-SA algorithm are expressed as follows: population size = 20, 

maximum iteration number = 200, start temperature T = 100, terminate temperature T0 = 50, and 

cooling coefficient α = 0.95. The base value of power is set as 100 MVA. The system load statistics are 

shown in Table 2. The conventional generator parameters are shown in Table 3, in which the first 

generator serves as the balancing unit. Fuel specifications are listed in Table 4. The codes are  

compiled using Matlab R2010a under the computing environment of Intel(R) Core(TM)i3 2120  

3.3 GHz, 4 GB RAM. 
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Table 2. Load demands. 

Hour 1 2 3 4 5 6 7 8 9 10 11 12 

PD/pu 2.305 1.963 1.958 1.909 1.958 2.359 2.650 3.041 3.685 3.736 3.736 3.548

Hour 13 14 15 16 17 18 19 20 21 22 23 24 

PD/pu 3.412 3.613 3.592 3.636 3.875 3.932 3.932 3.736 3.486 3.093 2.608 2.706

Table 3. Parameters of conventional generators. 

Unit NO. G1 G2 G3 G4 G5 G6 

Pimax/pu 4.00 1.30 1.30 0.80 0.55 0.55 

Pimin/pu 1.20 0.20 0.20 0.20 0.10 0.10 

ai/($/h) 663.3562 932.6582 876.7851 1 235.2237 1 332.3704 1 658.1029 

bi/($/MW·h) 0.3619 0.4560 0.4258 0.3826 0.3992 0.3527 

ci/(104·$/MW2·h) 0.2048 0.1332 0.1298 0.0640 0.0254 0.0128 

riup/(pu/h) 0.8 0.3 0.3 0.25 0.15 0.15 

ridown/(pu/h) 0.8 0.3 0.3 0.25 0.15 0.15 

ie 0.75 0.50 0.55 0.40 0.35 0.30 

i/105·MW2 −0.0313 −0.2495 −0.1875 −0.1210 −0.7503 −0.6714 

i/102·MW1 0.1375 0.4017 0.3775 0.3228 0.5301 0.4866 

i 0.8300 0.7466 0.7795 0.7496 0.7472 0.7520 

Si/$ 4500 560 550 170 30 30 
off
miniT /h 8 5 5 3 1 1 
on
miniT /h 8 5 5 3 1 1 

Table 4. Fuel characteristic data of unit. 

Unit NO. Ei
CO2 

i
 /(MJ/kg) 

G1 23.9332 25.8627 

G2 38.9529 14.8726 

G3 34.2126 13.0714 

G4 40.5933 12.2880 

G5 42.0152 11.1917 

G6 44.1282 10.5303 

The predicted power output Pw of the wind farm in the 24 dispatch periods shown in Figure 5 is 

based on the wind speed–power function curve described in Equations (12) and (13), and the wind 

speed prediction in Figure 2. Table 5 compares the optimization results of the wind farm integrated 

into the system and the wind farm not integrated into the system power dispatch model. The 

energy-environmental efficiencies of the two models show no clear distinction due to low power 

output of the wind farm, whereas the operational cost experienced a decrease of $5,512.6268, from 

$99,721.9382 to $94,209.3114. Thus, the incorporation of wind power reduces primary energy cost, 

which proves to be a significant advantage of wind power. 
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Figure 5. Wind power forecast data for each time period. 
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Table 5. Comparison between optimization results of wind farmin and out the power 

system of low-carbon dispatch models. 

Dispatch model Operational cost/($) Energy-environmental 

Wind farm excluded 99,721.9382 10.9417 

Wind farm included 94,209.3114 10.9301 

Table 6 lists the comparison of computation times of multi-objective low-carbon dispatch and 

different single-objective dispatch models. As shown in Table 6, the calculation time consumed in 

solving multi-objective low-carbon dispatch model in a system consisting of six thermal power units 

and a grid-connected wind farm is 834.8493 s, which is longer than the time consumed in solving the 

single-objective dispatch model. Increased calculation time shows that the multi-objective model is 

more complicated and more difficult than the single-objective model. In the actual operation of the 

power system, the scheduling department generally makes power generation plan 24 h ahead of time. 

Therefore, the computing efficiency of the PSO-SA algorithm used in this paper to solve 

multi-objective low-carbon models can still meet the demand of the dispatch department to make daily 

generation plan. The PSO-SA algorithm used in this paper can act as a reasonable candidate for 

scheduling solution of the scheduling department of the power system. 

Table 6. Comparison of calculation times of multi-objective and different single-objective 

dispatch models. 

Dispatch model 
Minimum 

operational cost 
Optimum energy-environmental 

efficiency 
Multi-objective 

low-carbon dispatch 

CPU time/(s) 289.1735 349.4854 834.8493 

Table 7 compares the expected optimization objectives of the multi-objective low-carbon dispatch 

model with those of the single-objective dispatch models. Table 8 reveals the fuzzification result of the 

multi-objective dispatch model. Figure 6 shows the resource consumption-thermal power output  

curve. Figure 7 depicts the energy-environmental efficiency-thermal power output curve. Figure 8 

renders the unit commitment and power output curves of the thermal generators, G1 to G6, of different 

dispatch models. 
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Table 7. Comparison of optimization results among multi-objective and different 

single-objective dispatch models. 

Objective 
Minimum 

operational cost 

Optimum 
energy-environmental 

efficiency 

Multi-objective 
low-carbon 

dispatch 

Operational cost/($) 91,642.8250 97,312.1739 94,209.3114 
Energy-environmental 

efficiency 
10.5646 11.0364 10.9301 

Tables 7 and 8 show a maximum satisfaction value of 0.8122 when the multi-objective low-carbon 

dispatch optimization is performed, as shown in Table 8. Under this circumstance, generation 

operational cost is $94,209.3114, a $2,566.4864 (2.8%) increase compared with the operational  

cost of $91,642.8250 in the minimum operational cost dispatch and a $3,102.8625 (3.18%)  

reduction compared with the operational cost of $97,312.1739 in the optimum energy-environmental 

efficiency dispatch.  

Table 8. Fuzzification result of multi-objective low-carbon dispatch model.  

λ μ(F) μ(E) F/($) E 

0.6373 0.9113 0.6373 92,432.7848 10.6894 

0.6536 0.9026 0.6536 92,805.9495 10.7092 

0.7138 0.8878 0.7138 93,109.7942 10.7752 

0.7192 0.8825 0.7192 93,372.6540 10.7828 

0.7513 0.8759 0.7513 93,605.9495 10.8252 

0.7657 0.8562 0.7657 93,688.7945 10.8429 

0.7741 0.8513 0.7741 93,935.8975 10.8763 

0.7997 0.8489 0.7997 94,054.6232 10.8892 

0.8050 0.8216 0.8050 94,117.0730 10.9102 

0.8122 0.8158 0.8122 94,209.3114 10.9301 

The corresponding energy-environmental efficiency value of the best compromise solution equals 

10.9301, which is a 0.1063 (0.96%) decrease from 11.0364 of the optimum energy-environmental 

efficiency dispatch and a 0.3655 (3.46%) increase from 10.5646 of the minimum operational cost 

dispatch. According to Table 7, optimization of the multi-objective low-carbon dispatch model bears 

higher total generation operational cost than that of the optimization of minimum operational cost 

dispatch model and better energy-environmental efficiency than that of the optimization of the 

optimum energy-environmental efficiency dispatch model. The multi-objective model accounts for 

both economy and ecology in power generation, whereas the pre-mentioned single-objective models 

emphasize only a certain side. Based on the above comparative analysis, the multi-objective dispatch 

model proposed in the present paper outperforms the single-objective ones when the two conflicting 

optimization objectives are both considered. The proposed model strikes a balance between the two 

and precisely reflects the operating condition of the thermal generators while optimizing the wind 

power output dispatch. These characteristics distinguish the proposed model from the traditional 

single-objective ones.  
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Table 8 indicates that operational cost increases along with the enhancement of fuzzy satisfaction, 

whereas the energy-environmental efficiency increases greatly. Nevertheless, control of CO2 emission 

is bound to raise generation costs. This finding further proves the necessity and efficiency of the 

proposed model in improving energy-environmental efficiency and cutting down carbon emission. The 

decision maker can choose a compromise solution subjectively to meet different power market 

requirements based on the optimization result. 

Figure 6. Curves of resource consumption values of unit G1 to G6.  
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Figure 6 shows that the resource consumption values of the six generators increase monotonously 

with the escalation of power output level. The operational cost of thermal unit is determined by 

resource consumption. This characteristic leads to the active power of all thermal generator units in 

different dispatching periods close to the relevant power output value of the minor resource 

consumption when using the objective function of minimum operational cost in optimal dispatching. 

Besides, those with minor resource consumption in the same load distribution have the priority to take 

the load. Nevertheless, the energy-environmental efficiency curve and the resource consumption curve 

show different characteristics.  

Figure 7 shows the energy-environmental efficiency values of the six generators under different 

power output levels. The energy-environmental efficiency of the thermal generators does not 

monotonically increase along with the escalation of the power output, except in the fourth unit. They 

generally have parabolic curves that make energy-environmental efficiency values lower on both light 

and heavy power output levels. This characteristic significantly influences the load dispatch strategy 

when considering energy-environmental efficiency. For a certain generator, power output in different 

dispatch periods converges to the point where the energy-environmental efficiency reaches its 

optimum value. For generators with the same power output character, those with better 

energy-environmental efficiency have the priority to take the load. 
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Figure 7. Curves of energy-environmental efficiency values of unit G1 to G6. 
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The abovementioned issue may be proven by the power output curves in Figure 8. In either 

single-objective model with optimal energy-environmental efficiency or multi-objective low-carbon 

dispatch model to carry out the dispatch, the power output of the thermal generators fluctuates around 

the point of the best energy-environmental efficiency in most dispatch intervals. When the load is 

relatively low, units with worse energy-environmental efficiency will be cut off. This way, the overall 

energy-environmental efficiency is improved because the units with better energy-environmental 

efficiency are ensured to operate around their optimum operation point. When the minimum 

operational cost model is adopted, the power output of G1 to G6 are reduced for cost control, resulting 

in a relatively low energy-environmental efficiency value. Under this circumstance, operational cost is 

lessened at the expense of environmental damage, contrary to the low-carbon developing policy. For 

generators of the same power output characteristic, the ones with better energy-environmental 

efficiency will take on the load first. For example, if G2 and G3 have the same power output character, 

as shown in Figure 7, then G3 exceeds G2 in operating time and power output when 

energy-environmental efficiency is considered. A similar analysis applies to G5 and G6 with an 

identical conclusion.  

The energy-environmental efficiency curve of G4 monotonically increases with the growth of its 

power output. A comparison of the power output curves of G4 in the three different dispatch models 

suggests that G4 offers the largest power output in the optimum energy-environmental efficiency 

model. In the multi-objective model, the power output of G4 falls to some extent, but still outweighs 

the power output in the minimum operational cost model significantly. Therefore, the above 

comparative analysis reveals that the unit commitment strategy and load dispatch scheme change 

greatly when energy-environmental efficiency is considered. Units with better energy-environmental 

efficiency gain the priority to be loaded to augment the operational cost of power generation. When the 

multi-objective low-carbon dispatch model is introduced, reasonable operational cost is achieved while 

energy-environmental efficiency is improved and low-carbon dispatch is promoted. 
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Figure 8. Curves of daily output of units G1 to G6 with different objectives.	

 

Figure 8 shows that in the optimization of the minimum operational cost model, units with lower 

operational cost possess absolute advantage in price regardless of the energy-environmental efficiency. 

Thus, these units hold loading priority. When energy-environmental efficiency serves as the 

optimization objective, units with better energy-environmental efficiency have superiority over other 

generators, irrespective of operational cost. Thus, such units hold loading priority. When both 

economic and environmental indexes are considered, optimization of the multi-objective model 

involves the impartiality for power generators and brings forward the spirit of low-carbon  

power dispatch.  

Energy-environmental efficiency cannot be measured by money like the operational cost of 

traditional generators. Rather, it appears as a kind of invisible capital. Overall, by taking 

energy-environmental efficiency into account, the operational cost of thermal generators slightly 

increases, whereas the energy-environmental efficiency of the power generation system escalates 

unconsciously, leaving the ecology less polluted. Therefore, incorporation of the energy-environmental 

efficiency into the power dispatch model bears profound meanings in the background of global 

promotion of green energy development and low-carbon economy. Low-carbon dispatch possesses 

expansive potential applications in appliances. 
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7. Conclusions 

This paper introduces wind speed prediction technique and energy-environmental efficiency 

concept into the optimization dispatch problem of a wind-incorporated power system. The time series 

method is adopted to perform short-term wind speed prediction and offer relatively accurate power 

output data for dispatch departments to mitigate the impact of wind speed fluctuation on the  

power system dispatch and its operation. Low-carbonization is stressed by the introduction of  

energy- environmental efficiency in the modeling process, resulting in a multi-objective power 

dispatch model that pursues both minimum operational cost and optimal energy-environmental 

efficiency. The proposed model is built from the ecological perspective, emphasizing the effect of 

power generation on the environment. The model positively affects the present power system dispatch 

technique in the strategic policy of large-scale wind power promotion and green low-carbon 

development. Multi-objective fuzzy optimization and PSO-SA algorithms are adopted to solve the 

low-carbon dispatch model and increase its calculation precision. Simulation results prove the 

reasonability of the proposed multi-objective low-carbon dispatch model. The consequent dispatch 

strategy offers reference to traditional power generation dispatch. Energy-environmental efficiency 

should be a key factor in power system dispatch and operation. 

The following conclusions are also reached: (1) Wind speed prediction is critical in the optimization 

of the dispatch of wind-incorporated power systems. Progress in prediction techniques is beneficial to 

the overall security and stability of power system dispatch and operation; (2) With environmental 

protection becoming the societal focus, more strict limits on pollutant emission are set. The 

energy-environmental efficiency index effectively evaluates the transformation efficiency and 

environmental effect of different primary energies, objectively reflecting the effect of power generation 

on the ecology; (3) Traditional single-objective dispatch models are not adequate for dealing with 

wind-incorporated power system dispatch problems. In contrast, the multi-objective low-carbon 

dispatch model considering both minimum operational cost and optimum energy-environmental 

efficiency is a more practical method. 

Finally, it should be pointed out that this paper has validated the rationality of the proposed 

multi-objective low-carbon dispatch model under the simulation of the system containing six thermal 

power units and a grid-connected wind farm. The optimization result can be used as a reference for 

existing power system dispatch. However, further research and consummation are needed to determine 

whether multi-objective low-carbon dispatch model and PSO-SA algorithm can implement the time 

scales required for scheduling dispatch over real systems (on the order of thousands of generators). 
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