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Abstract: A previous article has presented the members of the asymmetrical interleaved
dc/dc switching converters family as very appropriate candidates to interface between
photovoltaic or fuel cell generators and their loads because of their reduced ripple and
increased current processing capabilities. After a review of the main modeling methods
suitable for high-order converters operating, as the asymmetrical interleaved converters
(AIC) ones, in discontinuous current conduction mode a full-order averaged model has
been adapted and improved to describe the dynamic behavior of AIC. The excellent
agreement between the mathematical model predictions, the switched simulations and the
experimental results has allowed for satisfactory design of a linear-quadratic regulator (LQR)
in a fuel-cell application example, which demonstrates the usefulness of the improved
control-oriented modeling approach when the switching converters operate in discontinuous
conduction mode.
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1. Introduction

DC-to-DC switching converters are frequently used to adapt the voltage and current levels provided
by power generators, such as fuel cells or photovoltaic modules, to the ones required by electrical loads.
Large switching ripples at the converters’ input current reduce the efficiency of the photovoltaic
generation and shorten the life expectancy of fuel cells. Adding input filters to the switching stages [1]
or using conventionally interleaved converters [2] are some well known procedures to reduce the
detrimental ripple amplitudes of the currents requested by switching converters from power generators.
Conventional interleaving is the parallel connection of N identical switching stages whose control
signals and subsequent current ripple waveforms are uniformly phase-shifted over the switching period.
The resultant harmonic cancellation lowers ripple amplitudes by raising the effective switching
frequency without increasing switching losses or device stresses [2]. In addition to these interleaving
benefits, since the aggregated current is evenly shared among the parallelled stages, high amounts
of power can be processed. However, specific current control strategies are required in conventional
interleaving to ensure an even sharing of the current among the parallelled power modules [3–5].
Without these sharing control strategies [6], small inequalities between converter parameters in addition
to a bidirectional current implementation of the switches result in large circulating currents associated
with high losses and stresses in power inductors and semiconductor devices. The use of unidirectional
current switches without current sharing control strategies could also have severe drawbacks such as the
appearance of discontinuous conduction modes (DCM) [1]. In this case, one of the modules frequently
operates in continuous conduction mode (CCM) and processes the largest amount of power, while the
rest of the paralleled modules, being in DCM, transfer very small amounts of power from the generator
to the load.

The asymmetrical interleaved converters (AIC) presented in [7] are a particular case of interleaving
in which the inputs of two non-identical unidirectional converters are connected in parallel and an
open-loop straightforward control strategy consisting in the complementary activation of the converter’s
switches is enforced. The breaking of the symmetry results in one of the stages to operate in CCM and the
other in DCM but the specific form in which the non-identical converter’s outputs are connected causes
that a significant fraction of the input current is processed by the DCM phase. The simplicity of the
open-loop control strategy required to obtain a partial input current sharing in addition with a significant
reduction in the amplitudes of input and output current ripples are some of the advantages of the recently
reported new high-order family of converters. Since discontinuous conduction modes are inherent to
the AIC family, closing a regulation loop requires using specific modeling techniques that are reviewed
in Section 2 from which the revised averaging method [8] has been selected as the most suitable one.
The application of the revised averaging method to the boost derived asymmetrical interleaved dual boost
(AIDB) converter is detailed in Section 3. However, as it will be seen in Section 4, the high-order of the
converter and the simultaneous coexistence of continuous and discontinuous conduction have required
an improved modeling approach that provides better agreement between the frequency responses of
the model and the simulated switching converter. The results of applying the new modeling approach
to the remaining members of the AIC family [asymmetrical interleaved dual buck-boost (AIDBB) and
asymmetrical interleaved dual flyback (AIDF)] are provided in Section 5. Section 6 shows an example
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of multivariable control design that uses the model previously obtained in Section 4. Finally, conclusions
and some proposals for future studies are discussed in Section 7.

2. DCM Modeling Review

Power converter’s usual modeling produces detailed continuous-time nonlinear time-varying models
in state-space form. Since reasonable approximations such as neglecting dynamics above the switching
frequency are usually made, these models could have rather low orders [9], but they could still
be too detailed and difficult to work with. Therefore, the obtention of simplified and preferably
time-invariant approximated models has been object of intensive research. The two main systematic
ways to obtain the desired simplifications are averaging and sampled-data modeling. By excluding
detailed switching intricacies in case of averaging approaches or by focusing on cycle-to-cycle behavior
in case of sampled-data modeling, both methods can produce time-invariant but still nonlinear models.
In comparison with converters in CCM, converters in DCM are characterized by the presence of
internally controlled switching instants which results in additional topologies and complicate their
modeling. Since most of the time the modeling methods applied to converters operating in DCM are
a specialization of the CCM methods, DCM modeling methods can also be classified in reduced-order
and full-order models. Focusing in DCM that, like in AIC converters, affect an inductor current, the main
contributions in these two categories are discussed in next subsections. Analysis of less-common DCM
can be found in [10,11].

2.1. Reduced-Order Models

The most referenced reduced-order model is [12] in which the authors view DCM modeling as a
particular case of the state-space averaging CCM modeling described in [13]. The space-state averaging
method is applied considering DCM converters as having three states with additional constraints that
take into account the inductor current particular behavior. In the averaged three state system of
equations, since the inductor current becomes always zero at the DCM subinterval, the time-derivative
of the inductor current is considered to be null and the corresponding static equation is removed.
This method considers that the inductor current is no longer a true state variable in DCM. In [14],
this method was used to modeling the small signal behavior of the pulsewidth modulation (PWM)
controlled Cuk converter operating in DCM. Since the analyzed Cuk converter had two inductors and
two capacitors, two constraints were considered, one for each inductor current. A similar procedure
applied to the single-ended primary-inductor converter (SEPIC) provided also third order small-signal
transfer functions in [15]. More recently, some inconsistencies in the use of variables when using the
state-space averaging method [12] have been revised in [8,16]. Since the corrections in averaging and
duty-cycle constraints can yield also full order models, the revised averaging approach will be discussed
with more detail in Subsection 2.2.

In the slow-fast variables approach [17,18], the converter state variables are partitioned into slow and
fast ones, from which the averaged model is obtained in three steps. In DCM, the inductor current is
considered a fast variable. This method provides the same reduced-order models obtained by using the
classical averaging method but without the inconsistencies in the inductor current averaging calculation.
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This method is not applicable to all converters because of the need for a period-one analytical solution
of the relaxed fast subsystem. Non-periodic solutions of the fast subsystem exhibiting components at
frequencies lower than the switching one significantly affect the slow subsystem.

Circuit averaging has also been proposed for modeling DCM converters in [19], where the resulting
averaged model is the same reduced-order method provided by the previous methods. However, as it
is shown in [8], reduced-order models predict responses that, in comparison with those obtained from
switched simulations, exhibit significant discrepancies at high frequencies that are specially large in the
phase plots.

2.2. Full-Order Models

Full order methods improve the model approximation to the converter real behavior at high
frequencies. The method reported in [10] is based on the definition of an equivalent duty ratio m as
a function of the actual duty ratio d. This equivalent duty ratio m is a load dependent function that is
used instead of d in the CCM averaged model from were a small-signal ac model is derived. Therefore,
the order of the model is the same as the order of the CCM state-space averaged model. Also, the
zeroes of the control-to-output transfer function, including right-half plane (RHP) zeros if there are any,
are the same in DCM than in CCM, exhibiting the same dependence on the circuit parameters and DC
conversion ratio.

The approach proposed in [20] to obtain a full order model is to modify a previous CCM model of the
PWM switch [20] by adding small-signal damping resistors. A debate on the correctness of this model
attempting to replace the switching part of PWM converters without including information on the voltage
across the DCM inductor was published in [21]. The switch model in [20] is referred to as c-PWM
model in [22,23], where the alternate p-PWM and a-PWM models are proposed to facilitate the analysis
of those converters whose PWM-switch-cell common terminal corresponds to the model. Interestingly
in [23], converters in CCM can be analyzed by using particular simplified cases of the DCM switch
models. Similarly, the unified switched inductor model (USIM) [24] considers that CCM is a limit or
special case of DCM. Applying a geometric approach to obtain the relationships between the average
inductor current and its peak value, a basic equivalent circuit of the switched inductor independent of the
topology is constructed. It is claimed in [24] that when tested in large and small signal simulations, the
model automatically follows CCM and DCM operation with fewer convergence problems in comparison
with previous simulation models. A small-signal circuit model made of controlled current sources, an
independent voltage source and resistors, where the principle of energy conservation was used to take
into account transistor and diode parasitic resistances and the diode threshold voltage, was presented
in [25]. This DCM circuit model that includes parasitics was applied to the analysis of a DCM boost
converter whose control-to-output transfer function, input-to-output voltage transfer function, input and
output impedances were derived. Unlike average models that use current and voltage dependent sources,
reference [1] presents an equivalent model for the PWM DCM switch cell based on a dependent power
source and a loss-free resistor (LFR).

Sampled data models constitute another important approach to modeling CCM and DCM converters.
In [26], a zero order hold equivalent discrete-time model of the boost converter, which takes into
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account non-ideal conductive losses in both CCM and DCM, is obtained, and the derived small-signal
frequency response and closed loop behavior are verified experimentally. A comparative study between
multi-frequency averaging and sampled-data models has been reported in [27]. The main conclusion
of the comparative study is that sampled-data models can provide all the results of higher-order
multi-frequency previously reported but with less computational effort. A sampled data approach has
been adopted to find a discrete-time full order state-space model of a Cuk converter in [28]. In [29],
a nonlinear discrete recurrence relating the state vector at the beginning of a cycle to the state vector at
the end of the same cycle is used to obtain a large signal modeling of a boost converter operating in CCM
and DCM. This method has some similarities with the current injected approach that is used in [30] to
derive the transfer functions of the three basic converters operating in DCM at constant frequency with
duty ratio control. A similar result using the current injected equivalent circuit approach is achieved
in [31].

Starting with a review of the previous models of converters operating in DCM, the authors of [8]
present a physically based three-step modeling procedure for PWM converters which serves as a general
framework to compare different models, along with new full-order averaged models. The revised
averaged models are provided in both analytical and circuital forms and are claimed to overcome the
problems of existing models. The frequency response of a boost converter obtained with the revised
averaging approach is compared with detailed switched simulations and it is found to be correctly
predicted up to a third of the switching frequency where the phase starts to diverge from the detailed
switched simulations. In comparison with the reduced [12] and full-order analytical methods [10,20],
the frequency responses start to diverge at frequencies above one tenth of the switching frequency, and
discrepancies are also detected in the prediction of poles and RHP zero.

3. Modeling the AIDB Converter Using the Revised Averaging Method

The discontinuous conduction mode, in which the AIDB converter works, limits the modeling
possibilities of methods that are traditionally applied to CCM. Among the DCM modeling methods,
the one that offers the best approximation is the revised averaging method (RAM) proposed in [8] due
to its improved approximation of the high-frequency poles. This section presents the modeling of the
AIDB converter using the RAM to illustrate its limitations in the reproduction of the converter dynamic
behavior. The electrical circuit of the AIDB converter is depicted in Figure 1a, where the asymmetrical
interleaved structure is observed. Moreover, Figure 1b shows the inductor current waveforms where
the DCM condition is put in evidence at d3 · T . In addition, such a figure shows the three operation
intervals that define the switching period: d1 · T , d2 · T and d3 · T , which duty cycles are related as in
Equations (1) and (2). It must be pointed out that the modeling procedures presented in this section are
based on the circuital analyses given in [7] for the AIDB converter:

d1 + d2 + d3 = 1 (1)

d1 = d
′
; d2 + d3 = d (2)

The RAM consists of three steps: averaging, correction, and duty-cycle constraint definition [8].
The first step consist in the conventional state variables averaging as given in [1], while the second one
consists of dividing all the inductor currents in the converter by the factor (d1 + d2) since these are
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the two duty ratios in which the inductors are conducting. Such a correction must be made because,
in DCM, the inductor currents (or the discontinuous variables) have three intervals instead of the two
intervals present in CCM. Figure 1b shows that such a DCM condition exists in the inductor currents iB
and iAO of the AIDB converter.

Figure 1. Asymmetrical interleaved dual boost (AIDB) converter circuit and waveforms:
(a) electrical scheme; and (b) discontinuous currents.
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To perform the averaging procedure, the AIDB topologies an equations obtained in [7] must
be analyzed. In addition, reference [7] was demonstrated that the AIC converters must be operated
at duty cycles within d > 38%, in which low ripple conditions are ensured. Therefore, the modeling
approaches consider the three topologies exhibited by the AIDB for the duty cycles of interest:

• Topology 1 (SB and DA ON, SA and DB OFF): it is active in the first interval (0 ≤ t ≤ d1 · T ,
d

′
= d1) during d1 · T , it begins when SB is turned ON and SA is turned OFF, and it ends when

SB is turned OFF and SA is turned ON (Topology 2). In this topology iB increases while iA and
iAO decrease;

• Topology 2 (SA and DB ON, SB and DA OFF): it is active in the second interval [d1 · T < t ≤
(d1 + d2) · T ] during d2 · T , it begins when SB is turned OFF and SA is turned ON, and it ends
when DB is automatically turned OFF (Topology 3). In this topology iB decreases while iA and
iAO increase;

• Topology 3 (SA ON, SB, DA and DB OFF): it is active in the third interval [(d1 +d2) ·T ≤ t < T ]

during d3 · T , it begins when DB is automatically turned OFF by the DCM condition generated
when iB = iAO (null current in DB), and it ends when SB is turned ON and SA is turned OFF
(Topology 1). In this topology iB and iAO are constant and equal while iA still increases.

Figures 2–4 show the topologies and their equations, where vAB and vo are the voltages of capacitors
CAB and Co, respectively. In Topology 3, the equation marked with an asterisk (*) reflects the reduction
of order that occurs in DCM, which makes difficult to perform the averaging calculations.
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Figure 2. Topology 1.
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Figure 3. Topology 2.
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Figure 4. Topology 3.
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The averaged equations are obtained using the conventional method of multiplying each equation by
the corresponding intervals and dividing it by the period [1]. Then, the state space averaged system
(for d > 38%) is:

diA
dt

=
vg − vABd1

LA

diB
dt

=
vg
LB

(d1 + d2) −
vo
LB

d2 +
vg − vo + vAB

LB + LAO

d3

diAO

dt
=

vAB

LAO

(d1 + d2) −
vo
LAO

d1 +
vg − vo + vAB

LB + LAO

d3

dvAB

dt
=

iAd1 − iAO

CAB

dvo
dt

=
iAO

Co

− vo
RCo

(6)

In the correction step proposed in [8], all the equations are affected. But from the equations on
Figures 2–4, it is noted that iAO is always continuous in the AIDB, while iB and iAO are discontinuous in
Topology 3. Therefore, in the AIDB it is only necessary to apply the correction to the equations in which
iB and iAO appear since the CCM averaging in iA is correct. Consequently, the averaged equations of iB
and iAO must be divided by the factor (d1 + d2), as described in [8], to obtain the corrected expressions:

diA
dt

=
vg − vABd1

LA

diB
dt

=
1

d1 + d2

[
vg
LB

(d1 + d2) −
vo
LB

d2 +
vg − vo + vAB

LB + LAO

d3

]
diAO

dt
=

1

d1 + d2

[
vAB

LAO

(d1 + d2) −
vo
LAO

d1 +
vg − vo + vAB

LB + LAO

d3

]
dvAB

dt
=

iAd1 − iAO

CAB

dvo
dt

=
iAO

Co

− vo
RCo

(7)

To obtain the dynamic model, the duty cycle d2 must be replaced in Equation (7) by an expression
depending on other variables. Equation (8) gives the expression obtained in [8] for d2, where iL is the
average value of the discontinuous current and von is the voltage across the inductor when the switch
is ON:

d2 =
2LiL
d1Tvon

− d1 (8)

Since there are two discontinuous currents in the AIDB, it is possible to define d2 from iB as in
Equation (9) or from iAO as in Equation (10):

d2,iB =
2LBiB
d1Tvg

− d1 (9)

d2,iAO
=

2LAOiAO

d1T (vo − vAB)
− d1 (10)
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But replacing Equation (9) in Equation (7) produces an operating point that does not match the
simulation results of [7], predicting a iB value close to zero and predicting RHP poles that make this
model unstable, it behaving totally differently from the converter. Similarly, by replacing Equation (10)
in Equation (7), the prediction is worst since the variable iB does not appear in the equations, which
makes impossible to obtain a solution for the system. Therefore, it became necessary to explore another
way to calculate d2 to apply the RAM approach described in [8].

3.1. New Calculation Procedure for Duty Cycle d2

The average converter currents are calculated using the areas of the triangles in the waveforms
of Figure 1b, where the average value of iB and iAO currents are given in Equations (11) and (12),
respectively. In such expressions, the peak currents ∆iB and ∆iAO are calculated from Equation (5),
i.e., Topology 3, as in Equation (13). Then, the expression for d2 given in Equation (14) is obtained by
subtracting Equations (11) and (12):

iB = ix +
∆iB

2
(d1 + d2) (11)

iAO = ix −
∆iAO

2
(d1 + d2) (12)

∆iB =
vg
LB

d1T ; ∆iAO =
vo − vAB

LAO

d1T (13)

d2 =
2
(
iB − iAO

)(
vg
LB

+
vo − vAB

LAO

)
d1T

− d1 (14)

3.2. RAM Applied to the AIDB Using the New d2 Value

Replacing Equations (1) and (14) in Equation (7) leads to the dynamic model of the AIDB
(for D > 38%) based on the approach proposed in [8]:

diA
dt

=
vg − vABd1

LA

diB
dt

=
2iBLBL

2
AO (a1) + 2iAOLBL

2
AO (a2) + vABd1TL

2
B (a3) + vod1TLBLAO (a4) + d1TVg (a5)

2LAOL2
B (LAO + LB)

(
−iB + iAO

)
diAO

dt
=

2
(
iAO − iB

)
LBLAO (a6) + d1TVgL

2
AO (a7) + vod

2
1TLB (a8) + d1TLAOLB (a9)

2L2
AOLB (LAO + LB)

(
−iB + iAO

)
dvAB

dt
=

iAd1 − iAO

CAB

dvo
dt

=
iAO

Co

− vo
RCo

(15)
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where:

a1 = −Vg + vo + vAB a2 = Vg − vo − vAB a3 = Vg + vAB + vod1 − 2vo

a4 = Vg − d1Vg + d1vAB − vo a5 = (−Vg − vAB)LBLAO − voL
2
B − vod1L

2
AO

a6 = (−Vg + vo)LAO + vABLB a7 = −Vg + vo (d1 + 1) − vAB a8 = −vAB + vo

a9 = d1vo (Vg − vAB) + Vg (vAB − vo) − 2vABvo + v2AB + v2o

(16)

The input and state variables of the model are represented in terms of steady-state and small signal
components as in Equations (17) and (18), where x = [iA iB iAO vAB vo]

T . Moreover, x are the
averaged states, X , Vg and D′ are the steady-state values while x̂, v̂g and d̂1 are small-signal quantities:

x = X + x̂; vg = Vg + v̂g (17)

d1 = D
′
+ d̂1 (18)

Then, the steady-state condition given in Equation (19) is obtained by solving Equation (15) with all
the derivatives equal to zero, where the capital letters indicate steady-state values for the states in X:

IA =
1

D′

(
1 +

1

D′

)
Vg

R

IB =

(
1 +

1

D′

)
Vg

R
+

VgT

2

(LAO + LB)

LAOLB

D
′2
(
1 + D

′)
IAO =

(
1 +

1

D′

)
Vg

R

VAB =
Vg

D′

Vo =

(
1 +

1

D′

)
Vg

(19)

The prediction provided by such steady-state expressions has been contrasted with numerical values
obtained from electrical simulations (using PSIM software) of the AIDB converter with LA = 246 µH,
LB = 222 µH, LAO = 217 µH, CAB = 50 µF, CO = 23.5 µF, R = 10 Ω, and T = 20 µs (switching
period) and duty cycles from 40% to 90% each 10%. In such conditions, expressions from Equation (19)
exhibit a Root Mean Squared Error (RMSE) equal to 0.3%.

Similarly, the small-signal model, given in Equation (20), of the state space averaged system, i.e.,
Equation (15), is obtained by linearizing, around the operating point, the states and inputs Jacobians A
and B as in Equations (21) and (22), respectively:

ˆ̇x = Ax̂ + Bd̂1 (20)

A =
∂f (x, d1)

∂x

∣∣∣∣
x=X, d1=D′

(21)

B =
∂f (x, d1)

∂d1

∣∣∣∣
x=X, d1=D′

(22)
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To test the model accuracy in the reproduction of the converter dynamic behavior, a numerical
small-signal model was obtained for the converter parameters previously described. Moreover, the AIDB
converter was simulated in PSIM to obtain the circuit frequency response, which was contrasted
with the small-signal model predictions. Figures 5 and 6 show the Bode diagrams of the states
x = [iA iB iAO vAB vo]

T obtained with both the model and the circuit, where the model approximation
is not accurate enough: at low frequencies the model reproduces with very small differences the circuit
behavior, but at high frequencies the model exhibits large errors. Hence, the model obtained following
the approach given in [8] is not suitable for control purposes, or even for dynamic analyses, due to its
large errors. Therefore, a new approach must be adopted to find a more accurate dynamic model suitable
for control design.

Figure 5. AIDB Bode diagrams from circuital simulation and revised averaging method
(RAM) simulation: (a) iA; (b) iB; (c) iAO; and (d) vAB.
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Figure 6. AIDB Bode diagrams from circuital simulation and RAM simulation: output
voltage vo.

10
2

10
3

10
4

−40

−20

0

20

40

M
a
g
n
it
u
d
e
 [
d
B

]

 

 

Mathematical model

Circuital simulation

10
2

10
3

10
4

−200

−100

0

100

200

Frequency [Hz]

P
h
a
s
e
 [
d
e
g
]

Prediction errors
at high frequency

4. Improved Method for Modeling High-Order Converters in DCM

This method has the aim of improving the prediction of dynamical behaviors in converters operating
in DCM, it focused in the AIC family despite it is applicable to any converter. The design of this method
was necessary due to the simultaneous appearance of discontinuous currents (with three intervals) and
continuous currents (with two intervals) in the AIDB converter, as in the AIC family also. In theory,
if both continuous and discontinuous currents were not concurrent, the RAM would provide an accurate
approach. In such a way, this new method averages the state variables of the converter in a conventional
way but includes two changes to improve the approximation of the model: the definition of an additional
variable to describe the behavior of discontinuous variables and a novel procedure to calculate the duty
cycle d2.

The steps of the new improved averaging method, named IAM, are the following:

1. Identify new variables that affect the converter dynamics using circuital analyses;

2. Include in the topologies equations the new variable;

3. Obtain the averaged equations from the modified topologies equations;

4. Calculate the correct expression for the duty cycle d2;

5. Calculate the new variable in terms of the circuit states and inputs;

6. Replace both the new variable and d2 in the averaged equations;

7. Calculate the steady-state and small-signal expressions.

In the following subsections, the IAM is illustrated by modeling the AIDB converter. In addition,
such a model is contrasted with circuital simulations and experimentally tested to validate the IAM.
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4.1. Modeling the AIDB Using the IAM

To illustrate the IAM technique, each step is described considering an AIDB converter:

• Step 1: From the AIDB scheme in Figure 1a, it is noted that the output current IO is obtained by
adding two currents: the current in the inductor LAO and the current in the diode DB. Therefore,
to provide an accurate prediction of the AIDB output current, it is necessary to include the current
in diode DB in the analytical model as the new variable iDB. In this way, the error generated in
RAM [8] by neglecting this current is avoided.

• Step 2: From the circuital topologies (Figure 3) it is noted that diode DB conducts in Topology 2.
Therefore, the expressions in Equation (4) describing this topology are modified to include the
current iDB as follows:

LA
diA
dt

= vg

LB
diB
dt

= vg − vo

LAO
diAO

dt
= vAB

CAB
dvAB

dt
= −iAO

Co
dvo
dt

= iAO + iDB − vo
R

(23)

• Step 3: The new state space averaged system (D > 38%) including the new variable iDB is given
in Equation (24), where iDB represents the averaged value of iDB:

diA
dt

=
vg − vABd1

LA

diB
dt

=
vg
LB

(d1 + d2) −
vo
LB

d2 +
vg − vo + vAB

LB + LAO

d3

diAO

dt
=

vAB

LAO

(d1 + d2) −
vo
LAO

d1 +
vg − vo + vAB

LB + LAO

d3

dvAB

dt
=

iAd1 − iAO

CAB

dvo
dt

=
iAO + iDB

Co

− vo
RCo

(24)

• Step 4: The procedure to calculate the correct duty cycle d2, for the AIDB converter, was described
in Subsection 3.1 leading to Equation (14). Moreover, the duty cycle d3 is calculated from the
fundamental relation given in Equation (1).

• Step 5: Taking into account that diode DB only conducts in Topology 2 with iDB = iB−iAO > 0, it
describes a triangular waveform in iDB with a peak current equal to ∆iB+∆iAO: since diB/dt < 0

and diAO/dt > 0 in Topology 2, the maximum current in DB (peak current) is achieved at the
beginning of the interval [d1 · T, (d1 + d2) · T ] when both iB and iAO exhibit their peak currents,
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i.e., ∆iB and ∆iAO, respectively. Then, iDB is calculated as in Equation (25), where substituting
the expressions for ∆iB and ∆iAO obtained in Equation (13) and the expression of d2 given in
Equation (14), the iDB expression given in Equation (26) is obtained:

iDB =
∆iB + ∆iAO

2
d2 (25)

iDB =

(
vg
LB

+
vo − vAB

LAO

)
d1T

2

 2
(
iB − iAO

)(
vg
LB

+
vo − vAB

LAO

)
d1T

− d1

 (26)

• Step 6: Replacing Equations (1), (14) and (26) in Equation (24), the new averaged equations in
terms of the duty cycle d1 = d

′ are:

diA
dt

=
vg − vABd1

LA

diB
dt

=
2iBLBL

2
AO (a1) + 2iAOLBL

2
AO (a2) + vABd1TL

2
B (a3) + vod1TLBLAO (a4) + d1TVg (a5)

(−VgLAO − LBvo + LBvAB)LB (LAO + LB) d1T

diAO

dt
=

2
(
iAO − iB

)
LBLAO (a6) + d1TVgL

2
AO (a7) + vod

2
1TLB (a8) + d1TLAOLB (a9)

(−VgLAO − LBvo + LBvAB)LAO (LAO + LB) d1T

dvAB

dt
=

iAd1 − iAO

CAB

dvo
dt

=
RL

[
2iBLBLAO − d21T (VgLAO + voLB − vABLB)

]
− 2voLBLAO

CoRLLBLAO

(27)
where:

a1 = −Vg + vo + vAB a2 = Vg − vo − vAB a3 = Vg + vAB + vod1 − 2vo

a4 = Vg − d1Vg + d1vAB − d1vo a5 = (−Vg − vAB)LBLAO − voL
2
B − vod1L

2
AO

a6 = (−Vg + vo)LAO + vABLB a7 = −Vg + vo (d1 + 1) − vAB a8 = −vAB + vo

a9 = d1vo (Vg − vAB) + Vg (vAB − vo) − 2vABvo + v2AB + v2o

(28)

• Step 7: The calculation of the expressions for both the steady-state and small-signal model are
performed following the procedures given in Subsection 3.2, where the states vector is defined as
x = [iA iB iAO vAB vo]

T . Again, the input and state variables of the model are represented in
terms of steady-state and small signal components as in Equations (17) and (18).

The small-signal model, i.e., ˆ̇x = Ax̂ + Bd̂1, of the state space averaged system, i.e., Equation (27),
is obtained by linearizing, around the steady-state operating point, the states and inputs Jacobians A and
B as in Equations (21) and (22), respectively.

Then, the steady-state condition given in Equation (29) is obtained by solving Equation (27) with
all the derivatives equal to zero, where the capital letters indicate steady-state values. Expressions in
Equation (29) include modifications in the equations of the three currents (IA, IB and IAO), with respect
to Equation (19), which are the result of the correction introduced by iDB current. Such modifications
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improve the prediction of the steady-state conditions: the prediction of those steady-state expressions
exhibit a RMSE equal to 0.01% with respect to the electrical simulations performed with the same
circuit parameters reported in Subsection 3.2. Therefore, the proposed model improves the accuracy
of the steady-state calculations in one order of magnitude. But the most important improvement of the
new model concerns its high accuracy in dynamic conditions, which will be illustrated in the following
subsection by means of simulation and experimental results:

IA =
1

D′

(
1 +

1

D′

)
Vg

R
− Vg

2

(
LB + LAO

LBLAO

)
D

′2T

IB =

(
1 +

1

D′

)
Vg

R
+

Vg

2

(
LB + LAO

LBLAO

)
D

′2T

IAO =

(
1 +

1

D′

)
Vg

R
− Vg

2

(
LB + LAO

LBLAO

)
D

′3T

VAB =
Vg

D′

Vo =

(
1 +

1

D′

)
Vg

(29)

4.2. Simulation and Experimental Validation

To verify the accuracy of the dynamic model for the AIDB converter obtained with IAM, i.e.,
Equation (27), the IAM model was parameterized with the values reported in Subsection 3.2. Both the
IAM model and PSIM circuit (from Subsection 3.2) were simulated to obtain the IAM and circuital
frequency responses presented in Figures 7 and 8: the high accuracy of IAM over RAM at high
frequency is observed for all the states, but also improvements at low frequency are obtained with this
new modeling technique for the prediction of the currents. Such simulation results put in evidence the
satisfactory prediction of the AIDB dynamics provided by the IAM, which makes such a model useful
for control purposes.

In addition to the simulations, an experimental prototype with the same circuit parameters was used
to obtain the frequency response of a practical AIDB converter: Figure 9a shows the block diagram of
the experimental setup, where a frequency response analyzer (FRA) excites the converter by means of
an error amplifier (for isolation) and a PWM (to drive the switches) with multiple frequencies. Then,
the signals at the PWM input and converter output are measured to calculate the experimental frequency
response of the output voltage. Figure 9b shows the test bench, where the FRA and electrical circuits
used in the experiments are observed.

Figure 10 shows the Bode diagrams obtained by means of the new model (IAM) and the one measured
experimentally (FRA) for the output voltage. The figure shows the satisfactory prediction provided by
the model at both high and low frequency conditions with some small errors in the phase. This result
validates the IAM approach, demonstrating its accurate prediction of the converter dynamic behavior,
which in turn is useful for control purposes.
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Figure 7. AIDB Bode diagrams from circuital simulation and improved averaging method
(IAM) simulation: (a) iA; (b) iB; (c) iAO; and (d) vAB.
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Figure 8. AIDB Bode diagrams from circuital simulation and IAM simulation: output
voltage vo.

10
2

10
3

10
4

−40

−20

0

20

40

M
a
g
n
it
u
d
e
 [
d
B

]

 

 

Mathematical model

Circuital simulation

10
2

10
3

10
4

−200

−100

0

100

200

Frequency [Hz]

P
h
a
s
e
 [
d
e
g
]

High accuracy at
 high frequency



Energies 2013, 6 5586

Figure 9. Experimental setup used to obtain the AIDB frequency response: (a) block
diagram; and (b) test bench.
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Figure 10. AIDB Bode diagrams from experiments and IAM simulation.

10
2

10
3

10
4

−30

−20

−10

0

10

20

30

M
a
g
n
it
u
d
e
 [
d
B

]

 

 

Mathematical model

Experimental measurements

10
2

10
3

10
4

−200

−100

0

100

200

Frequency [Hz]

P
h
a
s
e
 [
d
e
g
]

High accuracy at
 high frequency

High accuracy at
 low frequency

Small phase error

High accuracy at
 low frequency

Small phase error



Energies 2013, 6 5587

5. Other AIC Family Models Based on IAM

This section presents the dynamic models, obtained with the IAM technique, of other converters of the
AIC family [7]: the AIDBB and the AIDF group. In sake of shortness, the corrected average equations,
the corrected duty cycles d2 and the expressions of the new variables are presented without describing
each step of the IAM. In any case, the step-by-step procedure previously illustrated in Section 4 can be
easily reproduced for all the converters in the AIC family.

5.1. The AIDBB Converter

The circuital scheme of the AIDBB converter is presented in Figure 11, where again the current in
the diode DB must be taken into account to improve the prediction of the output current, similar to the
situation in the AIDB. Following the procedure presented in the previous section, the corrected averaged
equations (for D > 38%) shown in Equation (30) were obtained. Such expressions are in terms of the
diode DB current iDB and the duty cycle d2:

diA
dt

=
vg + vABd1

LA

diB
dt

=
vg
LB

d1 +
vo
LB

d2 +
vo − vAB

LB + LAO

d3

diAO

dt
=

vo − vg
LAO

d1 −
vAB

LAO

(d1 + d2) +
vo − vAB

LB + LAO

d3

dvAB

dt
=

−iAd1 + iAO

CAB

dvo
dt

=
−iAO − iDB

Co

− vo
RCo

(30)

Figure 11. Electrical circuit of the asymmetrical interleaved dual buck-boost
(AIDBB) converter.
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Following the IAM technique, the corrected duty cycle d2 and the averaged new variable iDB are
calculated as in Equations (31) and (32), respectively:

d2 =
2
(
iB − iAO

)(
vg
LB

+
vg + vAB − vo

LAO

)
d1T

− d1 (31)

iDB =

(
vg
LB

+
vg + vAB − vo

LAO

)
d1T

2

 2
(
iB − iAO

)(
vg
LB

+
vg + vAB − vo

LAO

)
d1T

− d1

 (32)

Then, the corrected averaged system in terms of the duty cycle d1 is obtained by replacing
Equations (1), (31) and (32) in Equation (30). Moreover, solving the corrected averaged system for
derivatives equal to zero, the expressions given in Equation (33) are obtained for steady-state conditions.
Finally, the small-signal model is obtained as in Equations (20–22) around a given operating point:

IA =

(
1

D′2

)
Vg

R
− Vg

2

(
LB + LAO

LBLAO

)
D

′2T

IB =

(
1

D′

)
Vg

R
+

Vg

2

(
LB + LAO

LBLAO

)
D

′2T

IAO =

(
1

D′

)
Vg

R
− Vg

2

(
LB + LAO

LBLAO

)
D

′3T

VAB = −Vg

D′

Vo = −Vg

D′

(33)

5.2. The AIDF Group

The AIDF group is composed by four converters: the isolated inverting AIDF, the isolated
non-inverting AIDF, the non-isolated inverting AIDF and the non-isolated non-inverting AIDF.
As described in [7], the isolated versions provide galvanic isolation between the source (photovoltaic
array or fuel cell) and the load, while the non-isolated versions provide larger voltage conversion ratios.
Among such topologies, the isolated non-inverting AIDF converter (I-NI-AIDF), depicted in Figure 12,
was selected to illustrate IAM expressions.However, the step-by-step procedure previously illustrated in
Section 4 can be easily applied to the other members of the AIDF-group.

The AIDF-group shares the same condition present in the AIDB and AIDBB: the prediction of the
output current is improved by taking into account the dynamic behavior of the diode DB current iDB.
Therefore, as in the AIDB and AIDBB, the new variable introduced in the model is iDB. From such
a consideration, the corrected averaged equations (D > 38%) for the I-NI-AIDF are given in
Equation (34). Again, iDB and the corrected duty cycle d2 are needed:
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diA
dt

=
vg (nBd1 + nA (1 − d1)) − vABd1

nALA

diB
dt

=
vg
LB

d1 −
vo

nBLB

d2 +
vAB − vo

n2
BLB + LAO

nBd3

diAO

dt
=

−nBvg − vo
LAO

d1 +
vAB

LAO

(d1 + d2) +
vAB − vo

n2
BLB + LAO

d3

dvAB

dt
=

iAd1 − iAO

CAB

dvo
dt

=
iAO + iDB

Co

− vo
RCo

(34)

Figure 12. Electrical circuit of the isolated non-inveting asymmetrical interleaved dual
flyback (AIDF) converter.
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In such a way, the expression for the corrected d2 of the I-NI-AIDF converter is given in Equation (35),
while its averaged current iDB is given in Equation (36):

d2 =

2

(
iB
nB

− iAO

)
(

vg
nBLB

+
nBvg − vAB + vo

LAO

)
d1T

− d1 (35)

iDB =

(
vg

nBLB

+
nBvg − vAB + vo

LAO

)
d1T

2


2

(
iB
nB

− iAO

)
(

vg
nBLB

+
nBvg − vAB + vo

LAO

)
d1T

− d1

 (36)
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As in the previous case, the corrected averaged system for the I-NI-AIDF in terms of the duty cycle d1
is obtained by replacing Equations (1), (35) and (36) in Equation (34), while the steady-state conditions
are given by Equation (37). Again, the small-signal model is obtained as in Equations (20–22) around a
given operating point:

IA =

(
nA

(
D

′
nB +

(
1 −D

′)
nA

)
D′2

)
Vg

R
− Vg

2

(
nA (n2

BLB + LAO)

LBLAO (D′nB + (1 −D′)nA)

)
D

′2T

IB =

(
nB

(
D

′
nB +

(
1 −D

′)
nA

)
D′

)
Vg

R
+

Vg

2

(
n2
BLB + LAO

LBLAO

)
D

′2T

IAO =
IAD

′

nA

VAB = Vg

(
D

′
nB +

(
1 −D

′)
nA

D′

)

Vo = Vg

(
D

′
nB +

(
1 −D

′)
nA

D′

)

(37)

Finally, the IAM models for the AIDB, AIDBB and AIDF converters are useful to design control
strategies aimed at improving the behavior of power systems.

6. Application Example: AIDB Control Design

This section illustrates the usefulness of the proposed IAM technique in practical applications:
the AIDB converter is controlled to supply a regulated voltage to a resistive load, where the electrical
power is provided by a fuel cell. As clearly described in [7], the AIC family provides the useful
conditions to interface fuel cells: low current ripple and high voltage conversion ratio. But, since the fuel
cell voltage changes with the requested power, the AIDB output voltage must be regulated to compensate
both load and fuel cell perturbations.

This example considers the AIDB parameters given in Subsection 3.2 operating with a fuel cell
stack from Pragma Industries (named FCPc) composed by 2 parallel strings of 18 cells in series each.
The polarization and power curves of such a FCPs stack are depicted in Figure 13a and 13b, respectively.
Moreover, the application considers a load with a nominal impedance of 10 Ω that requires a fixed
voltage of 30 V to operate. In such a condition the fuel cell must to provide 90 W, disregarding losses,
which imposes stack current and voltage near to 9 A and 10 V, respectively. Such an operating point is
highlighted in Figure 13a and 13b. Moreover, taking into account that the load voltage must be regulated,
such figures put in evidence that changes on the load impedance generate changes in the fuel cell voltage,
which imposes the voltage at the input of the AIDB converter. Therefore, a suitable controller must be
designed to compensate both input and output perturbations in the converter.
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Figure 13. Fuel cell electrical characteristics: (a) polarization curve; and (b) power curve.
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Then, the improved model based on the IAM approach, and presented in Subsection 4.1, is used
to design a linear-quadratic regulator (LQR) to provide the required compensation. Such a control
technique was adopted since it is based on the states feedback and not only on the output feedback
as Proportional-Integral (PI) or Proportional-Integral-Derivative (PID) controllers. Therefore, the design
of a LQR controller helps to illustrate, in a better way, the usefulness of the modeling approach proposed
in this paper.

6.1. The LQR Controller

The quadratic optimal control theory is used to design stable control systems by choosing the control
vector u (t) such that a given performance index is minimized. Therefore, considering the system
representation given in Equation (38), the designing problem is reduced to determine the matrix K

of the optimal control vector [32], as in Equation (39), to minimize the complex quadratic performance
index given in Equation (40):

ẋ = Ax + Bu (38)

u (t) = −Kx (t) (39)

J = u

∫ ∞
0

(x∗Qx + u∗Ru) (40)

In Equation (40), Q is a positive-definite (or positive-semidefinite) Hermitian or real symmetric matrix
and R is a positive-definite Hermitian or real symmetric matrix. The matrices Q and R determine the
relative importance of the error and the expenditure of the energy in the system.

The procedure followed to find the matrix K beings with the definition of the parameter-optimizing
problem, then using the second method of Liapunov the performance index J is evaluated and
minimized, and the result is the reduced-matrix Riccati equation which solution provides the optimal
matrix K. The details of such a procedures are given in [32].
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Moreover, to ensure null steady-state error, a sixth state variable was introduced to the system:
the integral of the error between the output voltage and the reference. Such additional state equation
is given in Equation (41), where Vref = 30 V is the reference voltage:

de

dt
= vo − Vref (41)

The feedback vector gains K Equation (39) can be obtained using the MATLAB command
[K,S, e] = lqr (A,B,Q,R), which provides the solution to the Riccati equation in continuous time
(matrix S), determines the optimal feedback matrix gains (vector K) and the closed loop poles location
(vector e). The matrices Q and R are usually selected by the designer and adjusted by trial and error.
In this example, such matrices have been defined taking into account energy considerations and the
relative weight of the output voltage and its error: considering the energy stored in the capacitors (EC)
and inductors (EL) given in Equation (42), and taking into account that Q matrix is related to energy
expenditure, the coefficients of such a matrix were defined as in Equation (43). In such a matrix, the
coefficients related to the currents have the same weight since in the adopted converter all the inductors
have very similar values (see circuit parameters given in Subsection 3.2); but the coefficients related to
the voltages are weighted in agreement with the capacitor values since they are very different. In addition,
the coefficient related to the error was selected large enough to give priority to the null steady-state error
condition. Finally, the Q matrix was normalizer with respect to the output voltage coefficient to avoid
numerical values too small:

EC =
1

2
CV 2, EL =

1

2
LI2 (42)

Q =
1

V 2
o × 23.5



I2A 0 0 0 0 0

0 I2B 0 0 0 0

0 0 I2AO 0 0 0

0 0 0 V 2
AB × 50 0 0

0 0 0 0 V 2
o × 23.5 0

0 0 0 0 0 1 × 1010


(43)

Then, matrix R must be small enough to provide a fast correction of the perturbations as given in
Equation (44). Finally, using Q and R matrices given in Equations (43) and (44), the IAM model
parameterized as in Subsection 3.2, and both the FCPc fuel cell stack and load characteristics previously
described, the numerical K vector given in Equation (45) was calculated:

R = [1] (44)

K =
[
−3.79 0.12 0.10 −0.40 0.31 −745

]
(45)

6.2. Simulation Results

The designed LQR controller was tested by means of circuital simulations in PSIM. The simulation
considers the fuel cell modeled by a Thevenin equivalent, while the load perturbations were introduced
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by changing the load current. In such a way, 20% step-up and step-down load perturbations were
introduced to evaluate the controller performance.

Figure 14 shows the simulation results: the controller compensates both step-up and step-down load
perturbations by providing settling times equal to 1.8 ms in both cases.

Figure 14. Dynamic simulation in PSIM.
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The figure also shows the change on the stack voltage caused by the increment in the load power. In
any case, both perturbations are satisfactorily attenuated. Moreover, the operating point defined by the
interaction between the converter and the fuel cell slightly diverges from the theoretical values (10 V, 9
A) due to the stack electrical characteristic (Figure 13a and 13b), but such a difference is compensated
by the controller to provide the desired conditions to the load.

Finally, this example put in evidence the usefulness of the proposed IAM modeling approach in the
design of control strategies for practical applications.

7. Conclusions

The challenge of accurately modeling the members of the AIC family has been initially addressed
by selecting the revised averaging method [8], which consists of three steps: averaging, correction and
duty-cycle constraint definition. Being the AIC family a particular case of high-order dc/dc switching
converters operating in discontinuous conduction mode in which two of the inductor currents are in
discontinuous conduction while another one is not, the application of the revised averaging method is
not straightforward. A new calculation procedure for the duty cycle d2 in the duty-cycle constraint
definition step has been illustrated in the modeling of the AIDB converter. However, the resulting
full-order continuous non-linear model of the AIDB converter is not suitable for advanced control design
because it exhibits large errors at high frequencies.

An improved averaging method that overcomes the high frequency modeling deficiencies of the
previous revised averaging method has been carefully detailed and validated by means of both PSIM
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simulations and experimental measurements of an AIDB stage operating at duty cycles above 38%.
The key factor in the improved modeling is the explicit inclusion in the equations of the current flowing
though the diode that operates in discontinuous conduction mode.

The improved method has also been successfully applied to the remaining members of the AIC family.
Examples of modeling the AIDBB and the I-NI-AIF converters are provided in the paper. The modeling
of other high-order converters operating in DCM such as Cuk, sepic or zeta will be addressed in future
works. Similarly, a simplified version of the proposed technique, aimed for field engineers, is an open
problem to be addressed.

Finally, the excellent accuracy in the frequency response provided by the improved averaging method
has allowed to design a voltage regulator for a fuel cell application in which an AIDB converter is
successfully controlled by means of a linear quadratic regulation technique.
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