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Abstract: Microgrids can increase power penetration from distributed generation (DG) in 

the power system. The interface (i.e., the point of common coupling, PCC) between the 

microgrid and the power utility must satisfy certain standards, such as IEEE Sd. 1547. 

Energy monitoring of the microgrid at the PCC by the power utility is crucial if the utility 

cannot install advanced meters at different locations in the microgrid (e.g., a factory). This 

paper presents a new nonintrusive energy monitoring method using a hybrid self-organizing 

feature-mapping neural network (SOFMNN). The components of the FFT spectra for 

voltage, current, kW and kVAR, measured at the PCC, serve as the signatures for the 

hybrid SOFMNN inputs. The nonintrusive energy monitoring at the PCC identifies 

different load levels for individual linear/nonlinear loads and output levels for wind power 

generators in the microgrid. Using this energy monitoring result, the power utility can 

establish an energy management policy. The simulation results from a microgrid, 

consisting of a diesel generator, a wind-turbine-generator, a rectifier and a cyclo-converter, 

show the practicability of the proposed method.  

Keywords: microgrid; nonintrusive energy monitoring; harmonics; self-organizing  

feature mapping 
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1. Introduction 

Renewable energies, such as solar, wind, geothermal, biomass, tidal, and hydropower, are classified 

as distributed electricity resources and have recently been the subject of much attention as alternative 

sources of electricity. The advantages of renewable energies include a decrease in the required 

transmission capacity, real power loss and conventional generator expansion. Moreover, the use of 

renewable energies can significantly mitigate the emission of CO2, to meet the strict requirements laid 

out in the Kyoto Protocol [1]. However, penetration of the renewable energies in the distribution 

system can lead to many operational problems, e.g., protection coordination. One solution, which 

allows the main power grid to use the original protection coordination, is the embedding of these 

distributed generations in micro grids. The interface (i.e., point of common coupling, PCC) between 

the microgrid and main power grid must satisfy certain standards, such as IEEE Sd. 1547 [2]. If the 

PCC cannot comply with the standard, the microgrid is not allowed to connect with the main grid. 

The microgrid studied in this paper is related to a factory containing distributed generations. 

Monitoring of such microgrid energy at the PCC by the power utility is crucial, because the utility 

cannot install advanced meters at different locations in the microgrid, which is operated by the factory. 

Hence, the power utility must use nonintrusive energy monitoring (NEM) at the PCC. Traditionally, 

the utility can only know the resultant voltage, aggregated current, real power and reactive power at 

the PCC and does not know the patterns of individual power generations and behaviors of individual 

energy consumptions inside the microgrid. If the connection of a microgrid to the main grid satisfies 

IEEE Sd. 1547, e.g., power quality requirement, the utility can use the results obtained by the NEM to 

make further decisions. Details on the purpose and benefits of the NEM can be found in Section 2.2. 

Traditionally, nonintrusive monitoring is primarily used in appliance monitoring [3], using the 

current and voltage of the total load, as measured at the interface to the power utility. The nonintrusive 

monitoring estimates the number and nature of the individual appliances, their individual energy 

consumptions and other related statistics (e.g., time-of-use variations). This type of nonintrusive 

monitoring is termed nonintrusive appliance load monitoring (NALM). An example of NALM is an 

“energy audit”, which provides a report that looks like a telephone bill, with itemized charges. Failure 

analysis can be also undertaken using NALM because a failed appliance can often be detected by its 

abnormal power consumption. As a security example, NALM can be used in a vacation home, which is 

unoccupied for a long period. The concept of NALM is similar to that of NEM; however, there are 

some differences, as follows: 

(1) NEM must consider the intermittent nature of renewable energies (e.g., wind-turbine) in a 

micro grid; a NALM-based residential home generally does not have a power resource. 

(2) Three-phase and non-characteristic loads (e.g., cyclo-converters of varying non-integer 

harmonics) are becoming more popular in microgrids but most appliances are single-phase 

with characteristic loads (e.g., 4-pulse converters).  

(3) The purpose of NEM in a microgrid is to monitor power generation from distributed generators 

and power consumption by individual loads; the purpose of NALM in a residential home is to 

determine the energy consumption pattern of individual appliances. 
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To the authors’ knowledge, no research papers have so far dealt with the NEM of microgrids. 

However, some papers have considered NALM and these can be used as references [4–7]. Leeb et al. 

proposed a current spectral preprocessor for initial use in a transient event detector and then a transient 

event detection algorithm was developed for a NALM using the coefficients of the Fourier series [4]. 

However, the Fourier series can only be used to study a periodic signal; the use of Fourier series to 

serve as a transient detector for NALM would seem inappropriate. Cole and Albicki presented 

harmonic components as a measure for NALM in [5]. The Hamming distance between the measured 

and known harmonic energies is mapped into a set of known individual load states [5]. Cox and Leeb et al. 

proposed a preprocessor that computes short-time estimates of the spectral content of the voltage 

waveform using Fourier series [6]. If an event with transients is located, the least-square-error (LSE) 

method is used to match the data surrounding the event to templates, known as exemplars. However, 

determination of weighting factors for the LSE was not discussed. Recently, Chang and Yang 

proposed a genetic-based neural network to allow pattern recognition for a household appliance [7]. 

However, a supervised neural network, incorporating a genetic algorithm, requires a long CPU time. 

Artificial neural networks (ANN) can map a set of independent variables into another set of 

dependent variables in a nonlinear system. ANN’s can be classified into two groups—supervised  

and unsupervised ANN’s. Supervised ANN’s, e.g., back-propagation-based ANN’s, need pairs of 

input-output data to train the weighting factors in the ANN. Unsupervised ANN’s, e.g.,  

self-organizing, feature-mapping neural networks [8], play the role of a preprocessor to extract features 

from a nonlinear system. ANN’s have been successfully used to solve many power system problems, 

such as wind power/speed forecasting [9], voltage stability margin estimation [10], security-constrained 

optimal power flow [11] and power system stability [12]. Supervised ANN’s, used for stochastic 

optimization [9], back-propagation algorithms [10,11] and projection schemes [12], are the most popular. 

This paper proposes a novel method to achieve nonintrusive energy monitoring at the PCC between 

the main power grid and the microgrid, based on a hybrid self-organizing feature-mapping neural 

network (hybrid SOFMNN). The microgrid studied in this paper is related to a factory containing 

linear/nonlinear loads and distributed generations. The SOFMNN serves as a preprocessor to extract 

the features of signatures, obtained by fast Fourier transforms (FFT). These features appear on a  

two-dimensional layer that is cascaded to a supervised two-layer perceptron (neural network). The 

proposed hybrid SOFMNN outputs the levels of individual loads and wind power generation. The 

advantages of the proposed method can be summarized as follows: (1) there is no transient detection [4,6] 

involved in the proposed method; (2) the capability for nonlinear mapping of ANN’s is greater than 

that of the Hamming distance [5] and LSE methods [6]; (3) the CPU time required by hybrid 

SOFMNN is much shorter than that for genetic-based NN’s [7]; and (4) FFT is used, because  

non-characteristic and non-periodic signals cannot be studied using Fourier series [4,5].  

Section 2 provides a problem description. The proposed method for NEM is detailed in Section 3. 

The simulation results, obtained from a microgrid, containing a diesel generator, a wind power 

generator, a rectifier and a cyclo-converter, are discussed in Section 4. Concluding remarks are given 

in Section 5. 
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2. Problem Description 

2.1. Microgrid 

A microgrid can be a part of the distribution system, e.g., industry park, community, factory, or  

school [13–15]. The microgrid studied in this paper is operated by a single customer, a factory 

containing distributed generations.  

The distributed generation resources are included in the microgrid. There are three types of 

distributed generation resources: (1) small and modular generating systems (such as micro-turbines, 

diesel generators, and cogeneration of heating/power systems); (2) energy storages (such as battery); 

and (3) renewable energy resources (such as solar, wind, geothermal, biomass, tidal, and hydropower). 

Depending on local regulations, the microgrid can output electricity to the main power grid owned by 

the utility. Alternatively, in compliance with IEEE Sd. 1547, the CERTS microgrid does not output 

power to the main power grid [16]. The microgrid studied in this paper includes diesel and  

wind-turbine-generators and there is no surplus power injected into the main grid. 

In this paper, the studied microgrid is a factory and has a linear load and nonlinear loads fed by the 

rectifier and cyclo-converter [17]. Figure 1 illustrates the instantaneous load currents through the 

rectifier. The total harmonic distortion (THD) is 4.35%. Figure 2 shows the non-characteristic load 

current caused by the cyclo-converter. The load currents from the cyclo-converter are non-characteristic 

and include inter-harmonics (whose harmonic orders are within two consecutive integers) and  

sub-harmonics (components with frequencies smaller than the fundamental frequency). Detailed 

SIMULINK implementations for both rectifier and cyclo-converter are given in the appendix. 

Figure 1. Harmonic load current caused by the rectifier. 

 

Figure 2. Non-characteristic load current caused by the cyclo-converter. 
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2.2. Nonintrusive Energy Monitoring 

This subsection details the purpose, benefits, load signature and the process of feature extraction, 

for the NEM implemented at the PCC. Load monitoring has been used to solve problems in industrial 

systems and residential households. It is becoming an integral part of performance assessment 

procedures. As described in Section 1, NEM monitors power generation from distributed generations 

and individual power consumptions in a microgrid. The benefits of the NEM, for the power utility, 

include (1) a better understanding of power quality at the PCC; (2) a better understanding of the impact 

on the reliability of the main grid; (3) the possibility of contract revision between the utility and the 

microgrid administrators; and (4) identifying problem situations, e.g. malfunctions in protective relays 

in the main grid. 

One of the important steps for NEM is the identification of the signatures of the measured signals at 

the PCC [3]. The Fourier series coefficients for the currents at the PCC are the signatures used for the 

purposes of analysis [3–5]. In this paper, FFT-based spectra of harmonic voltages and currents, as well 

as real/reactive powers at the PCC, serve as signatures for the monitoring of the microgrid.  

Nonintrusive monitoring facilities are installed at the PCC. When the signatures of the monitored 

data are obtained, important features can be further extracted for analysis purposes. The monitoring 

system assimilates the load features to allow the power utility to make more efficient policies.  

2.3. Assumptions 

As described in Section 2.1, the studied microgrid in this paper is operated by a single customer. To 

achieve NEM for such a microgrid, this paper makes some assumptions: 

(1) The signatures of signals used to be studied in the microgrid have been properly filtered: The 

measured signals are attained through CT/PT. The noise-free signals are used for analysis.  

(2) The three-phase system is balanced at the PCC: This paper uses the concept of the CERTS 

microgrid, so the microgrid must satisfy IEEE Sd. 1547. Any minor imbalance within the IEEE 

Sd. 1547 limit at the PCC is ignored. 

(3) The number and types of individual loads are known: the individual loads in a microgrid are 

not like the appliances in a house, where privacy is important. Hence, the types of loads  

(e.g., 6-pluse converter and cyclo-converter) can be known. 

(4) The different operational levels of individual loads are known: large loads are operated at 

discrete levels, from their rated (peak) to their off-peak levels, or even the outage state. 

(5) Only energy monitoring is considered: Policy-making, using the results of energy monitoring, 

is not considered in this paper. The measured/filtered data is continuously sent to a PC in a 

control center. The proposed hybrid SOFMNN outputs one level of each load and one level of 

the wind-turbine generator at a time. Because transients caused by load switching only last tens 

or hundreds of milliseconds, consecutive steady-state levels for each individual load can be 

determined using the proposed method.  

Like most of applications using the neural networks, the parameters of the proposed hybrid 

SOFMNN must be updated and retrained, using off- and on-line data, if a new load is included or the 
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system topology is changed. The reason is that the number of output neurons (defined in Section 3.3)  

is changed. 

3. The Proposed Method 

3.1. Concept of Hybrid Neural Networks  

The voltage/current/real power/reactive power, sampled at the PCC, is transformed to the FFT 

spectrum, including fundamentals, integer (2, 3, 4…) harmonics, sub-harmonics and inter-harmonics. 

In this paper, it is found that the magnitudes of voltage/current greater than the Hth harmonic, where  

H = 14, are small and can be ignored. The components of the FFT spectrum serve as signatures of  

the sampled voltage/current real power/reactive power (denoted as V, I, P and Q herein), for further 

signal processing. The identified components are those of 0, 20, 40, 60, 80, 100 and 120…, 14 × 60 Hz. 

The signatures (FFT spectrum) of the voltage/current real power/reactive power must be further 

investigated, for at least two reasons: 

(1) All components in the FFT spectrum are not equally important. Some FFT components are 

trivial and should be ignored by further investigation.  

(2) The significant topological structures of the signatures must be arranged to train the supervised 

neural network. A sequence of ascending frequencies for V, I, P and Q may be inefficient to 

train the neural network.  

Therefore, the proposed SOFMNN firstly extracts the features from the signatures of the FFT 

spectrums. These features are forwarded to a two-layer supervised neural network. In this paper, the 

proposed SOFMNN is integrated with the supervised neural network and is called the hybrid SOFMNN. 

3.2. Traditional Self-Organizing Feature-Mapping Neural Network 

Kohonen proposed a Self-Organizing Feature-Mapping NN (SOFMNN) in 1973 [8], which was an 

unsupervised NN, using competitive learning. The weighting values for neurons are tuned 

competitively, according to the inputs. With sufficient training data, the values of the outputs can be 

represented by a topological structure (one- or two-dimensional space), in terms of inputs. The  

left-hand side of Figure 3 shows the 2-dimensional topological structure.  

Figure 3. A Hybrid SOFMNN. 

unsupervised supervised

hidden layer

output layerinput layer

12H  
neurons 

20 neurons
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The left-hand side of Figure 3 denotes the traditional SOFMNN. Let the input be: 

T
pxxxx ],,,[ 21   

and the weight vector for the i-th output neuron be: 

T
ipiii wwww ],,,[ 21   

The symbols, p (identical to 4 × 3 × H in this paper) and N, are the respective numbers of the input 

and output neurons of the SOFMNN. If: 

* 1,2,...,T T
i iw x w x i N     (1)

then the i*-th neuron is the winner. Because: 

  2
1
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T
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T
i

T
i wwxwxxwx   (2)

with a minus sign for the term, 2 xwT
i , Equation (1) is equivalent to Equation (3) (see Page 346 in [8]): 
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Equation (3) is generally used in the algorithm. Once the winner has been determined, the 

weighting vector is updated according to Equation (4) as follows:  
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where η(n) and Λi*(n) are the learning rate and the winner’s neighboring area, respectively. Both of 

these are functions of the iteration index, n. More specifically: 

n
o en  )(  

where ηo is the initial learning rate (0.1 herein); Λi*(n) initially covers 8 neighboring neurons centered 

at the i*-th neuron in a squared area. The number of neighboring neurons decreases to zero when the 

iterations converge. 

3.3. Hybrid Self-Organizing Feature-Mapping Neural Network 

A traditional SOFMNN only outputs the weightings: 

1 2[ , , , ]      1,2,...,T
i i i ipw w w w i N   

The problem is how to utilize the topological structure in the 2-dimensional c × r space. Kohonen 

found the mapped features in the 2-dimensional c × r space have characteristics of clustering [8]. He 

used different labels to identify the original inputs related to the different clusters. Therefore, the 

identified inputs in different clusters can be applied to different functions. A cluster in our problem 

means one of 625 classifications (5 × 5 × 5 × 5 at the output layer, see next paragraph). However, 

several clusters may be very close and hard to be differentiated. Once the SOFMNN algorithmic 

iterations converge, the given data are grouped into clusters but the number of clusters may not be 
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equal to 625. Each cluster has a cluster center which has a minimum summation of distances between 

itself and other data in this cluster. The remaining problem is that which cluster a given input should 

belong to. To solve this problem, the Euclidian distance between the studied data and each of the 

cluster centers must be examined. A minimum distance indicates the proximity of the studied input 

data to the vector of a corresponding cluster center. The above problems cause the SOFMNN not to be 

used directly. 

To avoid these two dilemmas and because of the two reasons depicted in Section 3.1, a traditional 

unsupervised SOFMNN is cascaded to a 2-layer supervised neural network, as shown in Figure 3. The 

numbers of neurons in the input, output, second and fourth layers are detailed, as follows: 

(1) The inputs are the FFT components of the V/I/P/Q, measured at the PCC. Two components are 

also identified, between any two consecutive integer harmonics. For example, the components 

of 80 and 100 Hz are identified, between h = 1 (60 Hz) and h = 2 (120 Hz). In this example  

(H = 2), the number of the input neurons is 4 × 3 × 2 (V/I/P/Q with frequencies of 20, 40, 60, 

80, 100 and 120 Hz). The term “3” is not relevant to three phases but subharmonics and 

interharmonics. Let H = 14. Hence, the proposed hybrid SOFMNN has 4 × 3 × 14 (= 168) 

input neurons; that is, p = 4 × 3 × 14, where p is defined in Section 3.2.  

(2) The second layer is usually a 2-dimensional layer. The size is N (defined in Section 3.2), equal 

to c × r (c is the number of neurons in the columns; r is the number of neurons in the rows). 

This is discussed in Section 4. 

(3) The third layer is the hidden layer, which is the same as the first layer of the supervised neural 

network. The number of third layer is approximated by (N + 20)/2, where 20 is the number of 

output neurons (see (4) below). 

(4) The number of output neurons in the supervised neural network depends on the numbers of 

loads and the renewable energy sources. For example, the studied microgrid has one linear 

load, one converter (rectifier) load, one cyclo-converter load and one wind-turbine-generator. 

Assume that the loads are operated at their discrete levels (see Section 2.3). Then, there are  

20 output neurons (binary bits), which are defined, as follows:  

(a) 1st–5th bits: 0%, 25%, 50%, 75% and 100% of the rated size for the linear loads. 

(b) 6th–10th bits: 0%, 25%, 50%, 75% and 100% of the rated size for the converter loads. 

(c) 11st–15th bits: 0%, 25%, 50%, 75% and 100% of the rated size for the cyclo-converter loads. 

(d) 16th–20th bits: 0%, 0%–25%, 25%–50%, 50%–75% and 75%–100% of the rated power 

generated by the wind-turbine-generator. 

The generation levels from diesel generators can be considered as dependent variables and 

determined from the linear loads, converter loads, cyclo-converter loads, and wind-turbine-generators. 

Thus, no output neurons for the generation levels from diesel generators are required. 

The intermittent nature of the wind power was not considered in this paper because only power 

generation levels are concerned in an energy monitoring problem, which is relevant to a real-time  

(on-line) study. A scheduling or planning work requires the probabilistic or stochastic model for the 

wind power. The objective function for supervised learning (training) is defined as the sum of the 

mean squared errors between the expected (known) values and computed values.  
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4. Simulation Results 

4.1. Description of the Studied System 

A microgrid, which includes a linear load, a rectifier, a cyclo-converter, a diesel generator and a 

wind-turbine-generator, was studied, as shown in Figure 4. The short circuit capacity (SCC) is 

normally 85 MVA and X/R is 7, at the PCC. The ratings for the linear, rectifier and cyclo-converter 

loads are (41.58 kW + j10 kVAR), 30 Ω and (40 + j75.36) Ω, respectively. In order to compensate for 

distorted voltages, a damped filter (3.45 kVAR, tuned frequency = 90 Hz, Q factor = 50) is installed at 

the PCC. The rated capacity and voltage of the diesel generator are 30 kVA and 480 V, respectively. 

The rated generation for the wind-turbine-generator is 20 kVA. To show the performance of the 

proposed neural network, a total of 1137 cases were generated, by varying the values of SCC  

(42.5–85 MVA) as well as linear loads, converter load, cyclo-converter load and wind-turbine output 

(0%–100% of rating, see Section 3.3). The system is implemented by MATLAB/SIMULINK  

(please see the Appendix). For training, validating and testing the hybrid SOFMNN 797, 113 and 227 

of the 1137 cases were used, respectively. A personal computer, with an Intel Core 2 Duo CPU  

E4400@2.00 GHz, 3.25 GB RAM was used to study the performance (including required CPU time) of 

the proposed method.  

Figure 4. One-line diagram of the studied microgrid. 

 

In the proposed hybrid SOFMNN, the new hidden layer consists of 20 neurons. The second layer is 

a c × r topological structure. The learning rate, η(n), starts at 0.01 and decays to 0.001. The winner’s 

radius of the neighboring area, Λi*(n), is initially set at 3 and decays to 0. After training the 

unsupervised NN (left side of Figure 3), the supervised NN (right side of Figure 3) is trained, using the 

frozen weights of the unsupervised NN and then uses the same training set.  

4.2. Signatures of Voltages and Currents 

As described in Section 4.1, 1137 cases were studied. In this subsection, only the voltage and 

current spectrums for two out of 1137 cases are shown. Figure 5a,b show the FFT spectra of voltage 

and current for the condition of half linear load, a cyclo-converter at full load, and a rectifier at half 
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load. Figure 6a,b shows the FFT spectra of voltages and currents for the condition of half linear load, a 

cyclo-converter at half load, and a rectifier at full load. Note that the fundamental components 

(harmonic order = 1) of voltages and currents with values of unities in Figures 5 and 6 have been cut to 

fit the figures. These four figures show that:  

(1) For both voltages and currents, the components of the characteristic harmonic voltages/currents 

(i.e., 5th, 7th, 11st, 13rd) are larger, compared to non-characteristic (inter-) harmonics.  

(2) Many sub-harmonics and DC components of the voltages and currents exist, caused by the 

cyclo-converter. Some of the sub-harmonics are even larger than those of the characteristic 

harmonics and inter- harmonics.  

(3) Theoretically, for the voltage and current harmonics, the characteristic harmonics of the 11th 

and 13th orders are smaller than those of 5th and 7th orders. It is found that a minor parallel 

resonance occurs, near the harmonics of 11th and 13rd orders, in this system.  

(4) The patterns of the FFT spectra for both the voltages and currents at different load levels are 

different. Therefore, the components of the FFT spectra can be used as signatures for  

load monitoring. 

Figure 5. (a) FFT spectrum of voltages (half linear load, cyclo-converter at full load, 

rectifier at half load); (b) FFT spectrum of currents (half linear load, cyclo-converter at full 

load, rectifier at half load). 

(a) (b) 

Figure 6. (a) FFT spectrum of voltages (half linear load, cyclo-converter at half load, 

rectifier at full load); (b) FFT spectrum of currents (half linear load, cyclo-converter at half 

load, rectifier at full load). 

(a) (b) 
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4.3. Comparative Studies for Different c × r Topological Structures 

In the SOFMNN, the one-dimensional input (168 × 1 vector) will be mapped into a two-dimensional 

(c × r) space. Generally, the convergent topological structure in SOFMNN reveals the relation between 

input neurons. Once the SOFMNN iteration converges, the feature map implies that a winning neuron 

in the two-dimensional (c × r) space corresponds to its input vector: 

T
pxxxx ],,,[ 21   

The weight vector: 

T
ipiii wwww ],,,[ 21   

provides the coordinates of the image of that neuron in the input space. Increasing the value of c × r 

will improve the resolution and accuracy of the proposed method, but also increase the training times. 

Because the accuracy is more important than the required CPU time in an off-line neural training 

problem, the values of c × r may increase gradually until an acceptable accuracy is attained. It is 

anticipated that the value of c × r should be close to 625 because there are 625 classifications studied 

in the problem. 

Let V, I, P and Q (168 in total) be all of the inputs of the hybrid SOFMNN. Table 1 shows 

comparative studies for different c × r (= N) topological structures. As can be seen in Table 1, the 

accuracy and CPU time increase, when the value of c × r increases. The accuracy for the case of  

N = 23 × 23 is almost the same as that for the case of N = 24 × 24, so c × r = 23 × 23 is considered to 

be the best topological structure, with an accuracy of 99.2%. The required CPU time (19:03) is 

acceptable, given that the study is conducted off-line.  

Table 1. Comparative studies for different cr topological structures. 

Cases c × r CPU (min:sec) Accuracy (%) 
1 9 × 9 2:31 87.6 
2 12 × 12 4:25 90.7 
3 15 × 15 7:34 96.9 
4 21 × 21 15:40 98.8 
5 22 × 22 17:28 99.0 
6 23 × 23 19:03 99.2 
7 24 × 24 20:57 99.2 

4.4. Comparative Studies for Different Signatures 

Table 2 shows the comparative studies among cases considering different signatures while the two 

dimensional topological structure in the second layer of the proposed method is fixed (23 × 23). It is 

found that the accuracy for the signatures of voltages (42 in total) is the worst (89.4%), because the 

fundamental voltages are almost the same and the harmonic voltages are small. The accuracy is the 

best for the case considering all V, I, P, and Q (99.2%), due to diverse signature inputs to the neural 

network. The CPU time required for this set of signatures is acceptable for off-line study. 
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Table 2. Comparative studies for different signatures. 

Cases Signatures CPU (min:sec) Accuracy (%) 
1 V and I (84 in total) 13:21 95.7 
2 V (42 in total) 8:41 89.4 
3 I (42 in total) 8:21 93.8 
4 P and Q (84 in total) 10:55 98.0 
5 P (42 in total) 9:02 92.0 
6 Q (42 in total) 10:54 95.2 
7 V, I, P and Q (168 in total) 19:03 99.2 

4.5. Comparative Studies with Traditional Multi-Layer Perceptron 

Let V, I, P and Q (168 in total) be all of the inputs of the hybrid SOFMNN. Table 3 shows the 

comparative studies between existing methods. The 3rd–7th rows of Table 3 show the performance of 

the traditional, back-propagation (BP)-based neural networks, with different numbers of neurons  

(20, 40, 80, 110 and 120) in the hidden layer. The last row in Table 3 illustrates a multi-layer perceptron 

that employs genetic algorithms (GA) to minimize the mean-squared error in the output neurons [7]. 

BP-based NNs have the fastest convergence, but the lowest accuracy. The greater the number of 

neurons in the hidden layer, the more accurate is the BP-based NN, as can be seen in Table 3. 

However, an accuracy of 96.6% represents the practical limit. 

The GA is capable of attaining a global optimum, so a GA-based NN has a better accuracy, at 

97.8%, compared with that obtained with a BP-based NN. However, a GA-based NN requires more 

than 14 hours, to train the NN. In this study, the population size, crossover rate and mutation rate are 

50, 0.9 and 0.01, respectively. 

The proposed hybrid SOFMNN has the best accuracy, at 99.2%, and an acceptable CPU time of 

20 minutes and 57 seconds. Compared with the BP-based NN, the proposed method obviously requires 

more CPU time because the inputs of the cascaded 2-layer supervised neural network of the proposed 

hybrid SOFMNN are the 24 × 24 features. However, the number of input neurons of the BP-based NN 

is still 168. It is unfair to increase the number of neurons in the hidden layer of the BP-based NN to  

24 × 24 (or 23 × 23) for the sake of comparison because the practical number of neurons in the hidden 

layer is only 94 (i.e., (168 + 20)/2 herein). It is also impractical to increase the number of input neurons 

of the BP-based NN to 24 × 24 (or 23 × 23) because at most 168 signatures are available.  

Table 3. Comparative Studies between Different Methods. 

Methods CPU time  Accuracy (%) 
The proposed SOFMNN 20:57 99.2 

BP-based NN of 20 neurons in hidden layer 0:39 92.9 
BP-based NN of 40 neurons in hidden layer 1:10 94.0 
BP-based NN of 80 neurons in hidden layer 2:11 95.5 
BP-based NN of 110 neurons in hidden layer 2:50 96.5 
BP-based NN of 120 neurons in hidden layer 3:19 96.6 

GA-based NN [7] 14:38:00 97.8 
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5. Conclusions 

This paper proposes a new method to conduct nonintrusive energy monitoring for microgrids, based 

on the FFT and a hybrid SOFMNN. The advantages of the proposed method can be summarized as 

follows: (1) the spectrum of the FFT is used to determine the signatures of non-characteristic and  

non-periodic signals; (2) in addition to the voltages and currents, real and reactive powers also serve as 

signatures and greatly improve the accuracy; and (3) the hybrid SOFMNN can determine the features 

of the FFT components, which lead to a greater accuracy than existing methods.  

The simulation result from a microgrid operated by a single customer shows the practicability of the 

proposed method. Future studies will include an investigation of different signatures (e.g., wavelet 

transform) and other renewable energy sources (e.g., solar PV). 
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Appendix 

This appendix provides the description of the elements of the studied microgrid in this paper. 

A1. Rectifier 

Figure A1 illustrates the rectifier implemented by SIMULINK. Its corresponding instantaneous load 

current was shown in Figure 1. The block with a thyristor symbol is a function which is able to transfer 

three-phase voltages to a DC voltage.  

Figure A1. Rectifier implemented by SIMULINK. 
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A2. Cyclo-Converter 

Figure A2 shows the cyclo-converter implemented by SIMULINK. The corresponding  

non-characteristic load current was given in Figure 2. The cyclo-converter consists of a digital logic 

controller (DLC), and 6-pulse P and N converters. The DLC is composed of a voltage detector and 

logic and time delay circuits. The load currents from the cyclo-converter are non-characteristic and 

include inter-harmonics (whose harmonic orders are within two consecutive integers) and sub-harmonics 

(components with frequencies smaller than the fundamental frequency). 

Figure A2. Cyclo-converter implemented by SIMULINK. 

 

A3. Diesel Generator 

The diesel generator is a synchronous generator with a diesel engine unit (SD). The SD excitation is 

performed by the standard excitation block provided in the machine library of SIMULINK. The diesel 

engine and governor system are modeled by a SIMULINK block. Figure A3 shows the governor/diesel 

engine and excitation implemented by SIMULINK. This is an existing blockset provided in 

SIMULINK. The details of block “governor & diesel engine” can be found in SIMULINK Tutorial 

Session 5. The block “excitation” implements an IEEE type 1 voltage regulator combined to an exciter. 

The output of this block is the field voltage in p.u. applied to the input of a synchronous machine. The 

direct- and quadrature-voltages (vd and vq in the block) are measured from the synchronous machine.  
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Figure A3. Governor/diesel engine and excitation implemented by SIMULINK. 

 

A4. Wind-Turbine Generator 

The generator is an asynchronous machine which is modeled in a d-q frame. The generator is 

connected to the bus with a shunt capacitor for compensating the reactive power. The mechanic torque 

of wind turbine is set up by a 2-D linear interpolation considering the wind speed and rotor speed as 

independent variables. 
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