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Abstract: Different approaches for gas path performance estimation of dynamic systems 

are commonly used, the most common being the variants of the Kalman filter. The 

extended Kalman filter (EKF) method is a popular approach for nonlinear systems which 

combines the traditional Kalman filtering and linearization techniques to effectively deal 

with weakly nonlinear and non-Gaussian problems. Its mathematical formulation is based 

on the assumption that the probability density function (PDF) of the state vector can be 

approximated to be Gaussian. Recent investigations have focused on the particle  

filter (PF) based on Monte Carlo sampling algorithms for tackling strong nonlinear and  

non-Gaussian models. Considering the aircraft engine is a complicated machine, operating 

under a harsh environment, and polluted by complex noises, the PF might be an available 

way to monitor gas path health for aircraft engines. Up to this point in time a number of 

Kalman filtering approaches have been used for aircraft turbofan engine gas path health 

estimation, but the particle filters have not been used for this purpose and a systematic 

comparison has not been published. This paper presents gas path health monitoring based 

on the PF and the constrained extend Kalman particle filter (cEKPF), and then compares 

the estimation accuracy and computational effort of these filters to the EKF for aircraft 

engine performance estimation under rapid faults and general deterioration. Finally, the 

effects of the constraint mechanism and particle number on the cEKPF are discussed. We 

show in this paper that the cEKPF outperforms the EKF, PF and EKPF, and conclude that 

the cEKPF is the best choice for turbofan engine health monitoring. 
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1. Introduction 

Gas turbine engines are highly complex systems consisting of static and rotating components, along 

with associated subsystems, controls, and accessories. They are required to provide reliable power 

generation over thousands of flight cycles while being subjected to a broad range of operating loads 

and conditions, including extreme temperature environments [1]. Performance and reliability of 

aircraft turbofan engines gradually deteriorate over their service life due to degradation of the gas path 

components such as fan, compressor, combustor, and turbines [2]. Common causes of degradation of 

the gas path components include compressor fouling, increase of the blade-tip clearance in the turbine, 

labyrinth seal leakage, wear and erosion, and corrosion in the hot sections. Foreign-object damage, 

caused by impingement of such foreign objects as birds, pieces of ice, and runway debris, will rapidly 

affect the component performance [3,4]. These physical faults lead to degradation of the health 

parameters, such as thermodynamic efficiency and flow capacity of individual gas-path components. 

Performance degradation, in turn, causes changes in the observable parameters, such as temperature, 

pressure, rotational speed, and fuel flow rate. Gas path health monitoring plays a critical role in 

improving safety, reliability, availability, and affordability. The cost-saving potential of such health 

evaluations is substantial, but only if the performance estimation are reliable [5,6]. 

Several approaches have been introduced to estimate the performance of gas turbine engines. 

Luppold proposed using a Kalman filter to estimate in-flight engine performance variations [7].  

Doel presented an assessment of weighted-least-squares-based gas path analyses [8]. Depold applied 

expert systems and neural networks to gas turbine prognostics and diagnostics [9]. Joly discussed  

gas-turbine diagnostics using artificial neural-networks for a high bypass ratio military turbofan  

engine [10]. Kobayashi proposed a hybrid neural network-genetic algorithm technique for aircraft  

engine performance diagnostics [11]. Ogaji reported a fuzzy logic approach for gas turbine fault  

diagnostics [12]. Volponi compared the use of Kalman filter and neural network methodologies in  

gas turbine performance diagnostics [13]. Dimogianoppoulos discussed aircraft engine health 

estimation via stochastic modeling of flight data interrelations [14]. Li reported a novel nonlinear 

weighted-least-squares method, combined with the fault-case concept and the GPA index for effective 

gas-turbine fault detection, isolation and quantification [15–17].  

Compared to the data-based approaches, such as the neural network and fuzzy logic, the Kalman 

filter approach utilizes all model information available, can deal with the fact faults may not be known, 

and offers better estimation accuracy. Therefore, the variants of the Kalman filter are widely used for 

gas path analysis of gas turbine engines. Brotherton presented an approach that fused a physical model 

called self tuning on-board real-time model (STORM) with an empirical neural net model to provide a 

unique hybrid model called enhanced STORM (eSTORM) for engine diagnostics based on the Kalman 

filter [18]. Volponi developed eSTORM, and provided a means to automatically tune for the engine 

model to a particular configuration as the engine evolved over the course of its life, furthermore, 
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aligned the model to the particular engine being monitored to insure accurate performance tracking, 

while not compromising real-time operation [19]. Simon D. applied constrained Kalman filtering, 

along with constraint tuning on the basis of measurement residuals, to estimate engine health 

parameters [20,21]. Litt proposed a real-time Kalman filter approach for estimation of helicopter 

engine degradation due to compressor erosion [22]. Simon D.L. developed a systematic sensor 

selection approach and an optimal tuner selection approach for on-board self-tuning engine models, 

respectively [23,24]. Kobayashi reported application of a constant gain extended Kalman filter for  

in-flight estimation of aircraft engine health parameters [25], and a baseline system based on Kalman 

filter for aircraft engine on-line diagnostics [26]. Borguet presented adaptive filters to track gradual 

deterioration and rapid deterioration [27]. Naderi proposed a nonlinear multiple model fault detection 

and isolation scheme for health monitoring of jet engines [28]. 

The piecewise-linear dynamic scheduled models, from the component-level model of gas turbine 

engine, are required for gas path health monitoring via linear a Kalman filter in the flight envelope, and 

linearization errors that decrease the accuracy of performance estimation are inevitable. The EKF 

method is often used for state estimation with the assumption of weak nonlinear Gaussian systems [29] 

in the references above, and the performance depends on how often Jacobians are updated. In practice 

the turbofan engine is a complex system with strong nonlinear and non-Gaussian noise. Recently, a 

popular solution strategy, sequential Monte Carlo sampling based particle filters, has been successfully 

used for the nonlinear and non-Gaussian state estimation problems, since it does not necessitate 

simplification of nonlinearity or any assumption of specific distributions [30–34]. Orchard presented 

the implementation of a particle-filtering-based framework for calculating the probability of blade 

cracking and the remaining useful life in a turbine engine [35]. Li introduced the particle filter into the 

application of unmanned aerial vehicle (UAV) engine fault prediction [36], and then Gerasimos 

studied and compared nonlinear Kalman filtering methods and particle filtering methods for estimating 

the state vector of UAVs through the fusion of sensor measurements [37]. Gross compared the 

performance of three nonlinear estimators—the extended Kalman filter, the sigma-point Kalman filter, 

and the particle filter—for global positioning system/inertial navigation system (GPS/INS) sensor 

fusion for aircraft navigation systems approaches [38]. The EKF algorithm is used as the proposal 

distribution for PF importance sampling to avoid the particle degeneration in [39–41]. 

For the reasons described above, variants of the PF algorithm are used for the strong nonlinear and 

non-Gaussian systems. However, the PF has not been introduced to the problem of aircraft engine gas 

path performance estimation so far, which is usually strongly nonlinear and non-Gaussian. This paper 

presents the applications of turbofan engine gas path health monitoring based on particle filters, and 

gives a systematic comparison of the estimation accuracy and computational effort of various 

nonlinear filter based approaches to gas path performance estimation. Because the EKF requires a 

computational effort that is an order of magnitude lower than that of the UKF, the proposal distribution 

in the PF is calculated by the EKF in the paper. Considering the magnitude limitation of gas path 

degradation, the constrained extended Kalman filter particle filter is developed based upon the EKPF.  

We emphasize that in this paper we are confining the problem to the turbofan engine health 

estimation in the presence of performance abrupt shifts and the gradual degradation with the cycle 

number. The performance estimation systems with Gaussian noise, non-Gaussian noise process noise 

are built up, and simulation results show that the constrained EKPF method enhances the robustness of 
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PF algorithm against poor prior information. The comparisons of the EKPF and the cEKPF on estimate 

accuracy with the less measurement numbers are carried out, and validate that the estimate capability 

of the cEKPF outperforms that of the EKPF. The experiments and analysis show that compared to the 

known filtering approaches for aircraft engine gas path monitoring, the proposed cEKPF has better 

efficiency and is more compliant to the problem of health estimates with constraints. 

This paper is organized as follows: Section 2 discusses the formulation of different nonlinear 

filtering approaches containing the EKF, the PF, and the constrained EKPF. Section 3 details the 

problem of turbofan health parameter estimation, along with the dynamic model that we use in our 

simulation experiments. Section 4 shows some simulation results based on a nonlinear turbofan model. 

We see in this section the comparison of the nonlinear filtering approaches with the respect in the 

accuracy and the computational effort. Section 5 presents some concluding remarks and suggestions 

for further work. 

2. State Estimation for Nonlinear Systems 

In this section we first review the extension of the standard Kalman filter to nonlinear systems: the 

extend Kalman filter. Then we discuss the sequential Monte Carlo sampling algorithm known as the 

PF, and present the constrained EKPF. 

2.1. The Extended Kalman Filter 

Consider the discrete nonlinear time-invariant system represented by the following form: 
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where k  is the time index, x  is the state vector, h  is the performance vector, u  is the know control 

input, y  is the measurement,  kw  is the process noise sequences,  kv  is the measurement noise 

sequences, and augx is the augment state vector. The problem is to find an estimate 1
ˆ
kh   of 1kh   given 
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(2)

The EKF has a predictor-corrector structure and involves only basic linear algebra operations. This 

algorithm for the nonlinear system of Equation (1) starts with the time update equations: 
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where the Jacobian in the preceding equation F  is given as: 
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Then the EKF performs the following measurement update equations: 
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where the Jacobian in the measurement equation H  is given as: 

 ,ˆaug kh x
H

x





 (6)

Most of the computational effort is due to the system simulation that is required for nonlinear 

equation calculation, and the system simulations that are required to obtain the Jacobians F  and H  [42].  

The estimation accuracy and computational effort of the EKF increase with the frequency of the 

Jacobian calculations. The Jacobian for the EKF is obtained by the relative perturbation approach, 

updated each step, and the requirements of real-time for gas path parameter estimation in the 

Component Level Model (CML) has been validated in previous research [29,46]. 

2.2. The Particle Filter 

The EKF reviewed in Section 2.1 is the most widely applied state estimation algorithm for 

nonlinear systems. However, there are some disadvantages of EKF including: (i) the estimation may 

fail to converge to the true state if the system nonlinearities and non-Gaussianity are severe, and (ii) 

constraints are not considered in the algorithm.  

For the turbofan engine and health monitoring model cases, Gaussianity both of the process noise or 

the measurement noise are no longer guaranteed, and thus approximate statistical solutions are needed. 

Particle filters are popular models for estimating the state of a dynamical nonlinear and non-Gaussian 

system become available on-line [30–32]. The algorithm generates a set of random samples, which is 

propagated and updated recursively to approximate the state probability density function (PDF) of  

the system. 
Assume the prior distribution of the state of a dynamical system 0( )p x , and let  0: 0 , , k kx x x  

and  1: 1, , k ky y y  denote the series of state and measurement, respectively. It approximates any a 

posteriori PDF 0: 1:( )k kp x y  by a set of particles, 0:
i

kx , and their associated weights, i
kw , in a discrete 

summation form: 
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where N  is the number of particles. The expect case for Monte Carlo sampling is to generate particles 

directly from the true posterior PDF 0: 1:( )k kp x y , which is generally unavailable. Thus we define the 

importance sampling distribution 0: 1:( )k kq x y  before sampling, and the weight i
kw  can be approximated as: 
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In the generic PF, the importance sampling distribution has the following equations: 
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With this choice and normalization, one can derive that the importance weights can be computed 

sequentially as: 
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The generic PF algorithm has a significant drawback: after a certain number of recursive steps, all 

but one particle will have negligible weights i
kw . This implies that a large computational effort which 

is devoted to updating particle is meaningless. Thus importance re-sampling is done assigning each 

particle with equal weight 1/i
kw N  whenever the effective number effN  of particles becomes less 

than a threshold value thN : 

 2

1

1
eff thN

i
k

i

N N
w


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  (11)

When thN  is close to value ,eff kN  then all particles have almost the same significance. The 

threshold value of N  is usually taken as 
2

3thN N . 

Estimation procedure of the PF algorithm is summarized as follows: 

a. Prediction step: 

1. Initialization: Generate initial particles  0 1

Ni

i
x  from a prior distribution 0( )p x ; 

2. Importance sampling: Draw prior particles,  
1

Ni
k i

x , from importance sampling 

distribution 1( | )
i i
k kp x x ; 
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b. Update step: 
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4. Effective scale: Calculate effective particle set size effN  with equation (11); 

5. Resampling: Generate the posterior particles,  
1

Ni
k i

x , based on their weights and 

resampling metric; 
6. Output: Reset 1/i

kw N , and calculate the state estimate: 
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N i
ki

k

x
x

N
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Set 1k k   and go back to step (2). 

2.3. The Constrained EKPF 

Generic PF utilizes a sequential Monte Carlo method to approximate posterior distribution by using 

a set of weighted samples, therefore, it can theoretically represent any distribution. However, the 

proposal function of the particle filter algorithm is suboptimal, and it inevitably results in a particle 

degeneracy phenomenon. The main idea of EKPF algorithm is that the EKF is employed to 

approximate the mean and the covariance of the proposal distribution for each particle, rather than with 

the initial PDF for particles in the conventional PF algorithm. The EKPF is able to introduce the latest 

observation value to amend the state transition model of particles and its amount of calculation is quite 

small. The re-sampling process of the EKPF is similar to that of the PF. The particles in the EKPF fall 

into the overlap field of the prior and the likelihood as much as possible. 

In the EKPF framework, the EKF approximates the optimal minimum-mean square error estimator 

of the system state by calculating the conditional mean of the state if given all of the observations. This 

is done in a recursive procedure by propagating the Gaussian approximation of the posterior 

distribution through time and combining it at each time step with the new observation. The posterior 

PDF is approximated at each time step as follows: 

   ˆˆ ,k k kp x y N x P  
(13)

where ˆkx  is the estimated state, and P̂  is the estimated covariance at time k  from the measurement ky . 

Each particle is updated by the EKF, and then it takes the approximated posterior PDF as importance 

sampling distribution: 
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ˆˆ, ,i i i i

k k k k kq x x y N x P   
(14)

As shown in the conventional PF and the EKPF, it does not consider constraints. The nature of 

sample based representation of the PF facilitates incorporating constraints into the estimation 

procedure [43]. Gas path health parameters of turbofan engines vary within a certain range, therefore, 

the health parameter estimation is actually a state estimation problem with constraints. Kyriakides [44] 

and Lang [45] discuss how to accept/reject the particles in the PF based on constraint knowledge. The 
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disadvantage is that it discards all the particles violating constraints, reduces the number of various 

particles and may yield poor estimations.  
An improved way to deal with constraints without completely discarding particles lying outside the 

constraint region is presented. A particle update mechanism used to handle constraints is developed in 

the EKPF framework. After the importance sampling by the EKF, each particle 1i l
kx R  is ascertained 

whether it is in the constraint region C : 
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This process enables the algorithm to modify all the particles violating constraints. Each particle is 

an M-dimension vector, elements of which have constraints themselves. If the mth element of the 

modified particle ( )i
kx m  is still not in the corresponding range [Cmin(m), Cmax(m)], then the boundary 

value is substituted for the value of the mth element and the other elements remain unchanged. The 

further adjustment expression is as follows: 

max max

min min

( ) ( ) ( )

( ) ( ) ( ) ( ) 1, ,

( )

i
k

i i
k k

i
k

C m x m C m

x m C m x m C m i N

x m else

 
  




 

(16)

All particles will be reconstructed within the constraint region after being implemented by the 

update mechanism above, and then are used for state estimate next step. Estimation procedure of the 

constrained EKPF algorithm is detailed as shown in Figure 1; it mainly includes four steps: 

initialization, PDF calculation by the EKF, state update, and particles update with constraints.  

Figure 1. Constrained EKPF algorithm procedure. 
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3. Turbofan Engine Gas Path Performance Estimation 

The engine is a high bypass ratio turbofan engine, see Figure 2. A single inlet supplies airflow to 

the fan. Air leaving the fan separates into two streams: one stream passes through the engine core, and 

the other stream passes through the annular bypass duct and then leaves. The fan is driven by the low 
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pressure turbine. The air passing through the engine core moves through the compressor, which is 

driven by the high pressure turbine. Fuel is injected in the combustor and burned to produce hot gas for 

driving the turbines. The air leaves the low pressure turbine (LPT) through the nozzle, which has a 

variable cross section area. 

Figure 2. Schematic representation of a turbofan engine. 

 

A turbofan engine mathematical model discussed in the paper consists of a number of individual 

components, each of which requires a number of input variables and generates one or more variables, 

denoted as Component Level Model (CLM). The model contains mathematical equations, maps, 

tables, etc., which describe the thermodynamic relationships between various variables in the engine. 

In the CLM, we assume combustion delay is neglected; the component characteristics are unchanged 

with the Reynolds number, and zero-dimension flow. The thermodynamic parameters in cross sections 

of each component, such as the total temperature, total pressure, flow capacity, and efficiency, can be 

calculated as in references [46–48]. The common operation of a turbofan engine in steady state follows 

flow capacity balance and power balance, and which are separated expressed as follows: 
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(18)

where 21W  is the fan core duct outlet flow capacity, 22W  the booster inlet one, 23W  the booster outlet 

one, 24W  the high pressure compressor (HPC) inlet one, 4W  the combustor outlet one, 41W  the high 

pressure turbine (HPT) outlet one, 42W  the low pressure turbine (LPT) inlet one, 5W  the LPT outlet 

one, 9W  the nozzle core duct outlet one, 16W  the fan bypass duct outlet one, 19W  the bypass duct outlet 
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one. Four cooling air streams 1HTcoolW , 2HTcoolW , 1LTcoolW , 2LTcoolW  from the HPC are separately drawn in 

to cool the turbine inlet guide vane, blade-tip of the HPT and the LPT. HTN  and LTN  are the power 

produced by the HPT and LPT, CN , TN , FN , and BN  are the power used for the HPC, accessories, 

fan, and booster, Hspool  and Lspool  are the high pressure spool efficiency and the low pressure spool 

efficiency, respectively.  

The CLM in steady state has eight balance equations, seen in Equations (17) and (18), therefore, 

there are eight guess variables used to determine the engine steady operating condition, which are low 

pressure spool speed Ln , high pressure spool speed Hn , fan blade tip pressure ratio  Ft , fan blade root 

pressure ratio  Fr , booster pressure ratio  B , compressor pressure ratio C , HPT pressure ratio HT , 

and LPT pressure ratio  LT . The common operating expressions of the CLM in steady state can be 

denoted as the following nonlinear equations: 

( , , , , , , , ) 0, 1, 2, ,8j L H Ft Fr B C HT LTf n n j          
(19)

The common operating expressions of the turbofan engine in dynamics follows the flow capacity 

balance as same as the steady state ones in Equation (17). However, the two spools powers in 

dynamics are no longer balanced as in Equation (18), so they are replaced by the following equations 

defining the rotor dynamics: 
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(20)

where HJ , and LJ  are the rotor inertias of the high pressure spool and low pressure spool. There are 

six guess variables, , , , , ,Ft Fr B C HT LT      , for the CLM in dynamics, and the current spool speeds 

are calculated via the speeds in the last step and the accelerations from Equation (20): 

( , , , , , ) 0, 1, 2, ,6j Ft Fr B C HT LTf j          
(21)

The nonlinear expressions both in steady state, Equation (19), and dynamics, Equation (21), are 

solved via Newton-Raphson approach. Iterative solution of nonlinear equations each step stops once 

one of the following conditions is satisfied: the maximum iteration number equals 10, or the iteration 

error is less than 0.01. The core rotating component efficiency/flow capacity is usually used to 

represent the aircraft engine gas path performance, seen in Table 2, the degradations of which are 

denoted as health parameters as follows: 

,

,

1 1, 2,3, 4

1 1, 2,3

i
i

i r

j
j

j r

SE
SE i

SE

SW
SW j

SW

   

     

(22)

The health parameters and health parameter degradations are modeled in the CLM for the problem 

studied in the paper. The CLM is written using C language and packaged with dynamic link library 

(DLL) for use in the Matlab environment [47,49]. The outputs of function in DLL are the 
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measurements, shown in Table 3, and the inputs consist of height, Mach number, Wf , 8A , health 

parameters, and the noise. The CLM balances flow capacity (power) equations of the system is at a 

rate of 200 Hz, and the sampling frequency used for the nonlinear model health monitoring is 50 Hz. 

The discretized time invariant equations that model the turbofan engine from the dynamic CLM can be 

summarized as follows: 

,1
, 1

,1

( , , , )

( , , )

x kk k k k ond
aug k

p kk k

k k k k k

wx f x h u c
x

wh h

y h x h u v






     
             

  
 (23)

where u is the 2-element control vector, [ , ]L Hx n n  the 2-element state vector, 

1 1 2 2 3 3 4[ , , , , , , ]Th SE SW SE SW SE SW SE         the 7-element performance vector, ondc  the  

2-element environmental vector, and y  the 9-element measurement vector [29,46]. The rapid 

degeneration and the gradual degeneration to the components are separately injected over time. 
Between measurement times their deviations can be approximated by the zero mean noise ,h kw , and kv  

represents measurement noise. Nonlinear filtering approaches can be used with (23) to estimate the 
augment state vector ,aug kx .  

The controls, health parameters, and measurements are summarized in Tables 1–3, along with their 

values at the design operating point considered in this paper, which is at sea level static conditions 

( 0 km,  0H Ma  ). Table 3 also shows typical standard deviations for the measurements, based on 

experience, which are both used in the CLM and the estimators to build up the measurement noise 

covariance. Sensor dynamics are assumed to be high enough bandwidth that they can be ignored in the 

dynamic equations. 

Table 1. CLM turbofan model controls and nominal values. 

Control Acronyms Nominal values 

Fuel flow Wf  2.5 kg/s 
Variable nozzle aera 8A  0.54 m2 

Table 2. CLM turbofan model health parameter, nominal value, standard deviation and 

degeneration maximum. 

Augment state Acronyms Nominal value Standard deviation Deteriorate maximum (%) 

Fan airflow capacity 1SW  1 0.0005 −3.65  
Fan efficiency 1SE  1 0.0005 −2.85 

HPC airflow capacity 2SW  1 0.0005 −14.1 
HPC efficiency 2SE  1 0.0005 −9.4 

HPT airflow capacity 3SW  1 0.0005 2.57 
HPT efficiency 3SE  1 0.0005 −3.81 
LPT efficiency 4SW  1 0.0005 −1.08 
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Table 3. CLM turbofan model measurements, nominal values, and standard deviation. 

Measurement Acronyms Nominal values Standard deviation 

Low pressure spool speed Ln 3771 RPM 0.0015 
High pressure spool speed Hn 10241 RPM 0.0015 

Fan exit pressure 13P 172253 Pa 0.0015 
HPC inlet temperature 24T  707 K 0.002 

HPC inlet pressure 24P  344505 Pa 0.0015 
HPC exit temperature 3T  1078 K 0.002 

HPC exit pressure 3P  2940997 Pa 0.0015 
LPT exit temperature 5T  1086 K 0.002 

LPT exit pressure 5P  159367 Pa 0.0015 

4. Simulations and Analysis 

In this section, the nonlinear filtering approaches discussed in this paper, and used for gas path 

performance estimation, are validated using Matlab. The normal operating parameters of the turbofan 

engine are depicted in Tables 1 and 3. Gaussian noise whose magnitude is specified in Table 3 is added 

to the clean simulated measurements to make them representative of real data. Two types process noise 

with the same covariance in Table 2, Gaussian distribution and Rayleigh distribution, are separately 

introduced to build up the Gaussian system and the non-Gaussian one. The PDF of Rayleigh 

distribution is as follows: 

2

2 2
exp 0

( ) 2

0 0

x x
x

f x

x

 
  

     
 

 (24)

The mean and covariance of Rayleigh distribution are separately 24
,

2 2

   , and this type 

process noise introduced into the system is a non-zero mean. In order to avoid health parameter 

degeneration estimates influenced by the non-zero mean process noise, the PDF of Rayleigh 

distribution is moved left with 2

 . 

The engine’s health parameters are initialized to the values shown in Table 2. Considering  

foreign-object damage to the engine, rapid degradations are carried out. The following rapid faults are 

simulated at 1 second: (1) −9% on SE2, (2) −3% on SE1, −9% on SE2, and 3% on SW3, which are 

labeled fault 1 and fault 2, respectively. Engine wear due to normal operation, gradual degeneration, is 

also simulated by linearly drifting values of nearly all health parameters, starting from 1 and with the 

maximum degradation in Table 2 at the end of the sequence. Both in the PF and the constrained EKPF 

(cEKPF) framework, the number of particles is 50. The constraint value of each health parameter is set 

to more than 10% of its deteriorate maximum. 

4.1. Rapid Deterioration Simulations  

Rapid faults simulations with the three algorithms namely the EKF tool, the PF tool, and the cEKPF 

tool—are presented and discussed. Figure 3 depicts the health parameters estimation, in the case  
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of −9% on SE2 at 1s, with the three tools in the Gaussian system. As can be seen from Figure 4, three 

health parameters separately track the performance shifts well in the Gaussian system under the  

Fault 2 conditions.  

Figure 3. Health parameters estimation with Gaussian noise under the Fault 1. (a) The 

EKF; (b) the PF; (c) the cEKPF.  
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Figure 4. Health parameters estimation with Gaussian noise under the Fault 2. (a) the EKF; 

(b) the PF; (c) the cEKPF. 
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In order to compare the EKF, the PF, and the cEKPF more rationally, the process noise covariance 

matrices Q and measurement noise covariance matrices R are the same in three algorithms, 

respectively. The quality of the estimation performed by the three tools is assessed in terms of the 

estimation mean error ( ME ) and its standard deviation ( SD ) over the last 2 s of the sequence  

(100 samples): 
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(25)

where ( )h m  is the true magnitude of deterioration of the mth element of the health parameters, and 
401,  500s eD D  . 

Table 4 reports the figure of merit defined by Equation (25) for the different fault-case with 

Gaussian noise that have been considered in the present study. For the rapid deterioration of Fault 1 

and Fault 2, both the EKF and cEKPF perform a better accurate tracking of the engine conditions than 

the PF, which is confirmed by their estimation mean errors in Table 4. The health parameters estimated 
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with the PF jump seriously in Figure 3(b) and Figure 4(b), and its standard deviations are almost the 

biggest one compared to other two tools, as seen from the Table 4. Bold numerical values correspond 

to the statistical characteristics of the degraded health parameters.  

Table 4. Mean error and standard deviation of the estimation with Gaussian noise. 

  Fault 1 Fault 2 

  EKF PF cEKPF EKF PF cEKPF 

ME  
(10−4) 

SE1 −4.42 52.53 0.55 2.89 3.03 −2.88 

SW1 8.47 7.52 0.75 8.12 16.38 8.97 

SE2 0.08 −3.29 4.27 −1.28 −1.95 1.81 

SW2 7.74 5.54 4.79 8.20 12.25 11.49 

SE3 −11.22 −34.73 −14.07 −8.56 7.71 −8.23 

SW3 −2.17 −4.04 −5.28 −2.51 −5.27 −5.26 

SE4 −3.08 17.28 −4.49 −3.02 −24.76 −4.98 

SD  
(10−3) 

SE1 1.65 9.54 5.52 1.46 12.63 4.69 

SW1 0.89 4.39 2.41 1.27 4.36 2.18 

SE2 0.96 4.41 2.86 0.88 5.54 2.70 

SW2 1.05 4.19 2.04 1.03 5.24 2.39 

SE3 0.96 6.28 3.07 1.13 7.25 3.25 

SW3 0.81 2.60 1.55 0.97 3.26 1.61 

SE4 1.11 5.01 2.96 1.14 5.31 2.91 

Figure 5 show the health parameters estimation, in the case of −9% on SE2 at 1 s, with the three 

tools in the nonlinear Gaussian system. We can see from the Figure 5(a) that the health parameters SE1 

and SE2 shift to 5% and −10% at nearly 2 s and then drift away, while the remaining health parameter 

delta values drift from zero. The estimated health parameter SE2 delta is about −9%, and the others 

about the zero, as shown in Figure 5(b) and Figure 5(c). Therefore, both the PF and the cEKPF can 

represent the engine conditions well, while the EKF produces misdiagnostics in the non-Gaussian 

system under the Fault 1 conditions. In Figure 6, the three degraded health parameters are tracked well 

both with the PF and the cEKPF, except the EKF. 

Figure 5. Health parameters estimation with non-Gaussian process noise under the Fault 1.  

(a) The EKF; (b) the PF; (c) the cEKPF. 
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Figure 6. Health parameters estimation with non-Gaussian process noise under the Fault 2.  

(a) The EKF; (b) the PF; (c) the cEKPF. 
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Table 5 presents mean error and standard deviation of the estimation defined by Equation (25) for 

the Fault 1 and the Fault 2 in the non-Gaussian system. For the rapid deterioration of the two fault 

modes with the non-Gaussian process noise, the cEKPF performs the most accurate estimation, then 

the PF, while the EKF fails in the estimation. It is confirmed by their estimation mean errors and 

standard deviations, especially the degraded health parameters that are indicated in bold in Table 5.  

Table 5. Mean error and standard deviation of the estimation with non-Gaussian noise. 

  Fault 1 Fault 2 

  EKF PF cEKPF EKF PF cEKPF 

ME  
(10−3) 

SE1 122.72 1.32 −1.01 86.97 2.23 −1.62 

SW1 43.90 −0.11 −0.43 37.75 0.44 0.11 

SE2 −21.78 −1.95 −0.82 −19.28 −1.68 −1.16 

SW2 −6.84 0.04 0.07 −5.57 −1.66 0.03 

SE3 16.68 −2.44 −2.30 2.34 −2.10 −1.16 

SW3 20.32 −0.42 −1.41 16.99 −1.29 −1.23 

SE4 28.04 0.45 −1.46 20.85 −1.91 −1.74 

SD  
(10−2) 

SE1 4.32  0.97  0.60  1.52  0.67  0.53  

SW1 1.50  0.45  0.20  0.63  0.39  0.24  

SE2 0.61  0.42  0.28  0.31  0.41  0.25  

SW2 0.30  0.44  0.24  0.17  0.39  0.22  

SE3 0.25  0.70  0.32  0.20  0.60  0.31  

SW3 0.71  0.28  0.16  0.43  0.28  0.15  

SE4 0.85  0.57  0.30  0.51  0.48  0.29  

4.2. Gradual Degeneration Simulation 

Gradual degeneration of a turbofan engine is simulated by linearly drifting values of nearly all 

health parameters, starting from their nominal values and with the following degradation at the end of 

the sequence (6,000 cycle number): −2.85% on SE1, −3.65% on SW1, −9.4% on SE2, −14.1% on 

SW2, −3.81% on SE3, 2.57% on SW3, −1.08% on SE4. There are 21 steady operating points in the 

whole degradation range. Figure 7 and Figure 8 separately show the estimation performance of the three 

nonlinear filtering methods under the gradual degradation with Gaussian noise and non-Gaussian noise.  
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The health parameter degeneration value in the Gaussian system can be estimated with the EKF, the 

PF, and the cEKPF, while the PF performs less accurate tracking than the others, as shown in Figure 7. 

When the Rayleigh distribution noise is introduced to the model, the estimation performance with the 

EKF is obviously decreased compared with Figure 7(a) and Figure 8(a). Table 6 shows the estimation 

error square sum of 21 steady operating points in the whole degenerate range. In Table 6 we can see 

that the performance of the PF and the cEKPF will not be much change with the various process noise. 

Figure 7. Health parameters estimation with Gaussian noise under the gradual degradation.  

(a) The EKF; (b) the PF; (c) the cEKPF. 

0 1000 2000 3000 4000 5000 6000
-0.16

-0.12

-0.08

-0.04

0.00

0.04

Cycle number


h

SE1
 SW1
 SE2
 SW2
 SE3
 SW3
 SE4

 

 

 
0 1000 2000 3000 4000 5000 6000

-0.16

-0.12

-0.08

-0.04

0.00

0.04

Cycle number

  
h

 SE1
 SW1
 SE2
 SW2
 SE3
 SW3
 SE4

0 1000 2000 3000 4000 5000 6000
-0.16

-0.12

-0.08

-0.04

0.00

0.04

Cycle number

SE1
 SW1
 SE2
 SW2
 SE3
 SW3
 SE4

h

 

 

(a) (b) (c) 

Figure 8. Health parameters estimation with non-Gaussian noise under the gradual 

degradation. (a) The EKF; (b) the PF; (c) the cEKPF. 
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Table 6. Estimation error square sum at the steady state (10−2). 

 EKF PF cEKPF 

Gaussian system 6.74 7.61 6.85 
Non-Gaussian system 21.66 8.19 6.93 

4.3. Computational Load 

A computational load analysis was performed using simple Matlab profiling tools. Specifically, a 

unit-less computation load factor was determined by normalizing the Matlab m-file run time with the 

duration of operating data filtered. The computational time average of 20 tests is calculated, and the 

results are summarized in Table 7. 
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Table 7. Computational effort of the EKF, the PF, and the cEKPF. 

 System with Gaussian noise System with non-Gaussian noise 

 Fault 1 Fault 2 Fault 1 Fault 2 

EKF 7.7 7.7 7.8 8.3 
PF 27 26.7 29 30.3 

cEKPF 23 21.8 27.2 26 

As indicated, the EKF requires a significantly less load than both the PF and cEKPF no matter 

whether Gaussian noise is injected into the system, although it performs poorly tracking the engine 

conditions in the non-Gaussian system. The PF and cEKPF load are heavily dependent on the number 

of particles used, however, the cEKPF consumes less time for estimation compared to the PF. 

4.4. Potential Effect 

The turbofan engine gas path health parameters are estimated by nonlinear filter approaches with all 

nine measurements in Table 3 in the simulation above. While the number of available sensors for gas 

path analysis might decrease in practice, i.e. one sensor failure. The following experiments that health 

parameters are estimated with eight measurements are carried out, and used to make comparisons of 

the EKPF and the cEKPF. Figure 9 show that the health parameter estimates, in the case of Fault 1, 

with all measurements except the sensor P5 in the Gaussian system by the EKPF and the cEKPF. As 

can be seen from Figure 9(a), the estimate of SE2 decreases to about −0.09 before 2s, and other health 

parameters are nearly unchanged, which are consistent with the Fault 1. However, in Figure 9(b) there 

are three health parameter estimates, SE2, SE3, and SE4, drifting from zero after 1s, false estimates are 

done via the EKPF.  

Figure 9. Health parameters estimation with all measurements except P5 in Gaussian 

system under the Fault 1. (a) The cEKPF; (b) the EKPF. 
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Table 8 represents the mean error sum of the health parameter estimates, 
7

1
( )


 m

SME ME m , 

with all measurements except one sensor in turn in the Gaussian system. We can see that the health 

parameter estimations can’t be implemented via the EKPF under three conditions of sensor selection: 

all measurements except nL, except P13, or except T24, respectively. Although the estimates are 

convergent and the MSE can be calculated by the EKPF under the remaining six sensor selected 
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condition, the MSE are much bigger than that by the cEKPF. Therefore, compared to the EKPF, the 

cEKPF is an effective estimator and can be still used for gas path health monitoring with one  

less sensor. 

Table 8. Estimation error square sum with the eight measurements in Gaussian system. 

 nL nH P13 T24 P24 T3 P3 T5 P5 

EKPF x 0.875 x x 1.001 0.632 0.284 1.552 0.909 
cEKPF 0.276 0.207 0.188 0.195 0.193 0.187 0.191 0.198 0.196 

The particle number is an important parameter in variants of the PF algorithm, and the estimate 

accuracy and computational load rest with the particle scale. Table 9 shows the comparisons of 

estimate performance with nine measurements by the cEKPF under three particle scales: N = 30, 

N = 50, and N = 100. We can make some interesting observations from the Table 9, the SME decrease 

and the computational load steadily increase as the particle number increases from 30 to 100 both 

under Fault 1 and Fault 2. Compared to the particle number increase from 30 to 50, there does not 

appear to be evidently any improvement in the estimation accuracy when the number goes from 50 to 

100. The particle number equal to 50 is reasonable in this case for gas path health monitoring. 

Table 9. Comparisons of estimate performance by the cEKPF under different particle scales. 

 Fault 1 Fault 2 

 N = 30 N = 50 N = 100 N = 30 N = 50 N = 100 
SME(10−2) 0.366 0.343 0.342 0.472 0.438 0.432 

Time(s) 14.1 23 40.8 14.1 21.9 40.3 

5. Conclusions and Future Work 

Within this study, a widely used nonlinear estimation method, the particle filter based on Monte 

Carlo sampling algorithms, is implemented for gas path performance monitoring for turbofan engines. 

Because of particle degeneracy in the generic PF framework, the EKF is introduced to use the latest 

observation value to amend the state transition model of particles and its amount of calculation is not 

big. Considering the degradation magnitude of health parameters is within a certain range during the 

on-wing cycle, the constrained strategy of particle update is designed and combined with the EKPF, 

and then the detailed constrained EKPF is proposed and presented. 

This paper has compared the three nonlinear filters based estimation approaches, the EKF, the PF, 

and the constrained EKPF, for the evaluation of turbofan engine gas path health. The health monitoring 

system with Gaussian noise and non-Gaussian noise (Rayleigh distribution process noise), keeping the 

same process noise variances, are set up separately. The accuracy and computational load under the 

different cases of abrupt faults and gradual degradation are used to evaluate the three filtering methods. 

Compared to the EKF, the PF and the cEKPF perform with more adaptability to the non-Gaussian 

system. According to the experiments on health parameter estimates with less measurements, we can 

see that the effect of cEKPF is obviously much better than that of the EKPF. The particle number 

influenced to the estimate accuracy and computational effort is discussed in the cEKPF, and the better 
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particle scale for gas path health monitoring is selected. The improvements brought by the EKF with 

constrained mechanism to a generic PF have enhanced the computational effort of the PF algorithm. 

In summary, the proposed cEKPF is an effective way to estimate health condition for complicated 

machines with undetermined noise. The non-Gaussian system is defined as the system with the 

Rayleigh distribution process noise in present paper, while the non-normal distribution process noise, 

the non-normal distribution measurement noise, or both of them introduced to the system will produce 

the non-Gaussian system. Therefore, it would be interesting to see how the conclusions of this paper 

might change with the other forms of non-Gaussian system. 
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