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Abstract: This paper investigates the optimization of the performance of a solar powered 

Stirling engine based on finite-time thermodynamics. Heat transference in the heat 

exchangers between a concentrating solar collector and the Stirling engine is studied.  

The irreversibility of a Stirling engine is considered with the heat transfer following 

Newton's law. The power generated by a Stirling engine is used as an objective function for 

maximum power output design with the concentrating solar collector temperature and the 

engine thermal efficiency as the optimization parameters. The maximum output power of 

engine and its corresponding system parameters are determined using a genetic algorithm. 

Keywords: heat transfer; irreversibility; optimization; maximum power output; genetic 

algorithms; Stirling engine 

 

1. Introduction 

Classical thermodynamics, a field that concerns thermal equilibrium problems, involves the 

performance indices of a time-invariant system. These include, for example, efficiency, delivered 

power, and similar factors, for a quasi-static thermodynamic process. As an extension and 

generalization of classical thermodynamics, the finite-time thermodynamics, which takes time into 
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account, can be used to describe the dynamics of energy and entropy flow in a non-equilibrium system. 

Taking into consideration time-invariant quantities, such as power, refrigeration rate, power density, 

entropy production rate, and others, finite-time thermodynamics is effectively adopted to optimize the 

performance of practical systems. It has been successfully utilized in a wide range of disciplines, an 

important of which is the optimization of practical performance of thermodynamic cycles, such as the 

Carnot cycle, the Otto cycle, the Diesel cycle, the Brayton cycle, the Stirling cycle, and others.  

In 1957, Novikov [1] was the first pioneer in the field of finite-time thermodynamics, and Curzon 

and Ahlborn [2] proposed a more adequate thermal efficiency analysis for practical thermal processes, 

where the upper bound on the thermal efficiency was modified accordingly by considering the loss due 

to thermal resistance. Ondrechen et al. [3] performed a thermal analysis of a heat source of finite 

extent. In 1985, DeVos [4] extended the scope of finite-time thermodynamics using various heat 

transfer laws.  

In 1991, Angulo-Brown [5] introduced an ecological optimization criterion as an objective function 

to optimize the performance of a heat engine, taking into account the maximum output power and the 

rate of production of entropy. [5] showed that the production rate of entropy is greatly reduced by 

costing part of output power, when the optimum thermal efficiency is approximated as the average of 

the respective efficiency suggested by Carnot and that suggested by Curzon and Ahlborn [2].  

In 1991, Ibrahim et al. [6] considered irreversible parameters - the isentropic ratio of the isothermal 

processes and thus optimized the Carnot cycle by a more practical manner. Based on the assumption 

that the temperature of a gas varies linearly with the temperature of the surface of the wall of the 

cylinder that contains it, Klein [7] proposed the net output power and an optimized compression ratio 

for designing an engine with the greatest possible power output. Wu and Kiang [8] performed a finite 

heat transfer analysis to investigate the effects of a nonisentropic compression process, expansion 

process, turbine efficiency and compressor efficiency and a heat exchanger on the output power 

optimization. In 1993, Chen and Yan [9] evaluated the maximum output power with the consideration 

of the irreversible factors, which are heat leakage, finite heat transfer between the heat reservoir and 

the heat engine in the compression and expansion processes. In 1995, Ait-Ali [10] considered the range 

of operating temperatures to optimize the output power of an endoreversible Carnot engine.  

Angulo-Brown et al. [11] used the Clausius inequality to modify the parameters as well as a linear 

time-temperature relationship, and took into account the power loss, to obtain analytic solutions for 

both the output power and the thermal efficiency. In 1998, Chen et al. [12] noted that in an 

Atkinson cycle, the thermal efficiency at the point of maximum power density is always better than 

that at the point of maximum power. Chen et al. [13] also investigated the effect of heat transfer on an 

Otto cycle. In 1999, [14] proposed a generalized Otto cycle and quantified the degree of irreversibility 

in a study of performance optimization in various heat transfer modes. Lin et al. [15] also represented 

an effective method for improving heat engine performance in practical operation for a dual 

combustion cycle using the finite-time thermodynamics approach. In 2004, Hou [16] examined the 

effect of heat transfer on a dual combustion cycle. Zhou et al. [17] studied the effect of a generalized 

heat transfer law on the optimization of power output of a generalized Carnot engine with internal and 

external irreversibility. In 2007, Hou [18] proved that the expansion ratio in an Atkinson cycle exceeds 

the compressive ratio in an Otto cycle. In 2009, Lu et al. [19] applied the energy equilibrium equation 

for a collecting plate to optimize a solar power generating system, in which the efficiency of the light 
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collection unit of the solar concentrator was optimized at such operating temperature corresponding to 

the working fluid temperature. 

The finite-time thermodynamics, as its name indicates, applies in many range of fields, whenever 

heat transfer occurs in a device or a system of finite extent or within a limited period. Under some 

suitable assumptions, this work proposes a constrained model to optimize the performance of a 

practical heat engines with irreversible thermodynamic process. In finite-time thermodynamics, the 

optimization of performance indices involves the optimization of an overall system on the assumption 

of irreversibility. Comparing with the classical thermodynamics, it is more adequate when applied to 

practical applications, and is useful in studies of the best use of energy.  

This paper investigates the maximum power output design problem for a solar powered Stirling 

engine, where the thermal efficiency and solar collector temperature are considered as the design 

parameters. The heat transfer between the solar collector to the engine and the surroundings is studied 

such that the result can provide an adequate prediction for overall system thermal efficiency  

in practice. 

2. Maximum Power Analysis of Stirling Engine with Solar Collector 

The thermal model for a Stirling engine with solar collector which mainly consists of a spherical 

reflector and an absorber that acts as a heat source is shown in Figure 1 [20]. A collector, which is 

connected to an expansion chamber of the heat engine, is directly heated, and the heat is released to the 

ambient by radiation and natural convection as the surface temperature of the collector is increased. 

Figure 1. Heat flows involved in a Stirling engine with solar collector. 

 

Considering the heat loss on the collector surface and from the law of conservation of energy,  

it yields: 

    incswcswncsun qATTATThAI  44  (1) 
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The heat absorption efficiency on the collector surface is defined as: 

csun

in
collector

AI

q


  (2) 

In this model, heat is transferred to the expansion chamber, where a high conductive coefficient and 

extremely thin surface of the collector is applied such that the temperature on the interior surface of the 
expansion chamber is almost equal to that in the collector. The working fluid is considered as the ideal 

gas and the heat transfer process follows Newton’s linear heat transfer law. In each cycle, inQ  is the 

heat absorbed by the working fluid, and outQ  is the heat released to the ambient. The temperature of the 

corrector is denoted as wT  and the ambient temperature is denoted as sT . The heat from the collector to 

the Stirling engine satisfies: 

    3433432 tTTAhtTTQ wcfwin   (3) 

and the heat released by the Stirling engine to the ambient is given by:  

  1211 tTTQ sout   (4) 

where t12 and t34 are the times required for engine heat rejection and engine heat accumulation, 

respectively. T1 and T3 are the temperature of the working fluid in the isothermal heat rejection and 

addition process, respectively. 

In the isothermal and endothermic process, the entropy terms in the thermodynamic relation yield: 

dV
dT

dP
TTdS

v







  (5) 

The ideal gas equation is:  

nRTPV   (6) 

Substituting Equation (6) into Equation (5) yields: 

dV
V

nRT
TdS   (7) 

Integrating Equation (7) over states 3 and 4 yields: 

 
4

3

4

3

dV
V

nRT
TdS  (8) 

Entropy is defined as: 

revT

Q
S

int,










 (9) 

Substituting Equation (9) into Equation (8) yields: 

3

4
334 ln

V

V
nRTQQ in   (10) 

In each cycle, the incremental entropy in the working fluid inside a Stirling engine is given by:  
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genS
T

Q
S  


 

(11) 

Since entropy behaves analogously to heat, it is independent of the integration path itself. 

Therefore, the net change in entropy between the initial and final states of a complete cycle is 

identically zero:  

0
13

  gen
outin

gen S
T

Q

T

Q
S

T

Q
S


 (12) 

From the Second Law of thermodynamics:  

0genS  (13) 

The Clausius inequality yields: 

0 T

Q
 (14) 

From Equations (12) to (14):  

0
13


T

Q

T

Q outin  (15) 

Now, let: 

13 T

Q

T

Q outin


 � 1  (16) 

where   is an irreversible property of a Stirling engine, such as thermal resistance, friction, heat loss. 

Consistent with the second law of thermodynamics, such irreversible factors, which cannot be ignored, 
bring about an increase in entropy in each cycle. Given an identical amount of heat transfer inQ , for an 

endoreversible heat engine 1 , outQ  is expressed as: 

0
13


T

Q

T

Q rev
outin  (17) 

Relating Equation (16) to (17) yields: 
rev
outout QQ   (18) 

In a Stirling engine, the heat that is released to low-temperature thermal storage (cold chamber) in a 

reversible isothermal process is: 

2

1
1 ln

V

V
nRTQrev

out   (19) 

Back-substituting Equation (19) into Equation (18) yields: 

2

1
1 ln

V

V
nRTQout   (20) 

Let compressive ratio rv be defined as: 
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2

1

3

4

V

V

V

V
rv   

(21) 

Equating Equation (3) with Equation (10) and substituting Equation (21) into Equation (3) yields: 

  vwcf rnRTtTTAh ln3343   (22) 

The endothermic time of the heat engine is given by: 

 3

3
34

ln

TTAh

rnRT
t

wcf

v


  (23) 

Equating Equation (4) with Equation (20) and substituting Equation (21) into Equation (4) yields: 

  vs rnRTtTT ln1121    (24) 

The time for which the heat engine is exothermic is:  

 s

v

TT

rnRT
t




11

1
12

ln




 (25) 

Suppose that in the heat regenerating process, the temperature of the working fluid, Tfluid, varies 

linearly with time: 

1K
dt

dTfluid   (26) 

where K1 > 0, which is the average rate of change of temperature, and is independent of time but 

dependent on the material of the heat regenerator, is called the heat regenerative time coefficient: a 

positive or negative sign shows that the temperature increases or decreases with time, respectively. 

The duration of the heat regenerative process from state 2 to state 3 is:  

 
1

23
23 K

TT
t


  (27) 

Similarly, that of the heat regenerative process from state 4 to state 1 is: 

 
1

14
41 K

TT
t


  (28) 

Accordingly, time for a complete Stirling cycle is represented as: 

41342312 tttttc   (29) 

Substituting Equations (23), (25), (27) and (28) into Equation (29) yields: 
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 (30) 

In each cycle, the effective energy in a collector is: 

cinin tqQ   (31) 
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Substituting Equations (10), (21) and (30) into Equation (31) yields the total amount of heat applied 

to a Stirling engine in each cycle, which is: 
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(32) 

The thermal efficiency of a heat engine is defined as: 
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  (33) 

Substituting 
1

fh



 and 

1

2 fh
K

nRK
  into Equation (32) yields:  
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(34) 

The heat that is released to the ambient in a Stirling cycle is given by:  

c

out
out t

Q
q   (35) 

Substituting Equations (20), (30) and (33) into Equation (35) yield: 
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(36) 

The output power that is provided by a Stirling engine in a Stirling cycle is:  

inStirlingStirling qP   (37) 

From the collector temperature and the thermal efficiency, the amount of heat that is applied to the 

collector is determined using Equation (11); then, Equation (34) is solved for the endothermic 

temperature of the heat engine, which is expressed in a quadratic form as: 

 StirlingwTf
a

acbb
T ,

2

42

3 


  (38) 

where: 
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In the above three parameters, the parameter s is defined as: 
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From Equation (33), the rejection temperature of the heat engine is:  

 


 3
1

1 T
T Stirling
  (39) 

Given the collector temperature, the heat transferred from the collector to the heat engine is 

determined. Partial differentiation of Equation (34) with respect to endothermic temperature yields the 

optimized endothermic temperature:  

0
3





T

qin  (40) 
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Back-substituting Equation (41) into Equation (34) yields the amount of heat applied at the optimal 

endothermic temperature: 
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3. Results and Discussion 

For a given solar intensity, the relation between the thermal efficiency of a Stirling engine and the 

collector temperature are studied in this section. Thermal efficiency of an engine can be improved by 

either increasingg T3 of the isothermal heat addition process, or reducing T1 of the isothermal heat 

rejection process. In general, the heat rejection temperature will not fall below the ambient temperature, 

so the intended thermal efficiency can only be improved by elevating T3. Since the collector receives 

limited energy for a given solar intensity and it loses heat to the surroundings by both radiation and 

convection, a temperature upper bound will exist for the collector as well as the T3 of the thermal 

process. Also, the temperature difference between them will determine the heat been accumulated by 

the engine from the collector. In this study, a solar powered Stirling engine with the solar  

intensity = 4000 W/m2 is considered with system parameters listed in Table 1.  

Equation (1) is used to determine the heat loss from the collector to the surroundings which can be 

used to determine a reasonable heat available for the engine. Figure 2 reveals the heat loss by the 

collector with respect to collector temperature. When the collector temperature exceeds 698 K, the heat 

loss from the collector exceeds the amount of solar power can possibly been accumulated. 
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Table 1. System parameters for optimization study. 

System Parameters Values 

Solar intensity Isun = 4000 W/m2 
The upper bound of thermal efficiency 0.57 
The temperature of collector 450–698 K 
The coefficient of convection in the expansion chamber hf = 90 W/(m2·K) 
The coefficient of natural convection hn = 5 W/(m2·K) 
The product of heat transfer coefficient and heat transfer area 
between cold-end chamber to the surroundings 

α1 = 50 W/K 

Surface radiation emission rate ε = 0.12 
Boltzmann constant σ = 5.67 × 10−8 W/(m2·K4) 
Collector wall absorption rate ω = 0.9 

Degree of irreversible factor in heat engine 1 
Ambient temperature Ts = 293 K 
Collector area Ac = 1 m2 

Figure 2. Heat loss from collector to the surroundings. 

 

Figure 3 plots the output power as a function of the collector temperature at thermal efficiencies of 

0.1, 0.3 and 0.5. Figure 4 illustrates available heat for the engine for different isothermal heat addition 

process temperature T3. The maximum power available according to the optimal hot-end temperature 

determined by Equation (41) is also indicated in Figure 4. Accordingly, the output power generated by 

the engine is shown in Figure 5. Figures 3–5 reveal that a higher T3 will result higher thermal 

efficiency; however, it will also reduce the heat power been accumulated from the collector.  

Therefore, the maximum power output of the engine requires a trade-off between thermal efficiency 

and isothermal heat addition process temperature of the thermal process. Figures 6 and 7 illustrate the 

maximum output power of the engine with respect to thermal efficiency and collector temperature, 

respectively. They show that the solar powered Stirling engine will generate maximum power at a 

thermal efficiency of between 0.3 and 0.4 and a collector temperature of between 550 K and 600 K.  
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Figure 3. Engine output power. 

 

Figure 4. Available power from the collector. 

 

Figure 5. Engine output power. 
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Figure 6. Maximum engine output power with respect to thermal efficiency. 
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Figure 7. Maximum engine output power with respect to collector temperature. 

 

Table 2. System parameters for maximum output power. 

System Parameters Values 
Solar intensity (Psolar) 4000 W/m2 
Collector wall absorption rate 0.9 
Power accumulated by collector 3600 W/m2 
Collector temperature 560.4 K 
Radiation heat loss 621 W/m2 
Convection heat loss 1337 W/m2 
Collector efficiency 0.41 
The input power of heat engine 1642 W 
Thermal efficiency 0.363 
The temperature of the working fluid in the isothermal heat addition process (T3) 517.4 K 
The temperature of the working fluid in the isothermal heat rejection process (T1) 329.7 K 
The output heat of heat engine 1047 W 
The power generated by the heat engine (PStirling) 596 W 
The total power loss of the system 3404 W/m2 
Overall system thermal efficiency (PStirling/Psolar) 0.149 
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Finally, the optimum design parameters are determined using a genetic algorithm. The maximum 

output power of a Stirling engine and the corresponding parameters are determined using the Matlab 

Toolbox Genetic Algorithm Toolbox, with the output power as an objective function, and the thermal 

efficiency and the collector temperature as optimized parameters. As shown in Table 2, the simulation 

yields a maximum output power of 596 W at a thermal efficiency of 0.363 and a collector temperature 

of 560.4 K, which also confirms the expecting result from Figure 6 and 7.  

4. Conclusions 

This work adopts finite-time thermodynamics to optimize the performance of a solar powered 

Stirling engine. The genetic algorithm is used to reveal the maximum output power of a Stirling engine 

by determining the thermal efficiency, the collector temperature, and their corresponding values of the 

optimized parameters. The results of the simulation herein described can be directly applied to 

optimize the design of a practical solar powered Stirling engine. The proposed work investigates the 

maximum power output of a Stirling engine under the solar concentrated heat of 4000 W/m2. 

According to the optimal design, it reveals that maximum power can be generated if the engine is 

designed with efficiency 0.363 and temperature of collector is kept to be about 560.4 K, which can be 

achieved using a temperature regulating control loop.  
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