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Abstract: Seeking the optimal strategy of a multi-reservoir system is an important 

approach to develop hydropower energy, in which the Genetic Algorithm (GA) is 

commonly used as an effective tool. However, when the traditional GA is applied in 

solving the problem, the constraints of water balance equation, hydraulic continuity 

relationship and power system load demand might be violated by the crossover and 

mutation operator, which decreases the efficiency of the algorithm in searching for a 

feasible region or even leads to a convergence on an infeasible chromosome within the 

expected generations. A modified GA taking stochastic operators within the feasible region 

of variables is proposed. When determining the feasible region of constraints, the 

progressive optimal approach is applied to transform constraints imposed on reservoirs into 

a singular-reservoir constraint, and a joint solution with consideration of adjacent periods at 

crossover or mutation points is used to turn the singular-reservoir constraints into singular 

variable constraints. Some statistic indexes are suggested to evaluate the performances of 

the algorithms. The experimental results show that compared to GA adopting a penalty 

function or pair-wise comparison in constraint handling, the proposed modified GA 

improves the refinement of the quality of a solution in a more efficient and robust way. 
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1. Introduction 

The optimal operation strategy of a multi-reservoir power system is important to develop and 

maximize utilization of hydropower energy [1–4]. The topic has attracted more interest in recent years 

for its ability to explore the full potential of power generation by conserving energy or increasing 

power generation, which is achieved only through properly controlling reservoirs’ water release and 

hydraulic head by optimal operation [5,6]. 

Seeking optimal operation strategies for reservoirs through the solution of an optimal operation 

model is the most important part of optimal operation of a multi-reservoir power system. Due to the 

complexity and nonlinearity of the reservoir system, acquiring the solution of an optimized model has 

been the focus of research [7]. As a result, two typical types of algorithms have been developed, which 

are the mathematic programming approach and the artificial intelligence optimization approach.  

Dynamic Programming (DP), which is based on the principle of optimality, is the most widely used 

traditional mathematic programming approach in determining the optimal strategy of a reservoir [8–10]. 

However, it has computational burden when applied to a high-dimensional reservoir system, which is 

known as the curse of dimensionality. 

With the development of intelligent algorithms and stochastic optimization theory, the Genetic 

Algorithm (GA) [11] has been widely used in reservoir optimization [12–14]. However, there are two 

disadvantages of GA in reservoir operation. Firstly, the crossover and mutation operators might change 

feasible parents into infeasible offsprings by violating the constraints such as water balance equation, 

hydraulic continuity relationship, etc., thus weakening the algorithm’s searching ability. Additionally, 

GA may terminate with an infeasible solution as the “best” chromosome in given generations if 

confronted with high-dimensionality cases or narrow feasible region situations. Secondly, it’s hard to 

choose the proper constraint handling technique.  

Among the various kinds of constraint handling techniques, penalty function is the most commonly 

used way [15–17]. It distinguishes chromosomes by evaluating their degree of violation of constraints 

within penalty terms. However, the construction of penalty terms is difficult to perform because they 

can neither be too large to avoiding over-penalization, nor too small so as to cause under-penalization. 

Therefore, Deb [18] proposed the Pair-wise Comparison technique to avoid the difficulty of penalty 

term construction where comparing two chromosomes under some predefined rules to determine 

which one is superior. The rules are: a feasible chromosome is deemed superior to an infeasible one. In 

any pair of feasible chromosomes, the one with the larger objective function is superior. While in any 

pairs of infeasible chromosomes, the one with the smaller number of violations is superior. In order to 

keep the proportion of feasible and infeasible chromosomes balanced in the whole population, 

Runarsson and Yao [19] proposed a stochastic ranking technique to randomly rank chromosomes  

pair-wise by objective function or constraint violation. The repair operator approach offers a new 

perspective in constraint handling as to covert infeasible chromosomes into feasible ones. Chootinan 
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and Chen [20] established a gradient method to repair chromosomes by reducing their constraint 

violations, but it requires the constraint functions to be continuous and differential, which limits its 

application in reservoir optimal operation. Michalewicz and Janikow [21] adopted a specially designed 

operator for ensuring feasible offsprings generated under the condition of a convex-feasible region, 

however, it’s not suitable for non-convex problems. Teegavarapu and Simonovic [22] introduced 

repair strategies and heuristic rules to readjust solutions in helping refining their quality. 

When applied to seeking the optimal strategy of multi-reservoir system, the traditional GA might be 

insufficient in generating feasible solutions due to the high dimensionality and complexity of 

constraints, which can result in getting a sub-optimal strategy. To overcome the traditional GA’s 

shortcomings in searching for the feasible region, this paper presents a modified technique to 

determine a dynamic feasible region of constraints with the heuristics of reservoir operation and then 

execute evolving operators within the region for generating more feasible chromosomes. The proposed 

GA was applied in solving the joint optimal operation strategy of a multi-reservoir system consisting 

of five reservoirs. Compared with the traditional GA, the results showed that the modified GA is more 

efficient and satisfactory in seeking an optimal strategy. 

2. Joint Optimal Operation Model in Multi Reservoir System 

2.1. Objective Function 

Take the maximum of the total hydro-power generation in planning horizon as objective function: 

,
1 1

max
n T

j t
j t

E N t
 

    (1)

where N j,t denotes the power output of reservoir j during period t, j = 1,2,…,n, T is the whole planning 

horizon, and ∆t is time interval. 

2.2. Constraints  

(1) Water balance equation: 

, 1 , , , ,( )j t j t j t j t j tV V Q q t EL       (2)

(2) Hydraulic continuity relationship: 

, , ,( )
j

j t k t k t
k

Q Qu q


    
(3)

(3) Power output function: 

, , ,( , )j t j j t j tN f q H  (4)

(4) Storage volume limits: 

, 1 , 1 , 1j t j t j tV V V     (5)

(5) Outflow limits: 

, , ,j t j t j tq q q   (6)
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(6) Power output limits: 

, , ,j t j t j tN N N   (7)

(7) System load demand: 

,
1

n

j t t
j

N ND



 

(8)

(8) Terminal water level: 

, 1j T jZ ZE   (9)

where Vj,t and Vj,t+1 are the initial and terminal storage volume of reservoir j in period t, respectively; 

Qj,t means the inflow of reservoir j in period t, qj,t is the outflow of reservoir j in period t; ELj,t is the 

sum of evaporation and leakage losses. Ωj refer to a set which contains the reservoirs located upstream 

of reservoir j; Quk,t is the lateral inflow generated in the confined catchment between reservoir k and 
reservoir j; Hj,t is the average hydraulic head of reservoir in period t; ( )jf   is the power output function 

of a reservoir; , 1j tV   and , 1j tV   are the upper and lower limits of storage volume at the end of period t; 

,j tq is the minimal required discharge meeting the obligations of satisfying ecological and navigational 

demands in the downstream river channel and ,j tq  is total discharge capacity through spillways and 

turbines; ,j tN  and ,j tN  are the limits of power output; NDt is the minimal load demand imposed on the 

reservoirs system. ZEj is the expected terminal water level of reservoir j at the end of the planning horizon. 

3. Structure of Traditional Genetic Algorithm in Multi Reservoir Operation 

The Genetic Algorithm is a kind of population-based stochastic algorithm inspired by the process of 

biological evolution. It follows the principle of “survival of the fittest” to guide the chromosomes 

toward evolving and picks up the elitists. In an optimization application, these procedures lead the 

chromosomes to approach toward the global optimum gradually. The structure of the traditional GA in 

reservoir operation is discussed in detail in this section. 

(1) Gene coding and chromosome initialization  

Water level is always preferred as a real-coded gene, which is denoted in a three-dimensional 
matrix Chri,j,t, representing reservoir j’s initial water level of period t. i = 1,2…,Pop, where Pop  is the 

chromosomes’ size. Chromosomes are often initialized randomly: 

, , , , ,( )i j t j t j t j tChr Z Z Z Rnd   
 (10)

where ,j tZ  and ,j tZ  are water level boundaries, Rnd is a random variable which is subject to uniform 

distribution in (0,1).  

(2) Chromosome evaluation criteria: 

Two types of criteria for evaluating the chromosome’s superiority are discussed: 
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(i) Fitness function 

Fitness function is most widely used in distinguishing the solutions’ differences between 

chromosomes; the one with larger fitness is deemed as more fit. Usually, the penalty function is 

incorporated in the fitness function to handle the constraints:  

iFit E Penal   (11)

where Fiti is the Fitness function and Penal is the penalty term. Among the various forms of 

structuring a penalty term [23–25], penalizing according to the severity of constraints’ violation is the 

most common way, which can be given as:  

1

( ) ( )
CountC

j
j

Penal x INF Vl x


    (12)

where CountC is the count of violated constraints, INF  is the penalty coefficient while Vlj(x) is  

the violated degree of constraint j. The process of calibrating a suitable INF usually involves  

trial-and-error and is rather time consuming. 

Under the situation of seeking optimal operation strategy of water level, the constraints which might 

be violated include power output limits, released flow limits and system load demand. Hence they are 

constructed into penalty terms of PenNj,t, PenQj,t and PenSNt, respectively, with the purpose of 

reducing the fitness of chromosome that violates related constraints:  

, 1 , , , ,

, 2 , , , ,

3 ,

max{( ) ( ),0}

max{( ) ( ),0}

max{ ,0}

j t j t j t j t j t

j t j t j t j t j t

t t j t
j

PenN INF N N N N

PenQ INF q q q q

PenSN INF ND N

    

    

  
 

(13)

where INF1~INF3 are calibrated independently so as to consider the varied units of different degrees of 

violation. Finally, the fitness function can be supplemented as: 

, , ,
1 1 1

[ ( ) ]
T n n

i j t j t j t t
t j j

Fit N t PenN PenQ PenSN
  

        (14)

(ii) Pairwise comparison 

To avoid calibrating suitable penalty coefficients, pairwise comparison is carried out to compare 

chromosomes’ objective function Ei and constraint violation Vioi, separately. According to Deb [18], 

Vioi is described as: 

, ,
1 1

= [ ( ) ]
T n

i j t j t t
t j

Vio PenN PenQ PenSN
 

   (15)

(3) Crossover operator 

Crossover operator is a major stochastic searching approach through exchanging gene information 

between chromosomes as to breed offsprings. A single-point crossover as shown in Figure 1 is adopted: 
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Figure 1. Schematic diagram of single-point crossover. 

 

Assuming chromosome i1 and i2 are chosen to be crossed over at moment tp + 1. Exchange the two 

segments of gene after moment tp + 1 entirely, which can be expressed as: 

2, , 1, ,

, , 1, ,
1, , 2, ,

1 1
' , ' 1 ~

1 1
i j t i j t

k j t k j t
i j t i j t

Chr t tp Chr t tp
Chr Chr j n

Chr t tp Chr t tp

      
            

(16)

This crossover scheme minimizes the chance of violating at its best. It can be seen from Figure 1, at 

the time horizontal axis, that if both i1 and i2 are feasible, the offspring’s water level at moments 

1~tp − 1 and tp + 2~T are inherited from feasible parents which satisfies the constraints imposed on the 

singular reservoir, i.e., constraints (5) and (6). Similarly, at the vertical axis direction, an overall 

interchange of gene segments can ensure the offsprings meet the requirement of constraints imposed 

on a multi-reservoir system as constraint (7) at the same moments, only at the moment tp and tp + 1 

may a violation occur because of random crossover. Setting the crossover probability to be 1, the child 
chromosomes 'Chr  with population size of Pop are generated after crossover. 

(4) Mutation operator 

Uniform mutation is applied as Figure 2 shown, under a mutation probability of pm to pick a 

mutation point, replace the former gene with a newly generated one: 

, , ,

, ,

, ,

( ) '
''

                          

j t j t j t

i j t

i j t

Z Z Z Rnd Rnd pm
Chr

Chr Rnd pm

      
    

(17)

where Rnd  and 'Rnd  are independent random variables which subject to uniform distribution in 

(0,1). The child chromosomes ''Chr  with population size of Pop are born after mutation. 

Figure 2. Schematic diagram of uniform mutation. 

 

(5) Selection operator 

Tournament selection is applied in choosing elitists from the parents Chr, childs 'Chr  and ''Chr  to 

enter the next generation by counting their scores in a tournament. The criteria of judging a 
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chromosome’s score is set as follows: Pick up num chromosomes randomly from the whole population 

as rivals, the score equals the rounds that a specific chromosome i wins the competition.  

Especially, if constraints are handled with a penalty function, chromosome i’s performance is 

evaluated by a fitness function, so its’ score Scri can be counted by winning in fitness: 

{ | }i i jScore Count Fit Fit j SetComp  
 (18)

If the pair-wise comparison is adopted in constraint handling, Scri will be counted under the 

predefined rules: 

{ | = =0} { > }i i j i j j iScore Count E E Vio Vio Count Vio Vio  
 (19)

(6) Termination criteria 

When the best chromosome found has survived continually for Snum  generations or evolution has 

taken place for Gen generations, the algorithm terminates and the best chromosome ChrBest is output. 

4. Dynamic Feasible Regional Genetic Algorithm (DFRGA)  

Random crossover and mutation in a traditional GA’s formation cannot guarantee the offspring to 

meet the constraints and may change feasible parents into infeasible offsprings. To overcome this 

shortcoming, we determined a dynamic feasible region of major constraints and executed the operators 

in this region. 
Suppose the crossover or mutation is to be carried at moment tp + 1 and water level (or storage 

volume) at moment tp are known. Under the requirement of satisfying constraint i during period tp, we 

can deduce moment (tp + 1)’s feasible region iFsbF .( 1~i CountC ). Likewise, supposing the state 

variable is known at moment tp+2, for satisfying constraint at period tp + 1, the feasible region FsbBi 

can be deduced reversely. Obviously, only those variables located at the intersection of FsbFi and 

FsbBi can meet both constraints at period tp and tp + 1; the region is denoted as Fsbi: 

i i iFsb FsbF FsbB   (20)

For satisfying all the constraints, the dynamic feasible region SetFeasible  is the intersection of Fsbi: 

1~
i

i countC
SetFeasible Fsb


   (21)

The hydraulic continuity relationship in a multi-reservoir system results in the correlating acting of 

reservoir’s operation strategy, which transforms related constraints into a multi-variables coupled 

situation, increasing the difficulty in determining the feasible region. Progressive optimality [26]  

is introduced to decouple the complex multi-variables: when the reservoir s is investigated, we  

hold the other reservoirs’ storage strategy, and turn the multi-reservoir coupled constraint into a  

singular-reservoir constraint which only leaves the strategy of reservoir s unknown. When changing 

the storage of reservoir s at moment tp + 1, we keep other moments’ storage unchanged and turn the 
multi-variable constraint into the singular-variable , 1s tpV  ’s constraint. Finally, only the feasible region 

of a singular variable , 1s tpV   is to be acquired. 
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4.1. Feasible Region of Singular-Reservoir Constraint 

When Vs,tp+1’s feasible region is investigated in singular-reservoir constraint, keeping the other 

reservoirs’ storage unchanged. Then the feasible region can be determined as illustrated in Figure 3 (in a 

singular-reservoir constraint scenario): 

Figure 3. Schematic diagram of feasible region in the singular-reservoir constraint scenario. 

 

Under the condition of a singular reservoir, the violated constraints generally include constraint (5) 

(outflow limits) and constraint (6) (power output limits). 

(1) Outflow limits constraint  

As the inflow Qs,tp and Qs,tp+1 are known as estimated by flow forecasting, storage Vs,tp+1’s feasible 

region can be deduced from the water balance equation: 

1 , 1 , , , , , , , ,

1 , 1 , 2 , 1 , 1 , 1 , 2 , 1 , 1 , 1

1 , 1 1 , 1 1

( ) [ ( ) , ( ) ]

( ) [ ( ) , ( ) ]

( ) ( ) (

s tp s tp s tp s tp s tp s tp s tp s tp s tp

s tp s tp s tp s tp s tp s tp s tp s tp s tp

s tp s tp

FsbF V V Q q t EL V Q q t EL

FsbB V V Q q t EL V Q q t EL

Fsb V FsbF V FsbB V



        

 

        

        

  , 1)s tp

(22)

(2) Power output limits constraint  

Hydropower output is a function of outflow; here we apply the water consumption rate function to 

illustrate the power output: 

, , , , ,( , ) min{ , ( )} / ( )j j t j t j t j t j tf q H q QM H p H
 (23)

where fj (qj,t,Hj,t) is the power output function, ( )QM   is the maximized discharge through hydraulic 

turbines, 3m /s ; ( )p   is water consuming rate function 3m /s/MW . As a result, Equation (7) can be 

transformed into following formation according to Equation (23): 

, , , , ,min{ , ( )}/ ( )j t j t j t j t j tN q QM H p H N 
 (24)

so the feasible region 2 , 1( )s tpFsb V   for satisfying the power output limits constraint is: 
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2 , 1 , , , , , , , , , ,

2 , 1 , 2 , 1 , 1 , 1 , 1 , 2 , 1 , 1 , 1 ,

( ) [ ( ( )) , ( ( )) ]

( ) [ ( ( )) , ( ( ))

s tp s tp s tp s tp s tp s tp s tp s tp s tp s tp s tp

s tp s tp s tp s tp s tp s tp s tp s tp s tp s tp s t

FsbF V V Q N p H t EL V Q N p H t EL

FsbB V V Q N p H t EL V Q N p H t EL



         

          

           1

2 , 1 2 , 1 2 , 1

]

( ) ( ) ( )

p

s tp s tp s tpFsb V FsbF V FsbB V



   

(25)

4.2. Feasible Region of Multi-Reservoir Constraint  

Constraint (7) (system load demand) may be violated by the crossover or mutation operator in a 

multi-reservoir system. Figure 4 shows the schematic diagram of its feasible region: 

Figure 4. Schematic diagram of the feasible region in the multi-reservoir constraint scenario. 

 

Taking Equation (4) into Equation (8) and turning the system load demand constraint into: 

, ,
1

( , )
n

j j t j t t
j

f q H ND



 

(26)

According to the water consumption rate function, Equation (26) can be expressed as: 

, , ,
1

min{ , ( )} / ( )
n

j t j t j t t
j

q QM H p H ND



 

(27)

Generally, when the time interval is relatively short the hydraulic head Hj,t has little variation, then 

the maximized discharge through turbines and average water consumption rate can be set as constants 

through interpolation. Equation (27) becomes: 

,
1

min{ , } /
n

j t j j t
j

q Qm p ND



 

(28)

When reservoir s is investigated, reservoirs in the whole system can be classified into two groups 

according to whether their power output can be influenced by reservoir s’s outflow. Group I, whose 

power outputs are independent of reservoir s’s outflow, include reservoirs located upstream of s or in 

parallel connection with s. In Group II, the reservoirs’ power output are influenced by s’s outflow 

(including s itself), which will be denoted by set Ωs. For reservoirs in Group I, we record the sum of 

power outputs during period tp as Nsumtp since it only contains all known constants, then reservoirs in 

Group II (Ωs) have to provide the least power output ND − Nsumtp to meet the load demand: 
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,min{ , } /
s

j tp j j tp tp
j

q Qm p ND Nsum


 
 

(29)

It can be inferred from Equation (29) that the load demand constraint confined at power output 

initially can be transformed into an outflow related constraint. For reservoir s, seeking bounds of 
released flow ,s tpq  can be converted to seeking the variation range of , 1s tpV  . 

The upper limit of qs,tp is the maximized discharge through the hydraulic turbines Qms.  

Therefore, the lower limit of Vs,tp+1 can be figured out by water balance equation as 

3 , 1 , , ,( ) ( )s tp s tp s tp s s tpFsbF V V Q Qm t EL      . The lower limit of qs,tp is the minimal discharge for 

satisfying the minimal load demand NDtp − Nsumtp. Since the lateral flows and the hydraulic heads of 

reservoirs are all known, the total power output is only affected by qs,tp, and we adopt the trial and error 

approach to calibrate it, which generally includes the following steps: 

Step 1: Assume qs,tp = 0 (the minimal value of qs,tp’s lower bound is 0). 

Step 2: Acquiring the sum of power output reservoirs in Ωs as Ncumtp, which can be expressed by:  

,min{ , } /
s

tp j tp j j
j

Ncum q Qm p


 
 

(30)

If Ncumtp ≥ NDtp – Ncumtp, the upper limit of Vs,tp+1 can be drawn with the water balance equation:  

3 , 1 , , , ,( ) ( )s tp s tp s tp s tp s tpFsbF V V Q q t EL       (31)

Then terminate the calibration. Otherwise, go to step 3. 

Step 3: Carry out statistics on the difference between maximized discharge through turbines and the 

outflow of the reservoir:  

,j j j tpqDec Qm q 
 (32)

Mark the reservoirs which have spillage through spillway in period tp as Ωspi, whose difference 

qDecj < 0. Reversely, the reservoirs haven’t spillage in period tp are marked as ΩUnspi. 

Step 4: Increase the outflow of reservoir s: 

, , ( ) / (1/ )
Unspi

s tp s tp tp tp tp j
j

q q ND Nsum Ncum p


    
 

(33)

Move to step 2. 

Similarly, the upper and lower bound of Vs,tp+1 as 
3 , 1( )s tpFsbB V 

 and 
3 , 1( )s tpFsbB V 

 can be 

determined through period tp + 1’s constraint in a reverse way.  

Finally, the feasible region of constraint imposed on multi reservoir is the intersection of the  

two parts: 

3 , 1 3 , 1 3 , 1 3 , 1 3 , 1( ) [ ( ), ( )] [ ( ), ( )]s tp s tp s tp s tp s tpFsb V FsbF V FsbF V FsbB V FsbB V     
 (34)

4.3. Modified Operators  

To breed more feasible offsprings, we carry out the crossover and mutation in the feasible region 

SetFeasible  as shown in Equation (21). 



Energies 2012, 5 2904 

 

(1) Modified crossover operator: 

2 1

1 2

, , , ,

* *
, , , 1 1, , , 1

, , , ,

1 1

' ( ) 1,    ' ( ) 1 1 ~

1 1

i s t i s t

k s t s tp k s t s tp

i s t i s t

Chr t tp Chr t tp

Chr VZ V t tp Chr VZ W t tp s n

Chr t tp Chr t tp
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      
 

          
       

 (35)

where *
, 1 , 1( )s tp s tpV SetFeasible V   and *

, 1 , 1( )s tp s tpW SetFeasible W  , *
, 1s tpV  and *

, 1s tpW   are randomly 

generated values in the feasible region. tp + 1 is the crossover point, ( )VZ   is the conversion 

function to convert storage into water level.  

(2) Modified mutation operator: 

*
,

, ,
, ,

( )
''

   
j t

i j t
i j t

VZ V Rnd pm
Chr

Chr Rnd pm

     
 (36)

where *
, ,( )j t j tV SetFeasible V  is a random value in the feasible region. 

Other procedures remain unchanged, and the fitness functions are applied to distinguish the 

differences between chromosomes. 

5. Evaluation Indexes  

To test the performance of the proposed model, we ran the stochastic algorithms Tr times 

independently in numeric experiments. Some statistic indexes have been used to evaluate the 

performances of algorithms, which include: 

(1) Electricity generation 

Average electricity generation:  

1

/
Tr

i
i

E E Tr


  (37)

Maximized deviation: 

max{ } min{ }i i
ii

E E E  
 (38)

(2) Standard deviation of electricity: 

2

1

( ) /
Tr

E i
i

E E Tr


  (39)

(3) Convergence ratio : 

{ | 1 ~ } /c iCount Slast Snum i Tr Tr     (40)

where Slasti is consecutive number of generations when the optimum keeps unchanged in ith 

experiment until termination. 

(4) Ratio of termination with feasible solution: 

{ | 1 ~ }/F i FsbCount ChrBest i Tr Tr     (41)

where ΩFsb is a set of feasible solutions. 
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(5) Average time consumption: 

1

/
Tr

i
i

TCst TCst Tr


 
 

(42)

where TCsti is the computation time of the ith experiment. 

(6) Average feasible chromosome ratio: 

The average proportion of feasible chromosomes per generation in the ith experiment is: 

,
1

/
iGen

i i j i
j

Gen 


 
 

(43)

Then the statistical average proportion in total Tr times is: 

1

/
Tr

i
i

Tr 



 

(44)

where ηi,j is the proportion of feasible chromosomes in the jth generation of ith independent 

experiment, Geni is the number of generations of the ith experiment. 

6. Case Study  

The multi-reservoir system of the Qingjiang cascades (consisting of the Shuibuya, Geheyan, and 

Gaobazhou reservoirs) and Three Gorges cascades (consisting of the Three Gorge and Gezhouba 

reservoirs), located at the middle part of Yangtze river in Hubei province of China, as shown in 

Figure 5, is the largest reservoir project system ever built in China till now. It is of great importance in 

relieving flood disaster and supplying clean energy, where it has the most typical structure as a 

complex and diverse system (i.e., it has various of regulation abilities, operational targets and districts 

coverage of energy supplying). Hence it is a representative case to explore its potential in power 

generation through optimal operation. 

Figure 5. The location map of Qingjiang and Three Gorges multi-reservoir system. 

 

To seek an optimal schedule in a 10 days’ planning horizon with an interval of 1 day, under given 

conditions of forecasted inflow, lateral inflow and load demand from the power system, the constraints 

of the reservoirs are listed in Table 1. The reservoirs keep water along the deep-narrow valley and they 
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are typical river-channel-type reservoirs. As the planning horizon is such a short period, leakage and 

evaporation losses in river-channel-type reservoirs can be negligible in this case. 

Table 1. Constraints of reservoirs in planning horizon. 

Constraints Shuibuya Geheyan Gaobazhou Three Gorge Gezhouba 

Initial Water level (m) 391.28 196.69 78.75 145.57 66 
Terminal Water level (m) 396.98 198.21 79.46 145.86 66 

Lower limit of Water level (m) 391 192 78 145 63 
Upper limit of Water level (m) 397 200 80 146.5 66 

minimal required discharge (m3/s) 0 0 0 5000 5000 
Lower limit of power output (MW) 156 94 31 2500 384 
Upper limit of power output (MW) 1840 1212 270 18200 2776 

Averagely water consuming  
rate (m3/s/MW) 

0.60 1.07 3.21 1.07 5.72 

Discharge capacity  
through turbines (m3/s) 

1190 1310 972 25900 17900 

Regulation ability multi-year annual daily seasonal daily 

GA with penalty function (PFGA), GA with the pair wise compare approach (PCGA) and dynamic 

feasible regional GA (DFRGA) are used to seek the joint optimal operation strategy of the Qingjiang 

and Three Gorges multi-reservoir system separately. To analyze the sensitivity of algorithms to 

chromosome size, we investigated three groups of population size Pop = 50,100 and 150 respectively. 

Crossover probability is set to be 1, while mutation probability is 0.1. The rivals’ size is set  

num = pop/2. Maximized generation Gen is set to be 100 and Snum = 5. The number of independent 

experiments Tr is set at 50.  

All experiments are programmed by Visual Basic 6.0 under the WINXP operating system on a 

system equipped with an Intel core 2 duo E7500 CPU and 2G of RAM. After simulations, the 

evaluation indexes in Table 2 are drawn. Table 2 shows DFRGA is better than the other two schemes 

in all indexes related to electricity generation (objective function), which demonstrates that the 

modified algorithm performs significant improvements in algorithm’s searching ability and robustness. 

Table 2. Statistical result of different GA’s schemes in numerical experiments. 

Pop Algorithm 
scheme 

Electricity generation 
(108 kWh) 

Standard 
deviation of 
electricity  
(108 kWh) 

  
(%) 

c  

(%) 
F  

(%) 

TCst  
(s) 

Average  
Maximized 
deviation 

50 
DFRGA 49.02 0.33 0.07 66 82 100 32.571 
PFGA 48.13 1.84 0.40 4 10 64 34.113 
PCGA 47.83 2.43 0.55 3 12 32 33.434 

100 
DFRGA 49.05 0.42 0.07 69 82 100 68.588 
PFGA 48.4 2.38 0.37 9 8 84 69.288 
PCGA 48.37 1.80 0.39 8 16 74 68.653 

150 
DFRGA 49.07 0.31 0.06 69 88 100 101.673
PFGA 48.54 3.18 0.51 12 12 98 105.604
PCGA 48.45 2.24 0.44 11 18 90 107.388
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We name the solution which has the median objective function among total Tr experiments as the 

“median solution”. Figure 6 shows the feasible chromosome ratio variation of the “median solution” 

during evolution. 

Figure 6. Feasible chromosomes ratio variation of “median solution” during evolution. 

 

The results of the experiments (Table 2 and Figure 6) indicate that: 

(1) The proposed DFRGA improved the optimizing ability of GAs greatly; it has increased 

electricity generated by 1.43% and 1.72% relative to PFGA and PCGA, respectively, under various 

size scenarios which may be attributed to DFRGA’s better capability for searching the feasible region. 

Additionally, by decreasing the deviation in electricity by 83.94% and 85.23% on average relative to 

PFGA and PCGA, respectively, under various size scenarios DFRGA shows a more robust and  

steady performance.  

(2) DFRGA has increased the proportion of feasible chromosomes during evolution significantly. 

Compared with other schemes, DFRGA has increased the feasible proportion by 60.17% on average. 

Searching in the feasible region assures a higher proportion of feasible chromosomes generated, which 

results in enhancing the convergence ratio by 71.33% and raising the ratio of termination with feasible 

solution by 26.33%. 

(3) DFRGA has superior performance in breeding feasible chromosomes which validates the 

effectiveness of the core improvement. As Figure 6 shows, after several generations’ evolution  

(about 20), DFRGA can reach a higher ratio of feasible chromosomes compared with the other two 

schemes, and keep a high level of enduring proportion. In contrast, PFGA and PCGA are so inferior in 

breeding feasible chromosomes and they may terminate in infeasible solutions when chromosome size 

is small. Besides, these two schemes must evolve at least 30 generations to provide a feasible 

proportion of no more than 30%.  
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(4) DFRGA has gained high efficiency in optimizing compared with the other two schemes. 

Although this algorithm introduces extra region estimation approaches, it consumes less time for an 

early convergence, as shown by Figure 6. 

Figure 7 shows the power output series of reservoirs in the “median solution”. Additionally, the 

average power output Navg denotes the average total power output of the whole reservoir system 

during the planning horizon: 

,
1 1

/
T n

j t
t j

Navg N T
 

 (45)

Figure 7. The power output series of “median solution” in different GA algorithms. 

 

Figure 7 demonstrates that the DFRGA has achieved the largest average power output in the 

planning horizon among the schemes, and reached the largest objective function. Meanwhile, the 

DFRGA has attained a most uniform power output process which reflects the effectiveness of joint 

operation in a multi-reservoir system. 

7. Conclusions  

Seeking an optimal operation strategy of reservoirs is effective in developing hydropower and 

making full utilization of water resources. When a Genetic Algorithm is adopted in handling the 

problem, the constraints of water balance equation, hydraulic continuity relationship and power system 

load demand might be violated by a stochastic evolving operator, which decreases the efficiency of 

algorithm in searching for the feasible region or even lead to a convergence on an infeasible solution 

within the expected generations. These fatal defects to block the algorithm from reaching the global 

optimal strategy. To overcome these shortages, a dynamic feasible regional genetic algorithm 

(DFRGA) is proposed in this paper. It deduces the feasible region of constraints with knowledge of 
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reservoir operation, and conduct evolving operators in the dynamic region so as to produce more 

feasible offsprings.  

The Three Gorges cascade and Qingjiang cascade reservoir system is chosen as a case to validate 

the proposed algorithm. Compared with traditional GA, results indicate DFRGA has improved the 

solution quality by an increasing power generation by 1.43%, enhanced the robustness by decreasing 

the deviation by 83.94%, and shortened the converged generations and time consumption. All of these 

demonstrate DFRGA is an efficient and robust modified algorithm in reservoir operation. 
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