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Abstract: Battery peak power capability estimations play an important theoretical role for 
the proper use of the battery in electric vehicles. To address the failures in relaxation 
effects and real-time ability performance, neglecting the battery’s design limits and other 
issues of the traditional peak power capability calculation methods, a new approach  
based on the dynamic electrochemical-polarization (EP) battery model, taking into  
consideration constraints of current, voltage, state of charge (SoC) and power is proposed.  
A hardware-in-the-loop (HIL) system is built for validating the online model-based peak 
power capability estimation approach of batteries used in hybrid electric vehicles (HEVs) 
and a HIL test based on the Federal Urban Driving Schedules (FUDS) is used to verify and 
evaluate its real-time computation performance, reliability and robustness. The results 
show the proposed approach gives a more accurate estimate compared with the hybrid 
pulse power characterization (HPPC) method, avoiding over-charging or over-discharging 
and providing a powerful guarantee for the optimization of HEVs power systems. 
Furthermore, the HIL test provides valuable data and critical guidance to evaluate the 
accuracy of the developed battery algorithms.  

Keywords: electrochemical-polarization model; peak power capability; lithium-ion 
battery; hybrid electric vehicles; hardware-in-loop 
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1. Introduction 

Energy crises, environmental issues and concerns regarding peaking oil production have promoted 
research into development of various types of new energy vehicles, which has been established as one 
of the seven strategic emerging industries in China. Electric vehicles (EVs), which include battery 
electric vehicles (BEVs), hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs), 
are the main development subject for new energy vehicles [1–3]. Electric vehicles (EVs) are emerging 
as important personal transportation options for petroleum displacement and energy diversification. 
The battery, as a key component, is crucial for the performance features of EVs, such as economy, 
power performance, security, etc. [4]. 

The lithium-ion battery is widely used in many fields because of its advantages of high voltage, low 
self-discharge and long cycle-life. High specific energy, in particular, makes it a promising candidate 
for EVs. In such applications, a battery management system (BMS) is critical for maintaining optimum 
battery performance [5]. Accurate peak power estimates are critical in practical applications since it is 
necessary to determine the power available in the moment to meet the acceleration, regenerative 
braking and gradient climbing power requirements without fear of over-charging or over-discharging 
the battery and thus reducing its lifespan. More importantly, accurate online peak power capability 
estimates for the battery will optimize the relation between the battery capacity and the vehicle’s 
performance, which benefits the vehicle’s general potency [6]. 

Some peak power capability estimation approaches are presented with the development of EVs 
technology [6–9]. The commonly used method is the hybrid pulse power characterization (HPPC) 
method proposed by the Idaho National Engineering & Environmental Laboratory, which is used for 
determining the static peak power in laboratory environments [7]. However, it is not suitable for 
estimating the continuous peak currents that are available for the next sample intervals Δts and neglects 
design limits like cell current, cell power or the state of charge (SoC) [8]. In order to overcome the 
drawbacks of the HPPC method, which is not suitable for continuous peak power capability prediction, 
and neglecting the SoC limits, the voltage-limited method was proposed by Plett [9]. However, the 
Rint model-based HPPC and voltage-limited method are not suitable for estimating the battery’s peak 
power capability due to the fact that it can hardly simulate the dynamic voltage performance. 

Based on an analysis of the traditional methods [8] proposes a dynamic battery power estimation 
algorithm taking into account design limit constraints on current, voltage and SoC. The authors of [6] 
propose a model-based dynamic multi-parameter method for peak power capability estimations, and its 
comparison with other commonly used methods shows it is more useful than others. Unfortunately, the 
battery is a strongly non-linear and time-variable system because of its complicated electrochemical 
processes; its state parameters, such as the equivalent internal resistance, open-circuit voltage (OCV) 
and available capacity, will be changed to some extent due to the influence of the operation 
environment, aging and other factors, therefore the model parameters identified by offline methods, 
which the above two peak power estimation methods use, can hardly be used for a long time with high 
accuracy. Furthermore, the peak power capability estimation accuracy is always strongly dependent on 
the reliability of the tabulated OCV-SoC data. In addition, the experiments for collecting the tabulated 
OCV-SoC data are often time-consuming and error-prone, especially for lithium-ion batteries, which 
have quite flat OCV-SoC curves. Lastly, it is very challenging to test and verify the developed peak 
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power capability estimation algorithm in the early development stage due to limited resources  
and time. 

The well known software MATLAB/Simulink of Math-Works has been widely used in dynamic 
system modeling and simulation of control algorithms, and the MATLAB toolbox xPC Target 
provides us a rapid prototyping host-target environment to construct a real time control system in the 
manner of a hardware-in-the-loop (HIL) test. The software xPC Target is a solution for prototyping, 
testing, and deploying real-time systems using standard PC hardware [10,11]. The HIL test has been 
extensively used in the automotive industry for component development and rapid prototyping. 
Usually the target component under development is tested within a modeled system environment that 
reproduces the conditions under which the component will operate. With system-level requirements 
taken into consideration, HIL tests significantly reduce the time and costs of system-level integration 
and troubleshooting later in the development cycle [12]. The work in this paper aims at developing and 
verifying the online peak power capability estimation using xPC Target for on-board BMS applications. 

This paper makes use of a 3.7 V/35 A h LiMn2O4 lithium-ion cell as research subject. The paper is 
arranged as follows: Section 2 proposes an online parameter identification algorithm for the dynamic 
electrochemical-polarization (EP) battery model with the Simulink/xPC software; Section 3 proposes 
an online dynamic peak power capability estimation algorithm based on the dynamic EP model and 
designs a HIL test bench; Section 4 carries out the HIL test and evaluates the proposed method for 
hybrid electric vehicle (HEV) application; last is the conclusion of this paper. 

2. Online Parameters Identification Method 

To estimate the peak power capability of batteries, a dynamic battery model with an online 
parameter identification method is required and built first. The purpose of the online parameter 
identification method is to ensure the real-time performance of the model. The model’s precision will 
decrease because of the error in the model’s parameters which may vary with the changes of the 
operation environment, usage, cooling condition, etc. 

2.1. The EP Model  

Various battery models such as the equivalent circuit model and the electrochemical model are now 
widely used in EV studies. Electrochemical-polarization was proposed in [13] to integrate the 
description of the relaxation effect and the inner action in the battery model, and [13] shows the EP 
model has a better performance than equivalent circuit models and electrochemical models. The EP 
dynamic model is shown in Figure 1, and the electrical behavior of the model can be expressed by 
Equation (1): 
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Figure 1. Schematic diagram for the new electrochemical-polarization model. 
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where K0, K1 and K2 are three constants chosen to make the model well fit the test data, Ro is the ohmic 
resistance and Rp is the polarization resistance. The polarization capacitance Cp is used to describe the 
transient dynamic voltage response during charging and discharging. Up is the polarization voltage 
across Cp, Ut is the terminal voltage. 

2.2. The Recursive Least Square Method with an Optimal Forgetting Factor 

A model-based method can provide a cheap alternative for estimation or it can be used along with a 
sensor-based scheme to provide some redundancy. An efficient algorithm is undoubtedly necessary to 
achieve this goal. The recursive least square (RLS) algorithm is based on the minimization of the sum 
of squared prediction errors, where the estimated process model parameters are improved 
progressively with each new process data acquired. The RLS method with an optimal forgetting factor 
(RLSF) has been widely used in the estimation and tracking of time varying parameters in various 
fields of engineering. Many successful implementations of RLSF-based adaptive control for time 
varying parameters estimation are available in the literature [14,15]. 

Consider a single input single output (SISO) process described by the general higher order  
auto-regressive exogenous (ARX) model:  

T
k k k ky ξ= +φ θ  (2)  

where y is the measured system output, which denotes the terminal voltage Ut in this paper. φ and θ are 
the information matrix and the unknown parameter matrix, respectively. The parameters in θ can either 
be constant or subject to infrequent jumps. ξ is a stochastic noise variable (random variable with 
normal distribution and zero mean), and k is a non-negative integer, which denotes the sample interval, 
k = 0,1,2... For the recursive function of (2), the system identification is realized as follows: 
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where kθ̂  is the estimate of the parameter matrix, ke  is the prediction error of the terminal voltage, Kk 
is the algorithm gain and Pk is the covariance matrix, λ  is the forgetting factor, typically λ = [0.95, 1] 
and is very important to obtain a good estimated parameter, set with a small error.  

2.3. The Online Parameters Identification Method for the EP Model 

Equation (1) can be rewritten as follows in the frequency domain: 

( ) ( ) ( ) p
t oc L o

p

( )
1 p

R
U s U s I s R

R C s
= − +

+
 (4)  

Defining t t ocE U U= − , the transfer function G(s) of Equation (4) can be written as follows: 
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A bilinear transformation method shown in Equation (6) is employed for the discretization 
calculation of Equation (5) and the result is shown in Equation (7): 
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where z is the discretization operator, Ts is the sample intervals and is 1 second for this paper:  
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The battery’s dynamic performance has big relationships with the state parameters as SoC, 
operating environment, especially the operating temperature T, and the usage history h. The model 
parameters can be described as a function of T, SoC and h. Equation (9) can be simplified to Equation (10) 
after considering the following assumptions [16]: the expression 0SoC t∂ ∂ ≈  holds for battery energy 
which is consumed or regained in a sample interval relatively small compared to the total capacity 
available; relying on the proper design of a cooling system/heater for the BMS, the temperature 
rise/decrease of batteries should be slow, the 0T t∂ ∂ ≈  holds for normal operating conditions. The 

0h t∂ ∂ ≈  definitely holds since h represents a long term usage history: 
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Then the model parameters can be solved by the expressions of p1, p2, p3, p4, p5, p6, and as follows: 
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Define k 1 k k t,k 1 L,k L,k 1[1 ln ln(1 ) ]SoC SoC U I I− − −= −φ , T
k 1 1 2 3 4 5 6[ ]p p p p p p− =θ and k 1 t,k 1y U− −= . 

In case of an online application, herein the t,kU  and L,kI are sampled at constant periods, the vector kθ  
can be identified by a recursive least squares algorithm according to Equation (3), and then the model 
parameters can be solved by the expressions of p1, p2, p3, p4, p5, p6. 

3. Battery Online Peak Power Capability Estimation Method 

To estimate the battery’s peak power capability, an online EP dynamic model-based peak power 
capability estimation approach is proposed and built with the Simulink software first. Afterwards,  
this section will deal with the design of a hardware-in-loop test bench for the evaluation of the 
proposed method.  

3.1. Online Peak Power Capability Estimation Method 

3.1.1. The HPPC Method 

The HPPC method, developed by Idaho National Engineering & Environmental Laboratory [7], 
estimates the peak power capability of a battery based on the Rint model consisting of an OCV and an 
ohmic resistance. A cell is simulated by the following relation: 

t oc o L( ) ( ( )) ( )U t U s t R I t= − ×  (14) 

where Ut(t) is the terminal voltage at time t; Uoc(s(t)) the open-circuit voltage at present SoC state (s(t)), 
and Ro the charging or discharging internal resistance. 
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Due to the design limit Ut,min ≤ Ut(t) ≤ Ut,max, the peak charge and discharge current under the 
voltage constraints are described as: 

oc,k t,maxchg,HPPC
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where Ut,max and Ut,min are the maximum limit voltage when charging and the minimum voltage limit 
when discharging, respectively; chg,HPPC

minI , dis,HPPC
maxI are the minimum charge current and maximum 

discharge currents based on the HPPC method. Hence, the peak power capability of the lithium-ion 
cell can be described as: 

chg chg,HPPC
min t,max min

dis dis,HPPC
max t,min max

P U I
P U I

⎧ = ×⎪
⎨ = ×⎪⎩

 (16) 

This method can be used for calculating the absolute available peak power capability of the battery 
pack, but it is not suitable for estimating the continuous available peak power capability at the next Δt. 
It takes into account the operational design limits on voltage when estimating maximum available 
power, but does not consider design limits on cell current, cell power or cell SoC.  

3.1.2. The SoC-Limited Method 

With the SoC-limited method, the peak current, which is used for estimating the battery available 
peak power capability, can be obtained based on the maximum and minimum SoC limits. Starting from 
time t, the battery is discharged (or charged) with a constant current during the specified time period 
Δt. For the time period Δt, the SoC of the cell at the time (t + Δt) can be expressed by: 

i
L
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( ) ( ) ( ) ts t t s t I t
C
η⎛ ⎞Δ

+ Δ = − ⎜ ⎟
⎝ ⎠

 (17) 

where ηi is a coulomb efficiency factor for the current level IL(t), which is in function of the load 
current. Cmax is the present maximum available capacity. 

Due to the consideration of the design limits of HEVs: the maximum SoC smax, the minimum  
SoC smin and the current limit of cell can be expressed as follows: 
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i max
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i max
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/

s t sI
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s t sI
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 (18) 

The SoC-limited method which focuses on the continuous peak power capability within time Δt 
conforms to the practical charge and discharge process. However, this method will give optimistic 
estimations of the battery’s peak current if the battery is allowed to be discharged or charged over a 
wide range of SoC. As a result, this method is usually applied together with another method. 
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3.1.3. The EP Dynamic Model-Based Method 

The HPPC method is widely used for the calculation of the battery’s peak power capability in 
laboratories. However, the Rint model is so simple that it can only be used to do power predictions 
under stable driving cycles; and it can hardly be used for HEVs since their battery operation 
environment is very harsh. The above mentioned method is therefore not appropriate for estimating the 
battery’s peak power capability in HEVs. To solve these problems, the EP model-based dynamic peak 
power capability estimation method is proposed. The model can precisely simulate the dynamic 
polarization characteristics of a lithium ion battery and obtain the ideal prediction. 

Discretization of Equation (1): 

( ) ( )( )p p p L( ) exp ( ) 1 exp ( )U t t t U t R t I tτ τ+ Δ = −Δ + − −Δ  (19) 

However, the peak currents cannot be solved directly from the maximum current L ( )I t since 
( )s t t+ Δ  itself is a function of the current IL(t) and OCV is a nonlinear function of ( )s t . Concerning 

this problem, the Taylor-series expansion is employed to linearize the equation and to solve the 
approximated values for the peak currents. The Taylor-series expansion equation is as follows: 
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∂
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Considering the first-order residual 1( )R •  being too small to affect the OCV at the next Δt, since the 
SoC’s variation per sample interval is very small [16,17], the 1( )R •  can be viewed as 1( ) 0R • ≈ . Then: 

oc p t,min
dis,The
max

oci
( ) p o

max

oc p t,max
chg,The
min

oci
( ) p o

max

( ( )) ( ) exp( )

( ) [1 exp( )]

( ( )) ( ) exp( )

( ) [1 exp( )]

s t

s t

tU s t U t U
I

U st tR R
C s

tU s t U t U
I

U st tR R
C s

τ
η

τ

τ
η

τ

Δ⎧ − − −⎪
=⎪ ∂Δ Δ⎪ + − − +

⎪ ∂
⎨ Δ⎪ − − −
⎪ =⎪ ∂Δ Δ

+ − − +⎪
∂⎩

 (21) 

where oc 1 2( ) (1 )U s s K s K s∂ ∂ = − −  can be obtained from Equation (1). The OCV value is going up 
as the SoC increases, as a result the ( )ocU s s∂ ∂  is positive for most batteries within the entire SoC 
operation range. The polarization voltage Up is greater than zero when the battery is discharging and 
Up < 0 when charging, therefore the values computed by (21) are smaller in magnitude than those from 
(15) for the same ohmic resistance values. Meanwhile, ∂Uoc/∂s is not constant within the entire SoC 
operation range, especially at the two extreme ends. Therefore the peak power capability estimates 
based on the EP-model method are more reasonable than those of the HPPC method regarding peak 
current calculations and thus safety issues. Once the current design limit is calculated, the peak 
currents with all limits enforced are calculated as: 

( )
( )
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max max max max
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min min min min
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where Imax, Imin are the cell’s current design limits, Imax denotes the maximum discharge current and Imin 
denotes the minimum charge current of its design limits. The peak power capability may be calculated 
as follows: 

( )
( )
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 (23) 

where Pmax, Pmin are the cell’s power design limits, Pmax denotes the peak discharge power and Pmin 
denotes the peak charge power of its design limits. Then we can build the Simulink model of the peak 
power capability estimation methods for the HPPC method and the EP dynamic model-based method, 
respectively, based on the equations above. 

3.2. The Hardware-in-Loop Test Bench Design 

The test bench for the HIL test is shown in Figure 2, which consists of electrical load equipment, a 
CAN communication unit, a host computer and Target. The electrical load equipment can 
charge/discharge a battery according to the real-time demands of the current or power with a maximum 
voltage of 50V and a maximum charging/discharging current of 200 A. Its recorded data include 
current, voltage, temperature, accumulative Amp-hours (A h) and Watt-hours (W h). The errors of the 
Hall current and voltage sensors are less than 0.2% and 0.5%, respectively. The measured data is 
transmitted to the Target through CAN. Both the Target and the electrical load equipment have a  
low-pass filtering function to implement large noise cancellation.  

The software is running on two PCs, the host PC and the Target PC. The host PC runs the Microsoft 
Windows XP operating system and the required software packages: MATLAB, Simulink, Real-Time 
Workshop (RTW) and C/C++ compiler. MATLAB is the host software environment, which includes 
Simulink with xPC Target and RTW module. In this environment, a desktop or laptop computer is 
used as the host PC with MATLAB and Simulink to create a model using Simulink blocks. After 
creating the model with Simulink, the simulation can be run first. Afterwards, xPC Target allows us to 
add I/O blocks to the model, and then use the host PC with Real-Time workshop and a C/C++ 
compiler to create an executable code. The executable code is downloaded from the host PC to the 
target PC running the xPC Target real-time kernel, which is booted from a floppy disk. The 
communication between the host and target PC is established through TCP/IP. After downloading the 
executable code, we can run and test the target application in real time. In order to reduce the influence 
of temperature, the battery is carried out in a thermal chamber with a fixed temperature of 20 °C.  
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Figure 2. The test bench for HIL experiment. 

 

4. Results and Discussion 

Firstly, the cell capacity check test is run to check the cell’s present maximum available capacity. 
After being properly initialized (the cell’s design limits are shown in Table 1), the battery then runs 
through a verification profile of the Federal Urban Driving Schedules (FUDS) [18,19] on the HIL 
bench downloaded from the xPC Target. The measured current and voltage profiles of the FUDS are 
shown in Figure 3. To simplify the analysis for the peak power capability calculation results, the SoC 
is calculated by the ampere counting method, which is useful in a laboratory environment. The initial 
SoC is set at 0.85. The battery model takes measured voltages, currents, and temperatures of the 
battery from HIL testing as inputs, and calculates the SoC as an input for the model and estimates the 
power capabilities over time.  

Table 1. The cell’s design limits for the HIL test. 

Parameters Value 
Maximum load current /A 350 
Minimum load current /A 175 

Maximum terminal voltage /V 4.2 
Minimum terminal voltage /V 3.0 

Peak discharge power /W 1500 
Peak charge power /W −700 

SoC operation range for HEVs 0.35–0.85 

Figure 3. The measured profiles of the FUDS cycles: (a) current; (b) voltage. 
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The online parameters identification results for parameter matrix θk are shown in Figure 4. The 
model’s parameters can be deduced by Equation (13) and the results are shown in Figure 5. 

Figure 4. The online identification results for parameter matrix θk: (a) p1~p4; (b) p5 and p6. 

 

Figure 5. Online parameters identification results of the EP model and calculated SoC 
profiles: (a) K0, K1, K2; (b) Calculated SoC; (c) Uoc; (d) Ro; (e) Rp; (f) Cp. 
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accurate estimate depends on the simulation precision of the operating environment and process noise, 
the proposed online identification algorithm requires update the estimates and decrease the estimation 
errors continuously. 

Figure 6. The comparison profiles of the terminal voltages: (a) The voltage error between 
the measured value and the online estimated value; (b) Error’s statistical information. 

 

The mean error of estimated voltage is near zero, which indicates the feasibility of the online 
parameter identification method. Further, Figure 6(b) shows the standard deviation of estimated error 
which is a measure of how spread out the observation values is, which is less than 3.7 mV, which 
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Figure 7. Peak power capability and current online estimation results: (a) Peak discharge 
currents; (b) Peak charge currents; (c) Peak discharge powers; (d) Peak charge powers. 

 

Figure 7(c) shows that the peak discharge power calculation with the HPPC method is obviously 
higher than the calculation with the proposed method. This is because the HPPC method only 
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Furthermore this method gives an optimistic estimation and may lead to over-discharging. A notable 
feature of the proposed new method is that it takes the entire dynamics of the cell into account when 
making real-time estimations. The strong discharges at the high required power ranges pull the cell’s 
terminal voltage down, allowing less discharge power than with the HPPC method. So the HPPC 
method overpredicts the charge power at high SoC. However, the biggest problem of the HPPC 
method comes from ignoring the SoC design limits. It also overpredicts power when a continuous big 
current is required, while it ignores the dynamic performance from the polarization voltage Up. The 
two methods are also compared with respect to charging power, as shown in Figure 7(d). Due to the 
ignorance of the SoC limits and the relaxation effect of the battery, the HPPC method is prone to 
overpredicting the charging power. With strong discharges at high required power ranges, the battery 
will allow a greater charging power while the HPPC method cannot give the accuracy peak power 
estimates quickly to match the driving cycle changes. However, the real-time peak power capability 
estimation results with the EP dynamic model-based method are not flat due to the polarization effects. 
Therefore the proposed method for peak power capability estimation gives satisfying results. 

Overall, the HIL test suggests that the proposed online peak power capability estimation is reliable, 
and can give more accurate estimation results than the traditional methods. Furthermore, the online 
parameter identification method can ensure the performance of the EP dynamic model. More 
importantly, the proposed peak power capability estimation can be applied at electric vehicles without 
requiring a periodical calibration for ensuring the model’s accuracy. 

1000 2000 3000 4000 5000 6000 7000
0

100

200

300

time (s)

pe
ak

 d
is

ch
ar

ge
 c

ur
re

nt
 (A

)

 

 

0 1000 2000 3000 4000 5000 6000 7000
-200

-150

-100

-50

0

time (s)

pe
ak

 c
ha

rg
e 

cu
rre

nt
 (A

)

 

 

1000 2000 3000 4000 5000 6000 7000
0

500

1000

1500

time (s)

pe
ak

 d
is

ch
ar

ge
 p

ow
er

 (W
)

 

 

0 1000 2000 3000 4000 5000 6000 7000
-600

-400

-200

0

time (s)

pe
ak

 c
ha

rg
e 

po
w

er
 (W

)

 EP dynamic model-based method HPPC mothod Higher power required

(b)

(c) (d)

0

0

(a)



Energies 2012, 5  
 

 

1468

5. Conclusions  

A battery HIL test system was implemented and employed to develop and validate the battery peak 
power capability estimation approach for a LiMn2O4 lithium-ion cell. Based on the above analysis, the 
following main concluding remarks can be made: 

(1) In order to avoid time-consuming, laborious and error-prone experiments for determining the 
tabulated OCV-SoC data, the EP model, which uses the Nernst model to define the open circuit 
voltage, is applied to model the lithium-ion battery. 

(2) For improving the dynamic performance of the EP model, the RLSF algorithm is applied to 
identify online the EP model’s parameters; the model’s accuracy is verified by the hardware-in-loop 
test, and the maximum error of the estimated terminal voltage is within 1% of its nominal voltage. 

(3) Compared with the HPPC method, the proposed peak power capability estimation method takes 
the cell voltage, current, SoC and power as its constraints; which can simulate the relaxation effect 
well. The evaluation results based on the HIL test show that the proposed method gives a more reliable 
estimation, especially when the load current changes suddenly or strongly. More importantly, when the 
SoC is high and low, the proposed method can give a more accurate estimate; avoiding overcharging 
or overdischarging. 

(4) The HIL test data has provided critical guidance for further development and improvement of 
the peak power capability estimation approach. This accelerates the overall system development 
process and reduces the cost of the EVs development.  

Our future work will focus on combining the online state estimation and peak power capability 
estimation in order to improve the prediction accuracy and the applicability of the model-based BMS. 
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