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Abstract: Quantum-behaved particle swarm optimization (QPSO) is an efficient and 

powerful population-based optimization technique, which is inspired by the conventional 

particle swarm optimization (PSO) and quantum mechanics theories. In this paper, an 

improved QPSO named SQPSO is proposed, which combines QPSO with a selective 

probability operator to solve the economic dispatch (ED) problems with valve-point effects 

and multiple fuel options. To show the performance of the proposed SQPSO, it is tested on 

five standard benchmark functions and two ED benchmark problems, including a 40-unit 

ED problem with valve-point effects and a 10-unit ED problem with multiple fuel options. 

The results are compared with differential evolution (DE), particle swarm optimization 

(PSO) and basic QPSO, as well as a number of other methods reported in the literature in 

terms of solution quality, convergence speed and robustness. The simulation results 

confirm that the proposed SQPSO is effective and reliable for both function optimization 

and ED problems. 

Keywords: economic dispatch; quantum-behaved particle swarm optimization; valve-point 

effects; multiple fuel options 
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1. Introduction 

Economic dispatch (ED) is considered to be one of the key functions in electric power system 

operation. The main objective of ED is to determine the optimal scheduling of power outputs for all 

generating units that minimizes the total fuel cost while satisfying all the equality and inequality 

constraints of units and system. Due to valve-point effects, prohibited operating zones and multiple 

fuel effects, the characteristics of power generating units are inherently highly nonlinear [1]. 

Multiple fuel options problem (coal, nature gas or oil) is one of the important kinds of ED problems 

and each part of the hybrid cost function implies some information about the fuel being burned or the 

operation cost of units. Taking valve-point effects and multiple fuel options into consideration, the ED 

problem can be represented as a non-smooth optimization problem, which causes difficulties in finding 

the global or near global optimization solution using conventional approaches. 

Over the past two decades, many modern meta-heuristic methods have been applied to ED 

problems, such as genetic algorithm (GA) [2], particle swarm optimization (PSO) [3], differential 

evolution (DE) [4], ant colony optimization (ACO) [5] and simulated annealing (SA) [6]. Among these 

methods, PSO has recently attracted more attention due to its rapid convergence and algorithmic 

accuracy compared with other optimization methods. 

PSO is a population based optimization algorithm, which was introduced by Kennedy and Eberhart 

in 1995 [7]. PSO is motivated by the simulation of social behaviour of animals such as fish schooling 

and bird flocking. In the conventional PSO mechanism, a swarm of individuals (called particles) fly 

within the search space. Each particle represents a potential solution to the optimization problem.  

The position of a particle is influenced by the best position (pbest) found by itself (i.e., its own 

experience) and the position of the best particle in the whole swarm (gbest) (i.e., the experience of 

neighbouring particles). 

Although PSO can converge quickly towards the optimal solution, it has difficulties in reaching a 

global optimum and suffers from premature convergence. Moreover, PSO has several control 

parameters. The convergence of the algorithm depends heavily on the value of its control parameters. 

Taking advantage of both PSO mechanism and quantum mechanics, in 2004, a new version of PSO, 

quantum-behaved particle swarm optimization, named QPSO, was proposed by Sun, Xu and Feng [8], 

which is inspired by quantum mechanics and trajectory analysis of PSO. As a quantum system is an 

uncertain system that is different from classical stochastic system in which every particle can appear at 

any position with a certain probability, the swarm can search in the whole feasible region [9]. Besides, 

unlike PSO, there are no velocity vectors for particles in QPSO, and it has fewer parameters to be  

adjusted, which makes it easier to implement. In [10–12], convergence analysis and other varients of 

QPSO have been presented. As an efficient algorithm, QPSO has been applied to many optimization 

problems, such as system identification [13], non-linear programming problems [14], power  

system [15], etc. Although Coelho et al. proposed a quantum-inspired HQPSO using the harmonic 

oscillator potential well to solve economic dispatch problems [16], Sun and Lu applied QPSO to ED 

problems [15], and Chakraborty et al. presented a hybrid QPSO to solve the ED problems [17], to the 

best of our knowledge, it has not been used yet to solve ED problems with multiple fuel options.  

In this paper, an improved QPSO namely SQPSO is proposed to solve ED problems with multiple 

fuel options and valve-points effects. In the proposed SQPSO, a new selective probability operator is 
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introduced into the updating mechanism of QPSO, which can balance the global and local searching 

abilities and enhance the diversity of QPSO. In particular, based on the selective probability operator, 

pbest and gbest are used to generate the local attractor of QPSO, with user defined selective probability, 

to enhance the local search performance. This modification on the original QPSO together with a 

recombination operator will maintain the best information of the swarm and, in the same time, 

exchange information between individuals to increase the population diversity. 

To show the performance of the proposed SQPSO, five popular benchmark functions and two ED 

problems with valve-point effects and multi-fuel options are tested. The results obtained by SQPSO are 

analyzed and compared with PSO, DE and QPSO, as well as some other optimization methods 

reported in recent literature. The remainder of this paper is organized as follows: Section 2 is the 

formulation of the ED problem and Section 3 presents the conventional PSO, QPSO and proposed 

SQPSO, respectively. Section 4 gives the experimental results. Finally, Section 5 concludes the paper. 

2. Formulation of the ED Problem 

The main objective of solving the ED problem is to minimize the total fuel cost of each thermal 

generating unit in electric power system while satisfying a variety of equality and inequality 

constraints. The total fuel cost function of ED problem is described as: 

1

min ( )
n

T i i
i

F F P



 

(1) 

where FT is the total generation cost, n is the total number of generating unit, Pi is the power of the ith 

generator and Fi is its corresponding fuel cost, which is defined by the following equation as: 

2( )i i i i i i iF P a b P c P    (2) 

where ai, bi and ci are the cost coefficients and subject to: 

1

, 1,2,......,
n

i D
i

P P i n


 
 

(3) 

min max
i i iP P P   (4) 

where PD is the total demand of the power system, Pmin 
i and Pmax 

i are the minimum and maximum output 

of the ith generation unit, respectively. 

2.1. The ED Problem with Valve-Point Effects  

A valve-point is the rippling effect added to the generation unit curve when each steam admission 

valve in a turbine starts to open [2]. This curve poses higher order non-linearity and discontinuity, 

which makes the problem of finding the optimum more difficult and increases the number of local 

minima in the fuel cost function. Considering the valve-point effects, sinusoidal functions are added to 

the quadratic cost function, which is defined by the following equation: 

2 min( ) sin( ( ))i i i i i i i i i i iF P a b P c P e f P P    
 (5) 

where ei, fi are the coefficients of generator i, reflecting the valve-point. 
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2.2. ED Problem with Multiple Fuels and Valve-Point Effects 

To give a more accurate description of the ED problem, the effects of multiple fuels resources (coal, 

nature gas or oil) should also be considered. Each segment of the hybrid cost function implies some 

information about the fuel being burned or the unit’s operation. Since the dispatching units are 

practically supplied with multi-fuel sources, each unit should be represented with several piecewise 

quadratic functions reflecting the effects of fuel type changes, and the generator must identify the most 

economic fuel to burn [2]. The number of non-differentiable points in the objective function increases 

when multiple fuels are taken into consideration. The incremental cost functions of a generator  

with multi-fuel options are illustrated in Figure 1. The ED problems with both multiple and fuels  

valve-point effects can be represented as follows: 

2 min min
1 1 1 1 1 1 1 1

2 min
2 2 2 2 2 2 2 1 2

2 min
2 1

 sin( )( ) ,      1,  

( ) sin( )( ) ,      2,  

sin( )( ) ,      ,  

i i i i i i i i i i i i

i i i i i i i i i i i i i i

ik ik i ik i i ik ik ik ik i i

a b P c P e f P P fuel P P P

F P a b P c P e f P P fuel P P P

a b P c P e f P P fuel k P P P

     

      

      max







(6) 

Figure 1. Incremental cost function of a generator with multi-fuel options. 

 

3. The Proposed SQPSO Algorithm  

3.1. Conventional Particle Swarm Optimization 

PSO is a population-based stochastic optimization algorithm, which is inspired by the social 

intelligence and movements of fishes or birds in the swarm. In PSO, each potential solution is a point 

in the search space and is called as ‘particle’. Each particle is assumed to have two characteristics: a 

position and a velocity. The target of the particles is to find the best result of the objective function. 

Initially, a population of particles is randomly generated within the search space. At each iteration, it 

stores memory of best position of each individual and best position of the whole population. By taking 

advantages of the particles’ own experience and experience of its neighbours, the particles could fly 

towards the optimal solution. 

For example, in a n-dimensional search space, the position and velocity of an individual i are 

represented as the vectors: Xi = (Xi1, Xi1,…, Xin) and Vi = (Vi1, Vi2,…, Vin). The best position for each 

particle is denoted as: pbesti = (pbest1i, pbest2i,…, pbestni) and gbesti is the best solution found in the 
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whole swarm. In standard PSO, the position and velocity of particles are updated by the following 

equations: 

         1
1 2() + ()t t t t

i i i i i iV w V c rand pbest x c rand gbest x           (7) 

   1 1t tt
i i ix x v    (8) 

where: 

xt 
i  and vt 

i  represent the position and velocity of individual i at generation t; 

w is the inertia weight parameter that controls the momentum of particles; 

c1 and c2 are positive constants, which balance the need for local and global search; 

rand() is a random number between 0 and 1. 

3.2. Quantum-Behaved Particle Swarm Optimization 

In the conventional PSO, a particle moves in the search space by the moments of its position and 

velocity. In the quantum model of a PSO, the state of a particle is depicted by wave function Ψ(x,t) [8], 

instead of position and velocity. QPSO introduces the mean best position into the algorithm and uses a 

strategy based on a quantum delta potential well model to sample around the previous best points 

Furthermore, QPSO has only one parameter, which is easier to control than PSO algorithm. Employing 

the Monte Carlo method, particles are updated according to the following equations: 

( 1) ( ) ( ) ( ) (1/ ),  if 0.5

( 1) ( ) ( ) ( ) (1/ ),  if 0.5

ij ij ij ij

ij ij ij ij

x t p t Mbest t x t In u k

x t p t Mbest t x t In u k





      

      




  

(9) 

The following gives the explication of the update Equation (9): 

(1) xij (t + 1) is denoted as the position of the jth dimension of the ith particle for the next 

generation t + 1. 

(2) Pij (t) is the local attractor to make sure SQPSO can converge, which is defined as follows: 

(1 )ij ij jp Pbest gbest     
 (10) 

where   is a random number uniformly distributed in (0,1); Mbestij is a global point, which can be 

calculated by the mean of the Pbest of all particles in the population. The definition is given is as follows: 

1 2
1 1 1

1 1 1
( ) ( ( 1), ( 1),..., ( 1))

N N N

ij i i in
i i i

Mbest t Pbest t Pbest t Pbest t
N N N  

     
 

(11) 

where N represents the population size and Pbesti is the best position of the ith particle. 

(3) In this paper, β is called the constriction-expansion coefficient, and it is linearly decreasing 

when the iteration increases: 

max min
max

t t
itNum

   
   (12) 

where itNum is the maximum iteration number, t is the current iteration number βmax = 1.0 and βmin = 0.5. 

(4) u and k are two random numbers uniformly distributed in (0,1). 
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3.3. The Proposed Quantum-Behaved Particle Swarm Optimization 

In the original QPSO, the local attractor is calculated by Equation (10), which means that the Pij(t) 

is a random position between the individual best position and the group best position. However, the 

drawback is the difficulty in maintaining the best information of the swarm, especially when the 

optimal solution is at the boundary of the problem. In [18], Jong-Bae Park proposed an improved PSO, 

which introduced a kind of crossover operation. In this operation, particles update the position with the 

exchange information of previous generation particle position and the individual best position of itself. 

In this paper, a modified QPSO is proposed, called SQPSO, which introduces a selective probability 

operator into the update mechanism when calculating the local attractor Pij(t). In SQPSO, the 

information of global best position and the whole swarm’s individual best position are used to update 

the position for the next generation. The reason behind the inclusion of the selective probability 

operator is to enable the use of recombination operator into the original QPSO which will help to 

maintain the best solution and, at the same time, exchange information between individuals in the 

whole swarm. The pseudo code for the proposed selective probability operator is given in Figure 2. 

Figure 2. The pseudo code for the proposed crossover operator of SQPSO. 

 

In Figure 2, PopNum is the number of population and Dim is the Dimensionality for each individual. 

RandPop is an individual randomly selected from the swarm. SP is the selective probability, which can 

control whether the local attractor P(i,j) is generated from individual best position or global best 

position. If rand ≤ SP, then the local attractor P(i,j) will select its value from the Pbest of the 

individual RandPop and if rand > SP, then the value of P(i,j) will select the point of global best 

position. Using the SP, P(i,j) can not only make use of the previous best swarm information but also 

increase the population diversity and consequently enhance the global search ability. The principle of the 

modification is illustrated in Figure 3 and the procedure of the proposed SQPSO is described as follows: 

(1) Initialize the population, which are generated randomly within the minimum and maximum 

output of each generator, using the following equations: 

1

2population
...

n

X

X

X

 
 
 
 
 
 

(13) 

,1, ,2 ,[ ,..., ]i i i i nX x x x
, 

min max min( )ij ij ij ijx P rand P P   
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where Xi is the ith individual of the population,(xij is the jth data vector of ith individual; Pmin 
ij  and Pmax 

ij  

are the maximum and minimum output limit values of the jth control variable. 

Figure 3. Principle of the modified of SQPSO. 

 

For the multi-fuel ED problem, the relationship between unit output and fuel type is shown in 

Figure 4, taking a 10-generator problem as an example, each unit has its minimum and maximum 

output of generation and the sum of the whole power output should satisfy the total output demand, 

and as shown in Figure 4, different range of unit output corresponds to different type of fuel. 

Figure 4. Relationship between unit output and fuel type. 

 

 

(2) Constraint handling for real power balance. Since the individuals of the population are created 

randomly and with the evolution of particles, newly generated individual may violate the 

constraints. Therefore, it is important to keep all the individual variables within their feasible 

ranges. Hence, the following procedure is adopted by the SQPSO to modify the value of new 

generated variables to satisfy the power balance constraint. 



Energies 2012, 5 3662 

 

 

min min

max min

       

      

           

if  

 if  

otherwise

ij ij ij

ij ij ij ij

ij

P x P

x P x P

x








 

 

(14) 

The amount of power balance violation is calculated by: 

1

n

i D
i

pd P P


 
 

(15) 

if pd = 0, go to step 3; if pd ≠ 0, the value of pd will be adjusted by allocating it to the output of a unit, 

which is chosen randomly from the whole set of generating units, so that the generating constraints can 

be satisfied. If the output of the chosen unit goes outside the feasible boundaries, its value should be 

modified using Equation (14). The constraints handling procedure is illustrated in Figure 5. 

Figure 5. Procedure of constraint handling of the SQPSO algorithm. 

1

n

i D
i

pd P P


 

 

(3) Parameter setting. There are two parameters in SQPSO, one is the constriction-expansion 

coefficient which decreases from 1.0 to 0.5 linearly. Another parameter is the introduced 

selective probability (SP). In this paper, the SP for SQPSO increases from 0.5 to 0.8 linearly 

using the following equation: 

max min
max

t SP SP
SP SP t

itNum


  

 
(16) 

where SPt is the value of SP at iteration t. SPmax and SPmin are maximum and minimum selective 

probability. At the early stage, the population will select more vectors from the group best position, 

which can accelerate the convergence speed. As the iteration number increases, the population will 

draw more vectors from the individual best positions to enhance the diversity of the whole swarm. 

(4) Evaluate the objective function value of each particle. 
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(5) Update pbest. Compare each particle’s objective function value with its pbest. If the current 

value is better than the pbest value, set the pbest value to the current value. 

(6) Update gbest. Determine best gbest of the swarm as the minimum pbest of all particles. 

(7) Calculate the Mbest, constriction-expansion coefficient β according to Equation (11) and 

Equation (12), respectively. 

(8) Calculate the local attractor according to the Selective probability operator proposed in  

this paper. 

(9) Update the particle’s position using Equation (9) 

(10) Check if the stop criterion satisfied? 

(11) If not, then go to step 2. 

(12) Else, the searching process is stopped. 

4. Experimental Results  

4.1. Benchmark Functions 

To verify the performance of the proposed SQPSO, five benchmark functions (Sphere, Jason, 

Griewank, Rosenbrock and Rastrigrin) listed in Table 1 are conducted. These functions are all 

minimization problems with the minimum value to be zero. The results produced by the proposed 

SQPSO are compared with that of the EGA, DPSO, HPSO, IPSO and IQPSO in [17]. EGA is a 

modified genetic algorithm with elitism and adaptive mutation probability control, and DPSO, HPSO, 

IPSO are three types of revised version of PSO. IQPSO is an improved quantum-inspired particle 

swarm optimization, which is based on the principle of quantum rotation gates. Additionally, three 

algorithms are also used in this paper for comparison, which are PSO, DE and QPSO. For PSO,  

the acceleration coefficients c1 and c2 are set to 2, and the inertia weight decreased from 0.9 to 0.4 

linearly [19]. The parameter of DE is set to F = 0.4, CR = 0.8 [20]. 

Table 1. Benchmark functions. 

Name Function Dim Range Opt 

Sphere 
2

1

1

( )
n

i

i

f x x


   
40 [−100,100] 0 

Jason 
2

2
1

( ) ( )
n

i
i

f x x i


   
40 [−100,100] 0 

Griewank 
2

3

1 1

1
( ) cos( ) 1

4000

nn
i

i

i i

x
f x x

i 

     40 [−600,600] 0 

Rosenbrock 
2 2 2

4 1

1

( ) [100( ) ( 1) ]
n

i i i

i

f x x x x




     40 [−2.048,2.048] 0 

Rastrigrin 
2

5

1

( ) [ 10 cos(2 ) 10]
n

i i

i

f x x x


    40 [−5.12,5.12] 0 

For QPSO and SQPSO, the coefficient β decreases from 1.0 to 0.5 linearly and the selective 

probability (SP) for SQPSO increases from 0.5 to 0.8 linearly. To compare the solution quality and 

convergence characteristics, 50 independent trial runs are performed for each benchmark function and 
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mean function value and best function value are recorded. In order to make a fair comparison, the 

population size is set to 80 and population dimension is 40 for all the five benchmark functions. The 

maximum iteration number is set to 5000. All the algorithms are implemented in MATLAB 2008a and 

executed on an Intel Core2 Duo 1.66 GHz personal computer. 

The numerical results in Table 2 show that the proposed SQPSO can achieve satisfactory 

performance. Specifically, both the sphere and Jason function have only one single optimal solution, so 

it is usually introduced to test the local search ability of the algorithm. From the results, it can be seen 

that the SQPSO outperforms all the other algorithms in terms of mean function value and best function 

value, which indicates SQPSO has strong local search ability. Rosenbrock is a mono-modal function 

and its optimal solution lies in a narrow area. The experimental results on Rosenbrock show that the 

mean function value of SQPSO is better than DPSO, HPSO, IPSO, PSO and QPSO. However, the best 

function value is inferior to other algorithms reported in [21]. Griewank and Rastrigrin are both  

multi-modal and they are usually used to compare the global search ability of the algorithm. As to 

Griewank, SQPSO can hit the minimum value zero and the mean function value is superior to other 

algorithms too. For Rastrigrin, both EGA and IQPSO give a better performance than SQPSO and the 

results of SQPSO are better than other methods. 

Table 2. Mean value and best value for five benchmark functions with different approaches. 

Function 

Algorithm 

f1 (Sphere) f2 (Jason) f3 (Griewank) f4 (Rosenbrock) f5 (Rastrigrin) 

Mean (Best) Mean (Best) Mean (Best) Mean (Best) Mean (Best) 

EGA [11] 
2.743 × 10−10  

(0) 

8.865 × 10−8 

(3.748 × 10−22) 

1.042 × 10−4 

(7.952 × 10−13) 

0.84  

(6.537 × 10−4) 

2.257  

(6.537 × 10−4) 

DPSO [11] 
5.403 × 10−7 

(4.532 × 10−14) 

2.595 × 10−6 

(1.173 × 10−12) 

1.322 × 10−3 

(2.167 × 10−10) 

28.094  

(1.150 × 10−2) 

28.826 

(19.899) 

HPSO [11] 
1.319 × 10−6  

(2.824 × 10−10) 

6.735 × 10−3 

(1.503 × 10−10) 

2.546 × 10−3 

(5.136 × 10−9) 

28.995  

(2.346 × 10−2) 

29.956 

(15.393) 

IPSO [11] 
1.524 × 10−7  

(3.406 × 10−11) 

1.350 × 10−5 

(2.107 × 10−10) 

2.224 × 10−3 

(1.454 × 10−10) 

27.13  

(2.339 × 10−2) 

31.906 

(15.064) 

IQPSO [11] 
1.085 × 10−23  

(0) 

2.078 × 10−23  

(0) 

3.221 × 10−7 

(0) 

2.19 × 10−2  

(2.717 × 10−9) 

0.521  

(1.075 × 10−4) 

PSO 
2.885 × 10−21  

(1.774 × 10−23) 

1.4526 × 10−21 

(4.413 × 10−24) 

8.0215 × 10−3 

(0) 

56.1057  

(12.4904) 

34.6046 

(20.8941) 

DE 
1.3727 × 10−47  

(3.9244 × 10−49) 

1.0097 × 10−30 

(0) 

3.4506 × 10−4 

(0) 

12.4830  

(6.6779) 

56.7802 

(14.9244) 

QPSO 
5.054 × 10−26  

(7.333 × 10−31) 

5.3011 × 10−30 

(0) 

8.1  

(0) 

48.4957  

(25.2717) 

25.7895 

(13.9294) 

SQPSO 
6.5759 × 10−74  

(1.8122 × 10−89) 

(0)  

(0) 

2.217 × 10−7 

(0) 

32.68016  

(14.7115) 

13.7105 

(3.9798) 

In addition, compared with original QPSO without selective probability operator, the proposed 

SQPSO demonstrates good performance for all the five benchmark functions in terms of both the mean 

function value and best function value, which indicates that the SQPSO is an effective modification  

of QPSO. 
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4.2. ED Problem with Valve-Point Effects 

A large-scale power system of 40-generating units with quadratic cost function and valve-point 

effects is being considered here. Transmission losses are ignored and the total load demand of this text 

system is 10,500 MW. The system data can be found from [1]. One hundred independent runs are 

made for each method and population size is set to 80. The stopping criterion is set to 500. The result 

obtained from SQPSO is compared with some methods in the literature including IFEP [1], 

GA_PS_SQP [22], PC-PSO [23], SOH_PSO [23], NPSO [24] ,NPSO_LRS [24], PSO-GM [25], 

CBPSO_RVM [25], ICA-PSO [26], ACO [5], APSO(2) [27], HDE [28], ST-HDE [28] and IQPSO [29]. 

In addition, in order to compare the performance of the crossover operation in [18] with the proposed 

selective probability operator. The crossover operation [18] is introduced into QPSO, namely CQPSO, 

and the performance of CQPSO can be seen in the following results. The comparison results of 

SQPSO with other methods reported in literature are given in Table 3. The best solution of the SQPSO 

is 121,434.41 $/H, which is comparatively superior to most of the methods and the mean cost is better 

than other methods as well. 

Table 3. Comparison results for ED problem with valve-point effects (40-unit system). 

Methods 
Generation cost($/H) Standard 

Deviation Minimum Mean Maximum 

IFEP [1] 122,624.35 123,382 125,740.63 NR 
GA-PS-SQP [22] 121,458.14 122,039 NR NR 
PC-PSO [23] 121,767.90 122,461.30 122,867.55 NR 
SOH-PSO [23] 121,501.14 121,853.57 122,446.3 NR 
NPSO [24] 121,704.74 122,221.37 122,995.10 NR 
NPSO-LRS [24] 121,664.43 122,209.32 122,981.59 NR 
PSO-GM [25] 121,845.98 122,398.38 123,219.22 258.44 
CBPSO-RVM [25] 121,555.32 122,281.14 123,094.98 259.99 
ICA-PSO [26] 121,422.17 121,428.14 121,453.56 NR 
ACO [5] 121,532.41 121,606.45 121,679.64 45.58 
APSO(2) [27] 121,663.52 122,153.67 122,912.40 NR 
HDE [28] 121,813.26 122,705.66 NR NR 
ST-HDE [28] 121,698.51 122,304.30 NR NR 
IQPSO [21] 121,448.21 122,225.07 NR NR 
FCASO [30] 121,516.47 122,082.59 NR NR 
CASO [30] 121,865.63 122,100.74 NR NR 
CPSO-SQP [31] 121,458.54 122,028.16 NR NR 
CPSO [31] 121,865.23 122,100.87 NR NR 
DE 121,805.56 122,142.97 122,466.75 151.88 
PSO 121,956.18 122,459.36 122,785.73 209.12 
QPSO 121,487.27 121,750.48 121,991.99 111.68 
CQPSO 121,463.39 121,732.98 121,778.74 79.38 
SQPSO 121,434.41 121,723.22 121,881.51 104.29 

The convergence characteristics of the SQPSO in comparison with PSO, DE, QPSO are shown in 

Figure 6. It is shown that PSO converges fastest among these methods while it suffers the premature 
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convergence. Besides, DE is the slowest among the four methods, as DE involves a series of mutation, 

crossover and greedy selection operators, which leads to low convergence speed and increases the 

computational time as well. QPSO and SQPSO converge at nearly the same speed, however the 

SQPSO can produce a better solution as iteration increases, which indicates stronger searching ability. 

In addition, compared with CQPSO, SQPSO can outperform it almost in all aspects, which indicates that 

the proposed elective probability operator is improved compared with the crossover operation in [18]. 

Figure 6. Convergence characteristics for total generation costs (40-uint system). 

 

The distribution of generation costs of the four algorithms for 100 runs is shown in Figure 7 which 

reflects the robustness of each algorithm. The curve of the SQPSO is at the bottom of the figure and 

stabilizes at a relatively intensive region, which means the distribution of the solution of SQPSO is 

much better than other methods. The detailed results of the best solution of DE, PSO, QPSO and 

SQPSO, for ED problem with valve-point effects are given in Table 4. 

Figure 7. Distribution of generation costs of the four algorithms for 100 runs (40-unit system). 
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Table 4. Detailed results of the best solution of DE, PSO, QPSO and SQPSO, for ED 

problem with valve-point effects (40-unit system). 

Unit 
Methods 

DE PSO QPSO CQPSO SQPSO 

P1 111.8012 113.9945 113.6426 113.9999 110.9173 
P2 111.5734 110.9343 111.9581 113.9999 111.7807 
P3 95.79661 100.748 97.56082 120.0000 97.56128 
P4 182.4958 179.1588 179.7457 179.7333 179.7005 
P5 87.27856 97.0000 88.53738 96.9999 93.37496 
P6 140.0000 140.0000 139.9981 140.0000 139.9862 
P7 300.0000 300.0000 299.989 300.0000 259.8548 
P8 285.2077 300.0000 284.9879 299.9999 284.9466 
P9 286.9856 299.9040 284.7968 293.3932 284.5976 
P10 130.0000 130.0000 130.0093 130.0000 130.0493 
P11 94.25143 94.0000 94.02522 94.0000 168.807 
P12 94.61699 94.0000 94.0286 94.0000 94.00315 
P13 125.7718 125.0000 125.0323 125.0000 214.7713 
P14 393.1819 393.9392 394.2728 394.2794 394.2986 
P15 395.1001 394.1116 394.2987 394.2794 304.61 
P16 393.7253 304.3765 394.3071 304.5196 394.2632 
P17 487.6391 500.0000 489.3179 489.2794 489.363 
P18 491.819 490.6004 489.2953 489.2795 489.5688 
P19 512.8806 513.8928 511.3082 511.2794 511.2797 
P20 511.7995 514.1406 511.3473 511.2794 511.3193 
P21 524.2502 524.3505 523.3044 523.2796 523.2616 
P22 523.9075 523.4735 523.3182 523.2796 523.3642 
P23 519.8336 529.2841 523.3638 523.2796 523.2587 
P24 527.6248 547.3133 523.3677 550.0000 523.3996 
P25 523.9776 522.9096 523.2928 523.2795 523.2836 
P26 523.2693 524.9206 523.3083 523.2798 523.2817 
P27 10.3912 10.0000 10.01133 10.0000 10.00975 
P28 10.0000 10.0000 10.08587 10.0000 10.0344 
P29 10.0335 10.0000 10.00228 10.0000 10.00645 
P30 92.73803 91.53567 90.21066 96.9999 88.52085 
P31 187.1519 190.0000 189.9984 190.0000 189.9972 
P32 189.9415 190.0000 189.9968 190.0000 189.9834 
P33 189.4094 190.0000 189.9988 190.0000 189.9822 
P34 197.3705 199.9374 199.9794 199.9999 165.321 
P35 199.2062 198.4492 199.9942 200.0000 199.9666 
P36 198.9157 200.0000 199.9942 200.0000 200.0000 
P37 109.5043 110.0000 110.0000 110.0000 110.0000 
P38 110.0000 110.0000 109.9926 110.0000 109.9984 
P39 108.1849 110.0000 109.9915 110.0000 109.992 
P40 512.3655 512.0254 511.3299 511.2794 511.2849 

Total Demand 10,500 10,500 10,500 10,500 10,500 
Total Cost 121,805.5647 121,956.1827 121,487.2762 121,463.3942 121,434.4071
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4.3. The ED Problem with Multi-Fuel Option and Valve-Point Effects 

In this section, the proposed SQPSO is applied to multi-fuel economic dispatch problem with  

valve-point effects. Transmission losses are ignored and system date can be found in [29]. The 

experimental results are also compared with other algorithms reported in literature, including 

CGA_MU [2], IGA_MU [2], ACO [5], ED-DE [32], ARCGA [33], PSO-GM [25], NPSO [24], 

NPSO-LRS [24], PSO-GM [25], CBPSO-RVM [25], APSO [27], GA [34], DSPSO–TSA [34], which 

are given in Table 5. 

Table 5. Comparison of calculation results for multiple fuel ED problems with total 

demand of 2700 (MW). 

Methods 
Generation cost ($/H) Standard 

Deviation 
Average 

CPU times Minimum Mean Maximum 
CGA_MU [2] 624.7193 627.6087 633.8652 NR 26.64 
IGA_MU [2] 624.5178 625.8692 630.8705 NR 7.32 
ACO [5] 623.9000 624.3500 624.7800 NR 8.35 
ED-DE [32] 623.8290 623.8807 623.8894 NR NR 
ARCGA [33] 623.8281 623.8495 623.8814 NR NR 
NPSO [24] 624.1624 625.2180 627.4237 NR NR 
NPSO-LRS [24] 624.1273 624.9985 626.9981 NR NR 
PSO-GM [25] 624.3050 624.6749 625.0854 0.1580 NR 
CBPSO-RVM [25] 623.9588 624.0816 624.2930 0.0576 NR 
APSO [27] 624.0145 624.8185 627.3049 NR 0.52 
GA [34] 624.5050 624.7419 624.8169 0.1005 18.3 
TSA [34] 624.3078 635.0623 624.8285 1.1593 9.71 
DSPSO–TSA [34] 623.8375 623.8625 623.9001 0.0106 3.44 
DE 623.9280 624.0068 624.0653 0.0271 0.625 
PSO 624.0120 624.2055 624.4376 0.0889 0.308 
QPSO 623.8766 623.9639 624.4163 0.0688 0.315 
CQPSO 623.8476 623.8652 623.8885 0.0151 0.318 
SQPSO 623.8319 623.8440 623.8605 0.0107 0.324 

It can be seen that SQPSO can get a minimum generation cost of 623.8319($/H), which is the best 
solution among all the methods. For the mean cost, SQPSO outperforms most of the methods expect 
for the ARCGA, which is slightly better than SQPSO, however the CUP times of ARCGA is almost three 
times that of SQPSO. When considering the average CPU time, the computational time for PSO, 
QPSO and SQPSO are at the same level, while the results of SQPSO is better than the other two 
methods. The detailed results of the best solution of DE, PSO, QPSO, CQPSO and SQPSO, for the 
multiple fuel ED problem with total demand of 2700 MW is given in Table 6. 
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Table 6. Detailed results of the best solution of DE, PSO, QPSO and SQPSO, for multiple 

fuel ED problem with total demand of 2700 MW. 

Unit 

CQPSO DE PSO QPSO SQPSO 

Output Fuel Output Fuel Output Fuel  Output Fuel  Output Fuel  
(MW) type (MW) type (MW) type (MW) type (MW) type 

P1 217.567 2 220.8058 2 220.8058 2 218.587 2 218.5939 2 
P2 211.7117 1 211.7154 1 211.7154 1 210.4723 1 211.2166 1 
P3 279.6489 1 280.7032 1 280.7032 1 280.7087 1 281.6653 1 
P4 240.5800 3 239.7713 3 239.7713 3 239.3708 3 238.9676 3 
P5 276.3749 1 277.2203 1 277.2203 1 279.6347 1 279.9345 1 
P6 239.6394 3 238.9671 3 238.9671 3 240.7144 3 239.2363 3 
P7 290.0985 1 289.0121 1 289.0121 1 290.1244 1 287.7275 1 
P8 240.8488 3 240.175 3 240.175 3 239.6396 3 239.6394 3 
P9 427.6622 3 425.4145 3 425.4145 3 423.8487 3 427.1502 3 
P10 275.8686 1 276.2151 1 276.2151 1 276.8994 1 275.8686 1 

Pd 2,700 2,700 2,700 2,700 2,700 
Total Cost 623.8476 623.928 624.012 623.8766 623.8319 

The convergence characteristics and the distribution of generation costs of the SQPSO in 
comparison with PSO, DE, QPSO are shown in Figures 8 and 9. Clearly, SQPSO converges to the 
optimal solution faster than other three methods. It can reach the optimal region only in a few 
iterations, which shows powerful global search ability. 

Figure 8. Convergence characteristics for total generation costs (multiple fuel options system). 
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Figure 9. Distribution of generation costs for 100 runs (multiple fuel options system). 

 

The results of different methods for the multiple fuel ED problems with total demand range from 
2400 to 2600 MW are summarized in Table 7. It again shows that the SQPSO outperforms all the  
other methods. 

Table 7. Comparison of calculation results for multiple fuel ED problem with total demand 

range from 2400–2600 MW. 

Demand Method 
Generation cost ($/H) Standard  

Deviation 
Average  

CPU times Minimum Mean Maximum 

2400 

DE 481.9030 481.9527 482.0231 0.0285 0.4781 
PSO 482.0807 484.1717 491.5540 2.5598 0.3625 

QPSO 481.9235 483.4540 492.6059 2.2612 0.3562 
CQPSO 481.7469 481.7711 481.7974 0.0180 0.3683 
SQPSO 481.7320 481.7440 481.7591 0.0068 0.3390 

2500 

DE 526.4154  526.4771  526.5379 0.0244 0.5156 
PSO 526.4849  527.5594  535.1762 1.3761 0.3578 

QPSO 526.3758  527.5720  534.9611 1.4797 0.3328 
CQPSO 526.2537 526.2839 526.3229 0.0187 0.3453 
SQPSO 526.2447 526.2556  526.2897 0.0079 0.3500 

2600 

DE 574.5489  574.6371  574.9653 0.0916 0.5984 
PSO 574.6194  576.0185  589.1900 2.5451 0.3515 

QPSO 574.5857  575.7198  589.1281 2.0467 0.3315 
CQPSO 574.4492 574.6538 574.7928 0.1439 0.3576 
SQPSO 574.3866 574.5076  574.7659 0.1640 0.3484 

5. Conclusions 

An improved quantum-behaved particle swarm optimization called SQPSO is proposed in this 

paper, which introduces selective probability operator into the basic QPSO. The proposed SQPSO has 
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been tested on five classic benchmark functions, as well as two ED problems with valve-point effects 

and multiple fuel options. It shows superior optimization performance in terms of the convergence rate 

and the robustness, compared with DE, PSO, CQPSO and QPSO. Additionally, SQPSO also shows 

competitive ability over other algorithms from the literature.  
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