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Abstract: This paper presents modeling approaches for step-up grid-connected photovoltaic
systems intended to provide analytical tools for control design. The first approach is based
on a voltage source representation of the bulk capacitor interacting with the grid-connected
inverter, which is a common model for large DC buses and closed-loop inverters. The second
approach considers the inverter of a double-stage PV system as a Norton equivalent, which
is widely accepted for open-loop inverters. In addition, the paper considers both ideal and
realistic models for the DC/DC converter that interacts with the PV module, providing four
mathematical models to cover a wide range of applications. The models are expressed in
state space representation to simplify its use in analysis and control design, and also to be
easily implemented in simulation software, e.g., Matlab. The PV system was analyzed to
demonstrate the non-minimum phase condition for all the models, which is an important
aspect to select the control technique. Moreover, the system observability and controllability
were studied to define design criteria. Finally, the analytical results are illustrated by means
of detailed simulations, and the paper results are validated in an experimental test bench.
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1. Introduction

Power generation systems based on alternative energy sources have become stronger options to
address the continuous power demand and the initiative to reduce the use of fossil fuels. One of the
most suitable option concerns photovoltaic (PV) modules, particularly for low power levels [1]. The
innovation on photovoltaic energy and power electronics fields makes this technology an important
research area, particularly in modeling and control techniques. The design of a controller capable of
rejecting disturbances on the PV module (PVM) and the load represents one of the main challenges in
the implementation of this kind of systems, where it is essential to select an appropriate model for the
PVM, the power electronics interface, and the disturbance sources. Several PVM models have been
reported in literature: [2] presents a non-linear model of mismatched PV fields, while in [3] a double
exponential model is introduced. In [4], the single diode PVM model and the diode equivalent circuit
are discussed, and a piecewise linear model is proposed. Similarly, in [5] a simplified model is proposed
using only parameters provided by manufacturer’s specifications to avoid the use of numerical methods.
Moreover, to develop control strategies, more simple models have been proposed based on differential
resistance [6], Norton [7], and Thevenin [8] circuital approximations.

Due to the strong non-linear electrical behavior of the PVM [2,9], there exists an optimum operating
point in which the PVM produces the maximum power, named Maximum Power Point (MPP). The
PVM voltage must be defined to achieve the MPP, which significantly changes depending on the
irradiance conditions. Therefore, it is not possible to predict off-line the MPP, which must be calculated
on-line [10,11]. Such a condition has been addressed in literature by introducing a special controller
to track the MPP on-line, named Maximum Power Point Tracking (MPPT), aimed at maximizing the
power extracted from the PVM [6,11]. The most commonly used MPPT solutions are the perturb and
observe (P&O) and incremental conductance (IC): the P&O technique is widely adopted due to its
implementation simplicity [10,12]. It tracks the MPP by periodically perturbing the control variable
(PVM voltage) and comparing the instantaneous PVM power after and before the perturbation [6],
selecting the sign of the next voltage perturbation that guarantee a PVM power increment. Instead,
the IC technique tracks the operating point in which the derivative of the PVM power with respect to the
voltage is zero, since such a condition corresponds to the MPP. The main drawbacks of the IC technique
consists in the highly accurate current sensor required and the increased implementation complexity in
comparison with the P&O, but the IC could provide a more accurate MPP calculation depending on the
current sensor dynamical response and steady-state error [10].

Despite the adopted MPPT algorithm, a power converter is required to interface the PVM and the
load to drive the PVM to the MPP. The classical solutions reported in literature are the single and double
stages architectures. Figure 1 shows the Double Stage (DS) architecture, which is composed by a DC/DC
converter controller by the MPPT algorithm, and a DC/AC converter regulated to inject the power into
the grid and to regulate the DC-bus voltage, i.e., bulk voltage. Such DS solution is widely adopted
since it makes possible to simultaneously follow the MPP and provide power factor correction [12].
The DS architecture of Figure 1 also considers the DC/DC converter controller, which regulates the
PVM voltage in agreement with the MPPT command. Moreover, the DC/DC converter adopted in DS
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solutions commonly consists in a step-up topology to match the high-input voltage required by classical
grid connected inverters from the low-voltage operating conditions exhibited in PVM.

Figure 1. Double stage-grid connected PV architecture.
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In addition, double-stage PV systems connected to the grid are exposed to perturbations generated by
the DC/AC converter (or inverter) operation in mono-phase systems, but also in non-perfectly balanced
three-phase systems. Moreover, classical photovoltaic inverters act on the input current to regulate the
voltage at their input terminals, but more common and simple inverters lack such a feature. In the
first case, the inverter properly regulates the DC component of the voltage at the bulk capacitor that
interfaces the DC and AC stages, named Cb in Figure 1, but a sinusoidal perturbation on the bulk voltage
is generated at double of the grid frequency, whose magnitude is inversely proportional to the bulk
capacitance [12,13]. In the second case, the DC component of Cb voltage is not accurately regulated and
the inverter absorbs a sinusoidal current at double the grid frequency, generating an undesirable voltage
oscillation that exhibits different frequency harmonics at the bulk voltage, i.e., the DC/DC converter
output terminals, with an amplitude inversely proportional to the bulk capacitance [14]. In both cases
the DC/DC converter output is exposed to voltage perturbations that could be transferred to the PVM
terminals. Such a condition degrades the MPP calculation, which is particularly critical in the classical
solutions that perturb the DC/DC converter duty cycle, since PVM voltage oscillations with magnitude
∆Vb/M(D) occurs, where ∆Vb represents the magnitude of the bulk voltage oscillation and M(D)

represents the DC/DC converter voltage conversion ratio. Therefore, a common practice to deal with
such a problem is to reduce ∆Vb by using large bulk capacitances, requiring electrolytic capacitors to
avoid the high cost of large ceramic or polyester capacitor banks. But the use of electrolytic capacitors
significantly reduces the reliability of the system [13,15], creating a bottleneck.

Figure 2 illustrates the impact of the bulk capacitor in the MPPT performance: a PV system,
composed by two BP585 PV panels in series and a boost converter, is simulated adopting a P&O MPPT
algorithm for large and small Cb. vPV and pPV represent the voltage and power of the PV array, while
vb represents the bulk voltage. Figure 2(a) shows that, using a large bulk capacitor that significantly
mitigates ∆Vb, an accurate tracking of the MPP is ensured, extracting the maximum power available.
Instead, Figure 2(b) shows the PV system simulation considering a small bulk capacitor that generates
a voltage oscillation with magnitude ∆Vb = 40 %, and such an oscillation is transferred to the PV
voltage, introducing errors in the MPP calculation that significantly degrade the power extracted from
the PV array. Therefore, an additional controller that rejects such a bulk voltage perturbation must
be introduced.
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Figure 2. Grid-connected PV system with duty cycle perturbation.
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(a) Large bulk capacitance
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(b) Small bulk capacitance

To analyze the PV system behavior under the previous conditions, the bulk capacitor and
grid-connected inverter are modeled in the literature by means of two approaches: first, when the inverter
accurately regulates the DC component of the bulk voltage, they are modeled by means of a voltage
source [12] that allows to analyze the impact of the bulk voltage oscillations on the system dynamics.
Second, when the inverter does not regulate the DC component of the bulk voltage, they are modeled by
means of a Norton equivalent [6] that allows to analyze the impact of the current-based perturbation on
the system response. Both modeling approaches are widely accepted in the literature for grid-connected
inverters operating in open loop (Norton equivalent) and closed loop (voltage source).

Concerning the DC/DC converter modeling, it is common to adopt ideal models for designing control
and MPPT techniques [11,12,16,17] to avoid complex equations derived from considering parasitic
elements. Such simple models are useful to provide proof-of-concept simulations of new control
strategies. But to achieve more accurate controllers, which is particularly important for experimental
cases, at least the parasitic resistances of the passive elements must be considered. Moreover,
the parasitic resistances significantly impact the system dynamics, introducing additional zeros and
increasing the damping to DC/DC converter transfer functions.

To overcome the bottleneck created by the large bulk capacitor required in classical PV systems,
it is essential to design accurate PVM voltage controllers to reject bulk voltage oscillations from the
PVM terminals. Such a controller action allows to adopt non-electrolytic bulk capacitors, increasing
significantly the PV system reliability without impacting the overall cost. The aim of this paper is
to provide well-founded, trustworthy, and ready-to-use mathematical models of grid-connected PV
system to support the design of PVM controllers. The proposed models are formulated in state-space
representation to simplify its use in system analyses, to design linear or non-linear controllers by means
of time or frequency based techniques, and to be easily implemented in simulation environments like
Matlab, Mathematica or Maple. The models are based on circuital representations of PV systems
widely adopted in literature, even in recent publications [18,19]. Moreover, the modeling approach
considers both Norton equivalent and voltage source representations of the bulk capacitor interacting
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with an inverter. To cover a wide range of applications, the models are derived considering both ideal
and realistic DC/DC converters, i.e., with and without parasitic resistances, respectively. In addition,
the model’s controllability and observability are analyzed to provide design guidelines for the DC/DC
converter to allow the implementation of controllers and observers in real applications. Such analyses
will help to reduce the sensors and conditioning circuits, reducing in this way the PV system costs
and supporting the implementation of advanced control techniques, e.g., model predictive control. In
particular, an observer for the input current of the DC/DC converter is very interesting, since it can be
used to replace PVM current sensors classically used to calculate the instantaneous PVM power for the
MPPT controller.

A boost converter, operating in Continuous Conduction Mode (CCM) [20], was considered
in this work since it is the most common step-up topology adopted in grid-connected PV
systems [6,7,11,12,16–19]. The boost topology requires a bulk voltage higher than the PVM voltage,
which is commonly ensured by the selection of the DC/AC stage [6,18]. Moreover, advanced
control strategies, such as predictive control, can be used to avoid the converter instability in such
a condition [21]. Similarly, the inductor of the boost converter is normally designed to operate in
CCM [6,7,18,19] since Discontinuous Conduction Mode (DCM) causes larger PVM voltage
ripple [22,23] and oscillations around the MPP [24], which decrease the effective power injected into
the grid.

The boost topology also provides higher electrical efficiency than other classical converters for
the same PVM and bulk voltages, e.g., buck-boost [25]. But due to the non-minimum phase of the
duty-cycle-to-output voltage transfer function of the boost converter [26], its output voltage is classically
regulated by means of cascade current and voltage control loops [20]. Such a non-minimum phase
condition increases the complexity of the controller design due to stability issues [27,28]. This paper
demonstrates, by means of analytical expressions, that the duty-cycle-to-PVM voltage transfer function
does not exhibit non-minimum phase behaviors for any condition, which guarantee the effectiveness of a
direct PVM voltage controller. Such a result puts in evidence that cascade current-voltage controllers for
PV systems, as the one reported in [29], are not required for stability. Moreover, avoiding inner current
controllers has multiple benefits: taking into account that PV-voltage based MPPTs are more stable than
PV-current based MPPTs due to possible saturations of the PVM current caused by fast changes on the
irradiance, the PVM voltage regulation is widely adopted to implement the MPPT technique [18,30].
In this way, a direct PVM voltage control with the duty-cycle limits the control bandwidth up to 1/5 of
the switching frequency [31]. Instead, using a cascade connection of current and voltage controllers,
the maximum bandwidth of the PVM voltage regulation is strongly reduced since the bandwidth of
an external control loop (i.e., voltage loop) must be smaller than 1/5 of the inner loop bandwidth [32]
(i.e., current loop), or even smaller than 1/10 of the inner control loop bandwidth as suggested by more
conservative authors [33]. Therefore, it is desirable to avoid the inner current loop to improve the system
bandwidth, which eventually improves the MPP tracking speed since the MPPT perturbation period can
be reduced [6].

In addition, the bandwidth required by the MPPT current sensor is in agreement with the MPPT
perturbation period, which must be larger than the settling-time of the PV system small-signal model [6].
Therefore, the low-bandwidth current sensor required by the MPPT is cheaper and easier to implement
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in comparison with a high-bandwidth current sensor required for control purposes, like the one presented
in [18]. Moreover, it is clear that to implement a cascade control structure requires to design two
controllers instead of only one as in the direct PVM voltage control. Similarly, the implementation of a
single voltage controller requires fewer elements and consumes less energy than a cascade configuration.
Therefore, it is desirable to avoid current control loops in PV systems to reduce the implementation cost
and complexity.

The remain of the paper is organized as follows: Section 2 describes multiple PVM modeling
approaches and selects the most suitable one for the intended control-oriented application. Sections 3
and 4 present the modeling of the grid-connected PV system based on the Norton equivalent and voltage
source cases, respectively. Section 5 presents an application example of the proposed models illustrated
by means of PSIM simulations, where the controllability and observability analyses are validated through
a small-signal observer design. An experimental validation of the analytical results is presented in
Section 6, where a controller designed by means of the proposed models interacts with a P&O MPPT
controller in a real photovoltaic system. Finally, Section 7 concludes.

2. Modeling the Photovoltaic Module for Control Purposes

The photovoltaic cells are generally composed by layers of silicon p and silicon n. The light with
particular wave length ionize the atoms of the silicon and the inner field between the positive and negative
charges inside the photovoltaic device. The stronger the irradiance, the higher the interaction between the
atoms and a higher potential difference is produced. To illustrate the electrical behavior of a PV module
(i.e., PVM) the characteristic curves of a commercial BP-585 PV module are shown in Figure 3. Since
a BP-585 PV panel is composed by two PVM in series, the BP-585 PVM open-circuit voltage is equal
to the half of the PV panel open-circuit voltage, while the short-circuit current for both PVM and PV
panel are equal. In particular, Figure 3 presents the PVM current-voltage (I-V) and power-voltage (P-V)
curves for two different irradiance levels S1 and S2, where the maximum power point (i.e., MPP) for
each irradiance condition is observed. In addition, it is noted that the electrical characteristic of the PVM
directly depends on the irradiance, which defines an important condition for modeling the PV module.

Figure 3. I-V (black) and P-V (white) curves of a BP-585U PV module.
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Several PVM models have been reported in literature. Such models normally consist in non-linear
equations due to the physical variables involved in the PVM operation. In this way, the work reported
in [2] models a monocrystalline PVM by means of a single-diode circuital model [11], including also a
bypass diode Db. Such an approach, depicted in Figure 4, is used to develop complex models to analyze
PV strings considering mismatched conditions [9].

Figure 4. Single-diode model of a PVM including a bypass diode.
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Concerning polycrystalline PVM, the double-diode model depicted in Figure 5 is one of the most
accurate models [3], but it exhibits a high complexity due to its double exponential terms. Therefore, it
is common to use the single-diode model to represent both monocrystalline and polycrystalline PVM,
but due to the implicit relation between voltage and current in both single and double diode models, a
complex mathematical function, named Lambert-W, is required to solve the system [2], which strongly
increases the calculation time in comparison with explicit models. Therefore, simplified versions of the
single-diode model, neglecting parallel Rp [5] and series Rs [9] resistances in Figure 4, are also reported.

Figure 5. Double-diode model of a PVM.
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The non-linear models previously described are useful for electrical simulation purposes and energy
harvesting evaluation [9], but they introduce a high complexity in terms of control systems analysis and
design. Moreover, since the main objective in PV systems is to extract the maximum power available,
the PVM must be operated at its MPP, see Figure 3. Therefore, three simple modeling approaches are
widely accepted in literature to represent the PVM near the MPP: differential resistance [6,12], Norton
equivalent [7], and Thevenin equivalent [8].

The magnitude of the differential resistance, depicted in Figure 6(a), is calculated as (1), where VMPP

and IMPP represent the PVM voltage and current at the MPP. It is noted that such a resistance is
negative since it models a generator. The Norton model, depicted in Figure 6(b), is calculated from
the short-circuit current ISC of the PVM and the MPP characteristics (VMPP and IMPP ). Similarly, the
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Thevenin model, depicted in Figure 6(c), is calculated from the open-circuit voltage VOC of the PVM
and the MPP.

RMPP =
VMPP

IMPP

(1)

Figure 6. PVM linear models around the MPP.
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(b) Norton model
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(c) Thevenin model

The three linear models accurately represent the PVM electrical behavior at the MPP, as illustrated in
Figure 7, but it is noted that the Norton model is closer to the non-linear model for voltages lower than
VMPP . Similarly, the differential resistance model fits better the power derivative of the non-linear model
at the MPP. Finally, the Thevenin model is closer to the non-linear model for voltages higher than VMPP .
But only the Norton and voltage source models allow to analyze the effect of environmental variables in
the control system design. In this way, the Norton model involves the PVM short-circuit current, which
is proportional to the irradiance [9], therefore it allows to analyze the effects of irradiance variations
on the PV system. Similarly, the Thevenin model takes into account the PVM open-circuit voltage,
which depends on the PVM temperature [2], then it allows to analyze thermal effects. In contrast, the
differential resistance does not allow a direct analysis of environmental changes on the system.

Figure 7. PVM linear models comparison.
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(b) Power-voltage characteristics

Since the irradiance variations have higher impact on the PV system’s electric behavior than thermal
changes [34], the Norton equivalent is adopted to model the PV system, providing information about
the irradiance perturbations attenuation on the PVM voltage control. Such a condition makes it possible
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to ensure the correct operation of the PV system, or even to design the control strategy to achieve a
desired rejection level. Moreover, the single-diode model is used in the following sections to validate the
analyses performed with the linear PVM model.

3. Modeling the PV System Considering a Bulk Voltage Source

This section presents the modeling of the PV system considering the voltage source representation
of the bulk capacitor interacting with a closed-loop grid-connected inverter, i.e., properly regulated DC
component of the bulk voltage. Two models have been developed: the first one considers an ideal DC/DC
converter, and the second one considers both the inductor and capacitors parasitic resistances.

3.1. Ideal DC/DC Converter Case

The electrical scheme of this loss-free PV system is presented in Figure 8. The dynamic equations
are defined to represent the system in state space, where the state variables are the inductor current and
input capacitor voltage, while the system inputs are the converter duty cycle, the irradiance represented
by the PVM short-circuit current, and the converter output voltage, i.e., the bulk voltage. The complete
set of equations are given in (2)–(3), where vCi

represents the input capacitor voltage, iL the inductor
current, and d the DC/DC converter duty cycle.

Figure 8. Loss-free PV system considering a bulk voltage source.
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diL
dt

=
vCi

L
− vb (1 − d)

L
(2)

dvCi

dt
=

isc
Ci

− vCi

CiRmp

− iL
Ci

(3)

This system is clearly non-linear, therefore it is required to calculate the Jacobian matrices to obtain
a linear model around the desired operating point, i.e., the MPP. The state space realization (4)–(5) is
characterized by the vectors given in (6) and the set of Jacobian matrices given in (7)–(8).

Ẋ = AmX + BmU (4)

Y = CmX + DmU (5)

X =

[
iL

vCi

]
U =

 d

iSC

vb

Cm =

[
0

1

]T

Dm =
[

0 0 0
]
Y = [vCi

]

(6)
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Am =

[
0 1

L

− 1
Ci

− 1
CiRmp

]
(7)

Bm =

[
vb 0 −1+d

L

0 1
Ci

0

]
(8)

It must be point out that lower case letters in the Jacobian matrixes (7)–(8) represent dynamic
variables, which must be evaluated around the MPP. The constants calculated from the evaluation of
the dynamic variables at the MPP are represented by upper case letters.

The equilibrium point, around the MPP, is obtained by equating (2)–(3) to zero. To validate the
proposed model, a comparison between the mathematical model and the non-linear circuit frequency
responses is performed by adopting the following parameters: L = 56 µH, Ci = 44 µF, VCi

= 33.15 V,
Vb = 70 V, Isc = 4.7 A, Rmp = 81.87 Ω, and switching frequency fsw = 100 kHz. The circuital Bode
diagrams were obtained in the power electronics simulation software PSIM adopting both the Norton
equivalent and the non-linear PVM model of Figure 4 (implemented in the Renewable Energy library
from PSIM), while the Bode diagrams of the PV system model were computed in Matlab. Figures 9(a)
and 9(b) show the mathematical model and the circuit frequency responses for the state variables,
where the non-linear PV system behavior is satisfactorily reproduced. Such results show that the
frequency responses of the PV system, adopting the Norton PVM model, are superimposed with the
PV model frequency responses. Instead, the frequency responses of the PV system circuit considering
the non-linear PVM model are reproduced by the PV model with small errors at low frequency for the
inductor current, and the PVM voltage is satisfactorily represented by the PV model.

Figure 9. Model and circuit frequency responses: ideal converter with bulk voltage source.
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Equations (9) and (10) allow to calculate the ripple magnitude for the inductor current and capacitor
voltage, respectively, where Ts = 1/fsw represents the switching period. Those expressions allow to



Energies 2012, 5 1910

select the appropriate values for the inductor and input capacitor to fulfill given conditions for the current
and voltage ripples.

∆iL =
VCi

2L
DTs (9)

∆VCi
=

DTs

2Ci

(
ISC − VCi

Rmp

− IL

)
(10)

From the state space system, the transfer function between the PVM voltage and the duty cycle
vCi

(s)/d(s) is calculated as in (11). This expression does not have zeros, therefore it exhibits a minimum
phase behavior. The same result was obtained by Suntio et al. in [26], where PV systems based
on current-fed and voltage-fed converters were analyzed. Such a work provides general expressions
to demonstrate the non-existence of Right Hand Plane (RHP) zeros in boost-type PV system with a
voltage-source representation of the load and without taking into account parasitic losses only. In [26]
and [35] there are also reported analyses concerning the existence of RHP zeros in buck-type PV systems,
which could be useful for photovoltaic battery chargers. Moreover, from the analyses provided by
Suntio et al. in [30] it is concluded that, considering a negative current flow from the load to the PVM, the
regulation of the input voltage in the boost-based PV system of Figure 8 is equivalent to the regulation of
the output voltage of the negative current buck-based system comprising the negative current source (Vb

generates the negative current), the negative current load (the PVM receives the negative current), and
the buck converter with negative current flow (−iL flows from Vb to the PVM). From such an analysis
it is confirmed that the PV system of Figure 8 does not have RHP zeros since a buck converter with
constant input voltage and resistive load does not have zeros [20].

Gd (s) = − RmpLVb

LCiRmps2 + Ls + Rmp

(11)

The system observability matrix is given in (12), which has rank equal to 2; thus the system is
completely observable. The controllability matrix, given in (13), has rank equal to 2, which denotes
that the system is completely controllable.

Ob =

[
0 1

− 1
Ci

− 1
CiRmp

]
(12)

Co =

[
Vb 0

0 −Vb

Ci

]
(13)

The complete controllability is an important result since it guarantees that the PV system is possible
to regulate. Moreover, the complete observability is very interesting, since it gives the possibility of
designing observers to replace costly sensors. In particular, an inductor current observer can be used to
replace PVM current sensors used in classical PV systems.
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3.2. Modeling the DC/DC Converter Parasitic Losses

Considering parasitic resistances in the passive elements of the DC/DC converter and in the bulk
capacitor, the electrical scheme of Figure 10 is adopted. By performing the same procedure used in the
previous system, the dynamic model is found.

Figure 10. Model considering parasitic losses with voltage-based load.
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The equations that describe the average model of the system are given in (14)–(16). To simplify the
expressions, the auxiliary constants defined in (17) are used.

diL
dt

=
βiSC

L
+

λvCi

L
− σiL

L
− vb (1 − d)

L
(14)

dvCi

dt
=

λiSC

Ci

− λiL
Ci

− vCi

Ci (Rmp + RCi
)

(15)

dvCo

dt
=

vb

CoRCo

− vCo

CoRCo

(16)

α =
RCo

R+RCo
β =

RmpRCi

Rmp+RCi

σ =
RmpRCi

Rmp+RCi
+ RL λ = Rmp

Rmp+RCi

(17)

The state space system is now characterized by vectors given in (18) and Jacobian matrices given in
(19)–(23).

X =

 iL

vCi

vCo

U =

 d

iSC

vb

 (18)

Am =


− σ

L
λ
L

0

− λ
Ci

− 1

Ci(Rmp+RCi)
0

0 0 − 1
CoRCo

 (19)

Bm =


Vb

L
β
L

−1+d
L

0 λ
Ci

0

0 0 1
CoRCo

 (20)
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The system output, i.e., the PVM voltage, is defined by (21), making Cm (22) and Dm (23) matrices
different from trivial ones.

Vpv = λvCi
+ λiSC − λRCi

iL (21)

Cm =
[
−β λ 0

]
(22)

Dm =
[

0 β 0
]

(23)

To validate the proposed model, the frequency responses of both mathematical model and PSIM
circuit are contrasted by adopting the parameters used in the previous loss-free system, where the
additional parameters Co = 44 µF, RL = 0.3 Ω, RCi

= 0.17 Ω, and RCo = 0.17 Ω, are considered.
Figures 11(a)–11(d) present the Bode diagrams of the PV model and non-linear circuit, with both the
Norton equivalent and the non-linear PVM model, for the three states and the system output. Such
figures show that frequency responses of the PV system at the MPP, adopting the Norton PVM model,
are superimposed with the PV model frequency responses. Again, the frequency responses of the PV
system circuit considering the non-linear PVM model are reproduced by the PV model with small errors
at low frequency for the inductor current, and the input and PV voltages are satisfactorily represented
by the PV model. It is noted that the circuit frequency response of the duty-cycle-to-output capacitor
voltage (vCo) transfer function is close to zero (between −180 dB and −230 dB).

In the same way as in the ideal DC/DC converter case, the following equations characterize the ripple
magnitude for the PV voltage and the inductor current.

∆iL =
DTs

2L
(VCi

+ iCi
RCi

− iLRL) (24)

∆VCi
=

DTs

2Ci

(
iSC − VCi

Rmp

−
iCiRCi

Rmp

− iL

)
(25)

In this non-ideal case, the transfer function between the duty cycle and the PVM voltage is given by
(26), which now exhibits the zero given by (27).

Gd (s) =
−VbCiRCi

Rmps − VbRmp

ρs2 + τs + ϕ
ρ = RCi

LCi + LRmp

ϕ = Rmp + RL

τ = RmpCiRCi
+ RCi

RLCi + L + RLRmpCi

(26)

s = − 1

CiRCi

(27)

Such a zero is negative because it depends on circuit parameters, all of which positive. The zero is
then placed in the left half plane (LHP) of Laplace domain, which means that the system has a minimum
phase behavior.

The observability matrix (28) of this non-ideal model has 3×3 dimensions but all elements of the last
column are zero, thus its rank is equal to 2, making the system not observable on vCo . An analysis on the



Energies 2012, 5 1913

Figure 11. Model and circuit frequency responses: realistic converter with bulk
voltage source.

−20

0

20

40

60

M
ag

ni
tu

de
 [d

B
]

 

 

10
2

10
3

10
4

−100

0

100

200

Frequency [Hz]

P
ha

se
 [d

eg
]

 

 

Mathematical model
Circuital simulation with Non−linear Model
Circuital simulation with Norton Model

(a) vCi

−250

−200

−150

−100

M
ag

ni
tu

de
 [d

B
]

 

 

10
2

10
3

10
4

−200

0

200

400

600

Frequency [Hz]

P
ha

se
 [d

eg
]

Mathematical model
Circuital simulation with Non−linear Model
Circuital simulation with Norton Model

(b) vCo

0

25

50

M
ag

ni
tu

de
 [d

B
]

 

 

10
2

10
3

10
4

−200

−100

0

100

Frequency [Hz]

P
ha

se
 [d

eg
]

Mathematical model
Circuital simulation with Non−linear Model
Circuital simulation with Norton Model

(c) iL

−20

0

20

40

60

M
ag

ni
tu

de
 [d

B
]

 

 

10
2

10
3

10
4

0

100

200

Frequency [Hz]

P
ha

se
 [d

eg
]

 

 

Mathematical model
Circuital simulation with Non−linear Model
Circuital simulation with Norton Model

(d) vPV

linear dependence of this matrix reveals that, with an inductor value given by (29), the rank decreases
to 1 and iL becomes not observable. Therefore, such a critical inductor value must be avoided if the
inductor current must be observed.

Obs =


−β λ 0
σβ
L
− λ2

Ci
−λ2RCi

L
− λ2

RmpCi
0

− β
L

(
σ2

L
− λ2

Ci

)
+ λ2

Ci

(
σ
L

+ λ
RmpCi

)
−βλ

L

(
− σ

L
− λ

RmpCi

)
+ λ3

(
− 1

LCi
+ 1

(RmpCi)
2

)
0

(28)

L = RLRCi
Ci (29)

The controllability matrix shown in (30) has a rank equal to 2, thus vCo is not controllable. This is
also evident from the model analysis since the corresponding transfer function vCo(s)/d(s) = 0. Such a
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condition is validated by the Bode diagram of vCo in Figure 11(b), which reports no frequency response.
This is because the output capacitor voltage is driven by the inverter bulk voltage controller.

Co =


Vb

L
−σVb

L2

(
σ2

L2 − λ2

LCi

)
Vb

0 − λVb

LCi

(
λσ2

LCi
+ λ2

RmpC2
i

)
Vb

L

0 0 0

 (30)

4. Modeling of PV System Considering Load: Norton Model

This section describes the modeling of the PV system considering the Norton representation of the
bulk capacitor interacting with a grid-connected inverter non-accurately regulated, i.e., non-regulated
DC component of the bulk voltage. Again, two models have been developed: the one considering an
ideal DC/DC converter, and the one considering both the inductor and capacitors parasitic resistances.

4.1. Ideal DC/DC Converter Case

Figure 12 shows the loss-free circuit of the PV system considering a bulk Norton equivalent, where
the system states are the input and output capacitor voltages, and the inductor current, while the inputs
are the converter duty cycle, the irradiance represented by the PVM short-circuit current, and the inverter
input current perturbation.

Figure 12. Loss-free PV system considering a bulk Norton equivalent.
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The dynamic model of the system is obtained from the following differential equations:

diL
dt

=
vCi

L
− vCo (1 − d)

L
(31)

dvCi

dt
=

iSC

Ci

− vCi

CiRmp

− iL
Ci

(32)

dvCo

dt
=

iL (1 − d)

Co

− vb

CoR
− io

Co

(33)

The state space representation of the system is characterized by:

X =

 iL

vCi

vCo

U =

 d

iSC

io

Cm =

 0

1

0


T

Dm =
[

0 0 0
]
Y = [vCi

]

(34)
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Am =

 0 1
L

−1+d
L

− 1
Ci

− 1
CiRmp

0
1−d
Co

0 − 1
CoR

 (35)

Bm =


vCo

L
0 0

0 1
Ci

0

− iL
Co

0 − 1
Co

 (36)

Again, the equilibrium point around the MPP is calculated by equating to zero (31)–(33). As in the
previous cases, Equations (37)–(39) give the expressions to calculate the ripple magnitudes for inductor
current and capacitor voltages.

∆iL =
DTs

2L
VCi

(37)

∆VCi
=

DTs

2Ci

(
iSC − iL − VCi

Rmp

)
(38)

∆VCo =
DTs

2Co

(
−io −

V

R

)
(39)

Concerning the transfer function between the duty cycle and the PVM voltage, the numerator of such
a transfer function is shown in (40), and the single zero is given in (41).

Num (Gd (s)) = −CoRRmpVCos − RmpVCo + (1 − D) RmpRIL (40)

s =
IL (D − 1) R − VCo

CoRVCo

(41)

It is noted that the divider of (41) is positive since it depends on circuit parameters, all of which
positive. But the dividend is negative because the steady-state duty cycle D is always smaller than 1.
Thus, such a zero is in the LHP, exhibiting a minimum phase behavior. This condition guarantees that
current-voltage cascade control is not required.

The observability and controllability matrices are given in (42) and (43), respectively. The
observability matrix has a rank equal to 3, which denotes that the system is completely observable.
Similarly, the controllability matrix (42) has a rank equal to 3, which denotes that the three state variables
can be controlled.

Ob =

 0 1 0

− 1
Ci

− 1
CiRMP

0
1

C2
i RMP

− 1
LCi

+ 1
C2

i R2
MP

1−D
LCi

 (42)

Co =


VCo

L
− (−1+d)iL

LCo

εVCo

L
+ (−1+d)iL

LC2
oR

0 −VCo

CiL

VCo

C2
i RmpL

+ (−1+d)iL
LCiCo

− iL
Co

(1−d)VCo

LCo
+ iL

C2
oR

− (1−d)VCo

LC2
oR

− ωiL
Co

 ε = − 1
LCi

+ (1−d)(−1+d)
LCo

ω = (1−d)(−1+d)
LCo

+ 1
(RCo)2
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Finally, for the sake of simplicity, the Bode diagrams of this modeling approach are not given, but in
the same way as in the previous case, this model accurately reproduces the circuit frequency response.

4.2. Modeling the DC/DC converter parasitic losses

This model considers inductor and capacitors parasitic losses to provide a more realistic approach.
The circuital scheme adopted for this non-ideal case is presented in Figure 13.

Figure 13. Model considering parasitic losses with Norton-based load.
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Following the procedure previously presented in Section 3, the system differential equations are:

diL
dt

=
βiSC

L
−R (1 − d) αi0

L
+

(1 − d) (α − 1) vCo

L
+

λvCi

L
+

(
−σ − Rα(1 − d)2) iL

L
(43)

dvCi

dt
=

λiSC

Ci

−λiL
Ci

− vCi

Ci (Rmp + Rci)
(44)

dvCo

dt
=

−Ri0
Co (R + RCo)

− vCo

Co (R + RCo)
+

R (1 − d) iL
Co (R + RCo)

(45)

Similar to the ideal case, it is necessary to calculate the Jacobian matrices to find a linear model
around the desired operating point, i.e., the MPP. For state space realization, state and input variables are
the same ones as in the previous free-loss case, while the Jacobian matrices are:

Am =


−σ−Rα(1−d)2

L
λ
L

(1−d)(α−1)
L

− λ
Ci

− 1

Ci(Rmp+RCi)
0

(1−d)R
Co(R+RCo )

0 − 1
Co(R+RCo)

 (46)

Bm =


γ
L

β
L

−Rα(1−d)
L

0 λ
Ci

0

− iLR
Co(R+RCo )

0 − R
Co(R+RCo )

 (47)

γ = 2Rα (1 − d) iL − vCo (α − 1) + Rαio

In this case, the output of the system is the PVM voltage defined by (48), thus Cm and Dm matrices
are different from trivial ones (49)–(50). Again, the equilibrium point around the MPP can be calculated
by equating to zero the system differential Equations (43)–(45).

vpv = λvCi
+ βiSC − βiL (48)
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Cm =
[
−β λ 0

]
(49)

Dm =
[

0 β 0
]

(50)

The expressions for the ripple magnitude in the inductor current and capacitor voltages for this
non-ideal case are given by Equations (51)–(53), which again are useful to design the DC/DC converter.

∆iL =
DTs

2L
(iCi

RCi
+ VCi

− iLRL) (51)

∆VCi
=

DTs

2Ci

(
iSC − iL − VCi

Rmp

− iCi
RCi

Rmp

)
(52)

∆VCo =
DTs

2Co

(
−io −

VCo

R
− iCoRCo

R

)
(53)

The duty-cycle-to-PVM voltage transfer function has two zeros, given in (54) and (55). From (54)
it is evident that such a zero is placed at the LHP. But to identify the sign of (55), it is necessary to
perform algebraic analyses in both numerator and denominator: the numerator of the expression is
positive because (1 − D) is always positive and the other terms are clearly positive too. Similarly,
the denominator is negative, although (1−D) is positive, the other terms in the expression are negative.
Therefore, the zero given by (55) is also placed in the LHP, which means that the system exhibits a
minimum phase behavior.

s1 = − 1

CiRCi

(54)

s2 =
(1 − D) (2RCoIL + RIL)

Co

[
(1 − D)

(
−2RRCoIL − 2R2

Co
IL

)
− RVCo − RCoVCo

]
+

VCo

Co

[
(1 − D)

(
−2RRCoIL − 2R2

Co
IL

)
− RVCo − RCoVCo

] (55)

Moreover, the observability matrix, given in (56), has a rank equal to 3, making the system observable
in all variables. Similarly, the controllability matrix, given in (57), has a rank equal to 3, which means
that the system is completely controllable.

Ob =

 −β λ 0

−βµ − λ2

Ci
−λ2RCi

L
− λ

RmpCi
− β

L
(1 − d) (α − 1)

−β (µ2 − δ + λτ) −βξ + λ3

Ci
ζ −βχ(1−d)(α−1)

L

 (56)

µ = −σ−Rα(1−d)2

L
δ = λ2

LCi
+ R(1−d)2(α−1)

CoL(R+RCo )
τ = −λµ

Ci
+ λ2

RmpC2
i

ξ = λ
L
µ − λ

LRmpCi
ζ =

(
− 1

L
+ 1

R2
mpCi

)
χ = µ − 1

Co(R+RCo )
− λ2

Ci
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Co =


Ψ µΨ − iL∆

(
µ − λ2

LCi
+ (1 − d) ∆

)
Ψ − iL∆

(
µ − 1

LΣ

)
0 −λΨ

Ci

λΨ
Ci

(
1

Rmp
− µ

)
+ λ∆iL

Ci

− iLR
Σ

− iLR+(1−d)ΣΨ
Σ2 Ψ (1 − d) R

(
Σµ−1

Σ2

)
− iLR

(
(1−d)∆Σ2+1

Σ3

)
 (57)

Ψ = 2iLR(1−d)α−Vco(α−1)+Rαio
L

∆ = (1−d)(α−1)R
LCo(R+RCo )

Σ = Co (R + RCo)

Again, for the sake of simplicity the Bode diagrams of this modeling approach are not given, but
similar to the bulk voltage source case, this model accurately reproduces the circuit frequency response.

5. Application Example

This section illustrates the usefulness of the proposed models by means of an application example.
This example considers the bulk voltage source model and takes into account the parasitic losses of the
DC/DC converter. The PV system model was parameterized with L = 56 µH, Ci = 44 µF, Co = 44 µF,
VCi

= 33.15 V, Vb = 70 V, Isc = 4.7 A, Rmp = 81.87 Ω, RL = 0.3 Ω, RCi
= 0.17 Ω, RCo = 0.17 Ω, and

fsw = 100 kHz. Then, the equilibrium point has been found by solving (14)–(16).
A PID controller, acting directly on the DC/DC converter duty cycle, has been designed to regulate

the PVM voltage since the PV system exhibits minimum phase behavior. In addition, an state observer
was designed to validate the observability conditions found in the previous analyses.

The PVM voltage controller was designed by means of the root-locus technique, adopting the
following design specifications: damping factor equal to 0.707 and a 20 kHz closed loop bandwidth.
Those conditions ensure both the satisfactory dynamic response and the model accuracy for the
interesting frequency range [36], but any other conditions can be imposed. The designed controller
transfer function is given in (58).

GC(s) = −3.077 × 10−6 s2 + 3.461 × 104s + 5.1673 × 108

s
(58)

The closed loop transfer functions TvPV −D, TvPV −Isc and TvPV −V b describe the system dynamics
for changes on the reference voltage (defined by the MPPT controller), short circuit current (defined
by the irradiance), and bulk voltage (defined by the inverter), respectively. The frequency responses of
those transfer functions are shown in Figure 14, where a satisfactory reference tracking is observed on
TvPV −D, and effective disturbances rejection on TvPV −Isc and TvPV −V b are also exhibited. In particular,
considering the connection to a 50 Hz grid, where vb bulk voltage oscillations at 100 Hz are generated,
vb perturbations are mitigated by 59 dB. Therefore, less than 0.11% of such 100 Hz oscillations will be
transferred to the PVM voltage. Such a condition guarantees a correct MPPT performance with reliable
non-electrolytic bulk capacitors, removing the bottleneck classically imposed by the requirement of large
bulk capacitances.

The PV system interacting with the designed controller was simulated taking into account the
parameters described above and the electrical diagram of Figure 10, in which the Norton PVM model
was replaced by the single-diode non-linear model [11] to obtain more realistic results. The simulation
considers two BP585 PV panels in series, each of which containing two PVM in series.
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Figure 14. Frequency response of the closed loop PV system with GC(s).
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The controller was evaluated by considering an initial irradiance S1 = 960 W/m2, then a step-type
disturbance occurs at t = 25 ms reducing the irradiance to S2 = 560 W/m2, returning to S1 at t = 45 ms.
The PV system includes a 44 µF bulk capacitor (non-electrolytic range) that generates a bulk voltage
oscillation of 50% of the DC component, which is established by the inverter. Therefore, the designed
controller is evaluated with both load and irradiance perturbations. In addition, a P&O MPPT controller
designed following [12] was adopted.

Figure 15(a) shows the simulation of the PV system with the designed controller GC , where a
satisfactory tracking of the voltage reference provided by the MPPT controller is observed. Similarly,
a satisfactory rejection of both bulk voltage and step irradiance disturbances are achieved. In addition,
the correct P&O controller operation is demonstrated by the three-points profile exhibited in the PVM
voltage for stable irradiance conditions [6]. Figure 15(b) shows a zoom of the simulation from 40.5 ms
to 41.5 ms, where a satisfactory controller performance is observed, providing a stabilization time for
the PVM voltage equal to 160 µs. Finally, the system transient response exhibits an oscillation in the
power extracted from the PVM lower than 0.1 W, which represents a 0.07% of the maximum power.

Similarly, the model was used to design complete-order Luenberger observers [37] in two conditions:
first, considering the inductor L = 56 µH previously adopted for the transient response simulation, and
second, considering the critical inductor L = 2.24 µH calculated from (29) that causes observability loss
for the inductor current. In the first case, the numerical observability matrix Obnum1 is given in (59),
calculated from Equation (28), which exhibits a rank equal to 2, where vCi

and iL are observable while
vCo is not observable, as reported in Section 3.2. In the second case, the numerical observability matrix
Obnum2 is given in (60) with a rank equal to 1, where iL is not observable.

Obnum1 =

 −0.16965 0.99793 0

−21210.41921 −3299.59903 0

2.52718 × 108 −3.77059 × 108 0

 (59)

Obnum2 =

 −0.16965 0.99793 0

12872.46632 −75719.54208 0

−9.76732 × 108 5.74541 × 109 0

 (60)
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Figure 15. PV system transient response by adopting controller GC .
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Both observers were simulated using Matlab interacting with PSIM through the Simcoupler toolbox.
Figure 16 shows the accurate observer behavior at L = 56 µH condition, where both vCi

and iL

small-signal behaviors are accurately observed. Instead, the observer designed adopting the inductor
calculated from (29) makes iL not observable, as established by (60), and predicted in Section 3.2.

It must be pointed out that the observer previously designed is not suitable to estimate the PV
current since small-signal variations are observed only, while the PV current is composed by both the
small-signal variations and the large signal component. The main objective of the designed observer is to
illustrate the potentiality of the state-space model in the design of more robust and complete observers,
e.g., sliding-mode observers and Kalman filters, which could be used to estimate the PV current.

Figure 16. Simulation of the observer designed for L = 56 µH.
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6. Experimental Results

The applicability of the proposed modeling approach to real cases was demonstrated by
experimentally validating the application example previously presented. The tests were performed using
a laboratory prototype with the same parameters considered in the simulations, including the designed
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GC controller. In addition, a bulk voltage composed by both DC and 100 Hz components was adopted
to put in evidence the system capability to operate with small non-electrolytic capacitors. It is noted that
this proof-of-concept experiment follows the European 50 Hz grid conditions, but the solution will be
also effective in American 60 Hz grid environments.

The block diagram of the experimental setup is shown in Figure 17, which outlines the connection
of the controlled DC/DC boost converter, the PV array composed by two BP585 PV panels in series,
and the load. The controller was implemented using a multipurpose control board with analog PID
modules, where an additional pole was introduced [38] to limit the high frequency gain [39], which
prevents the noise amplification. Following traditional guidelines [38,39], such a pole was placed at 10
times the dominant poles frequency to reduce its effect on the closed loop behavior (dominant poles
at 1.73 × 104 rad/s, additional pole at 1.73 × 105 rad/s). Moreover, the P&O MPPT controller was
implemented by using the Matlab Real-Time toolbox and a data acquisition system (DAQ).

An electronic load was used to test the system under two conditions: the first test considers the
electronic load operating as a constant resistance R = 100 Ω (switch SW in position 1) to evaluate
the operation of the MPPT controller in standard conditions, and to verify the controller’s satisfactory
performance by tracking the voltage reference without additional disturbances. The second test considers
a small bulk capacitor condition emulated by the electronic load imposing a 100 Hz sinusoidal oscillation
with 35 V amplitude superimposed to a DC voltage of 70 V. Such a bulk voltage oscillation corresponds
to a 50% perturbation, which is within the non-electrolytic bulk capacitor conditions because typical
electrolytic capacitors, in grid connected PV systems, cause bulk voltage oscillations between 1% and
2% of the DC component. This test was performed by configuring the electronic load as a voltage source
(switch SW in position 2), whose voltage waveform was imposed by means of a sinusoidal generator
implemented into Matlab. In both tests the PV array voltage VPV and current IPV , bulk voltage Vb, and
MPPT controller output VMPPT were collected. Figures 18(a) and 18(b) show the BP585 PV panels and
the laboratory setup used in the experiments, respectively.

Figure 19(a) presents the results from the first test, where the desired performance of the PV voltage
controller, following the MPPT voltage reference, is demonstrated. This test also shows that, in the
given irradiance conditions, the MPP provides a maximum PV power of 79.3 W. Since such a power
corresponds to almost the half of the PV array nominal power (170 W), it is concluded that the irradiance
available in the experiments was approximately 470 W/m2.

Figure 19(b) depicts the results obtained from the second test, where the analytically predicted
behavior of the PV voltage controller following the MPPT voltage reference is validated. The accurate
PV voltage regulation is observed in non-electrolytic bulk capacitor conditions that generate large bulk
voltage oscillations, 50% at 100 Hz in this case, while the MPPT controller still operates in a stable
profile. In this second test the maximum PV power generated was similar to the one obtained in the first
test. This condition was achieved by performing the tests in a clear day, and controlling the electronic
load to switch from constant resistance (first test) to voltage source (second test) operation almost
instantaneously. This procedure guarantees similar irradiance and ambient temperature conditions for
both experiments.
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Figure 17. Implementation scheme for the experimental tests.
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Figure 18. Experimental test bench.
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(b) Laboratory setup

Finally, the achieved PV power profiles make evident the satisfactory performance of the designed
controller since it effectively rejects the bulk voltage oscillations. Therefore, the usefulness of the
proposed model in real applications is evident.



Energies 2012, 5 1923

Figure 19. Experimental tests.
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7. Conclusions

This paper develops four models for step-up, double-stage, grid-connected photovoltaic power
systems oriented to control design. Such models allow to develop control strategies to reject load
and irradiance perturbations, which eventually permits an accurate tracking of the MPP. The analyzed
systems exhibit minimum phase behaviors, therefore cascade current-voltage controllers typically
adopted for boost converters are not required. Instead, direct duty-cycle-to-PVM voltage controllers can
be used. In addition, both simulation and experimental results verify the accuracy of linear controllers
designed with the proposed models.

The provided observability and controllability analyses are also useful to design observers and to
select suitable control strategies for double-stage PV systems. In addition, the conditions where the
system observability is lost have been identified, which are characterized by critical values of the passive
elements that generate linear dependences in the observability matrix.

Finally, the proposed models can be used to design state observers to replace PVM current sensors,
reducing the PV system costs and increasing its reliability. In addition, the models can be further
improved by considering representations of the PVM valid for the whole operating range, e.g.,
single-diode model. Moreover, the modeling approach can be extended to consider the DCM operation
of the DC/DC converter, and to adopt interleaved structures that significantly reduces the PVM voltage
ripple. Similarly, more complex DC/DC converters, like the SEPIC, CUK or ZETA, can be adopted to
provide step-up/down operation, continuous input and output currents, or higher efficiency.
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