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Abstract: The evaluation of the overall performance of a green building is complex, since 

many construction, energy and environmental aspects have to be considered. The Umbria 

Region in Italy, through various public tenders, recently funded several residential buildings, 

innovative in terms of construction quality, green technologies and sustainable solutions, 

such as natural building materials, integrated sunspaces, PV (photovoltaic) modules and 

solar collectors, geothermal heat pumps, that had to be adopted to obtain the public 

contribution. The University of Perugia carried out an extended monitoring of these 

buildings, in order to verify the actual achievement of design objectives, to certify the real 

savings in terms of energy and environmental loads and to assess the indoor comfort 

conditions for occupants. In situ thermal, acoustical and lighting measurements were carried 

out for more than one year. Energy simulations were performed by means of codes which 

implement the algorithms required by the Italian Law. Moreover, a comparison between real 

consumptions and simulated energy requirements was carried out. Finally, the buildings 

were characterized from the environmental sustainability point of view, using the method 

adopted by the Umbria Region. This assessment was borrowed from ITACA (Institute for 

Innovation and Transparency in Government Procurement and Environmental Compatibility) 
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procedure [an Italian procedure similar to Leadership in Energy and Environmental Design 

(LEED)] and consists of 20 worksheets, one for each different performance indicator, at the 

aim of carefully describing the environmental quality of the building. 

Keywords: green buildings; overall building performance; thermal performance;  

acoustic performance; lighting performance; thermal comfort; energy consumptions; 

renewable energies 

Nomenclature: 

ARPA Agenzia Regionale per la Protezione Ambientale (Regional 

Environmental Protection Agency) 

BREEAM Building Research Establishment Environmental Assessment 

Method 

clo clothing unit (1 clo = 0.155 m2·K/W) 

D2m,nT,w façade acoustic insulation index (dB) 

DF average indoor daylight factor (%) 

E average indoor illuminance (lux) 

Emin minimum indoor illuminance (lux) 

E0 average outdoor illuminance (lux) 

HVAC Heating, Ventilation and Air Conditioning 

Icl thermal resistance of clothing (m2·K/W) 

L average indoor luminance (cd/m2) 

LASmax A-weighted maximum sound pressure level (Slow-time weighting) 

[dB(A)] 

Lb ÷ s,light ÷ dark maximum ÷ minimum indoor luminance of background ÷ 

surrounding areas (cd/m2) 

LCA Life Cycle Assessment 

LEED® Leadership in Energy and Environmental Design 

L’nw impact sound pressure level index (corrected with the reverberation 

time) (dB) 

Lvo average indoor luminance of visual object area (cd/m2) 

met metabolism unit (1 met = 58.2 W/m2) 

PMV Predicted Mean Vote 

PPD Predicted Percentage of Dissatisfied (%) 

R’w weighted sound insulation index (dB) 

Sw window area (m2) 

Sf floor area (m2) 

Sw/Sf Window-to- floor area ratio 

U0 illuminance uniformity  
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1. Introduction 

The building sector is receiving a great attention worldwide since its energy consumption and 

greenhouse gas emissions represent 40% and 33% of the total quantities, respectively, both in 

developed and developing countries [1]. Besides, the construction segment is expected to grow 

continuously in the next decades, being at the same time one of the most promising sectors in terms of 

mitigation potential. The green or sustainable buildings concept is therefore becoming more and more 

popular, despite the difficulties of finding a univocal definition [2]; numerous protocols already exist, 

such as Building Research Establishment Environmental Assessment Method (BREEAM) [3], ITACA 

(Institute for Innovation and Transparency in Government Procurement and Environmental 

Compatibility) [4] and Leadership in Energy and Environmental Design (LEED) [5], and many others 

approaches are in way of definition, such as Life Cycle Assessment (LCA) applied to buildings [6]. 

The common idea consists of guaranteeing a high environmental performance through a holistic 

approach, including various aspects such as proper orientation, choice of sustainable materials [7,8], 

advanced plants technologies, good indoor comfort, low environmental impact and reduced natural 

resources depletion. A low primary energy consumption, therefore, represents a fundamental, but not 

unique, aspect to be considered for green buildings design and evaluation [9,10]. 

Within this framework, an extended study was carried out by CIRIAF (Inter-University Research 

Center on Pollution and Environment “Mauro Felli”) (University of Perugia), aimed at monitoring a 

long-term action of Umbria Region that, by means of the Annual Operational Program 2005, 2006 and 

2008 [11], issued three calls for incentives addressed to construction sector companies. The calls 

promoted the implementation of measures for testing solutions in the field of green architecture and 

energy saving. The economic contributions were given directly to the final buyers of the flats, which 

were helped to offset the additional costs paid for the higher energy and environmental quality of  

the dwellings. 

The study started with a preliminary phase consisting of acquiring the project documentation, 

identifying the most significant interventions in terms of green construction and on-site inspections 

during the process work and acquisition of certificates for materials and building components. 

Afterwards, the measurements for the performance evaluation were implemented: micro-climatic 

and indoor air quality measurements, in-situ envelope transmittance assessment aided by a preliminary 

infrared thermography analysis, acoustic, lighting and electromagnetic measurements, and the 

quantification of the presence of radon. Furthermore, a procedure was implemented for the simulation 

of the energy performance, which includes the contribution of renewable energy systems. Finally, real 

water, gas, and electricity consumptions were recorded and compared with simulated values, along 

with a cost-benefit analysis. 

The peculiar characteristic of the study stands on the involvement of a large number of analyzed 

buildings, covering several different construction techniques; besides, an original elaboration of the 

information gathered is proposed and a critical analysis of the results is also implemented, trying to 

classify and to compare all the aspects under evaluation, aiming to give a complete assessment of the 

green buildings performance. 
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2. Description of the Buildings 

Among all the investigated interventions, nine buildings were chosen as the most representative of 

all the constructions proposed. In each building, sample flats were chosen to carry on the in situ 

measurements and the performance evaluation. The buildings’ typology and construction data are 

summarized in Table 1. 

Table 1. Typological and construction data of the investigated buildings. 

Building No. 1 2 3 4 5 6 7 8 9 

Typology 
Apartment 

building 

Multi-family 

houses 

Apartment 

building 

Multi-family 

houses 

Multi-family 

houses 

Apartment 

building 

Apartment 

building 

Multi-family 

houses 

Multi-family 

houses 

Shape Elongated Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Elongated 

N. floors Three/four Two/three Two/three Three Two/three Three/four Two Two Three 

N. units 19 25 12 21 19 12 12 20 12 

Net floor area (m2) 1442 1769 780 1776 1580 865 960 1490 1464 

Envelope/external  

walls 

Bricks 

facades and 

plastered 

walls 

Brick 

masonry 

cavity walls  

Brick 

masonry 

cavity walls 

Brick 

masonry 

cavity walls 

Plastered walls 

Bricks 

facades and 

plastered 

walls 

Bricks and 

plastered 

walls 

Brick 

masonry 

cavity walls 

Brick 

masonry 

cavity walls 

External wall 

thermal insulation 

Glass  

wool 

Glass  

wool 

Glass  

wool 

Glass  

wool 

Thermal  

cork-based 

plaster 

Panel in 

wood-wool 

cement 

Panel in 

wood-wool 

cement 

Glass wool Cork 

Building 1 It has three/four-storeys and a basement; it is rectangular, with an elongated shape and 

its long axis runs north-east/south-west (Figure 1a). It is divided into 19 apartments 

(flats and duplex apartments). 

Building 2 It is made up by a group of three similar rectangular buildings with different 

orientations, facing a large courtyard towards the South direction (Figure 1b). It 

includes 25 apartments. 

Building 3 The central body is a three-storey building with a mono-pitched roof; the other  

two-storey buildings have a flat roof. (Figure 1c) It is divided into 12 apartments. 

Building 4 It is realized by three similar buildings with the long axis running east/west (Figure 1d). 

Each building has two apartments on the ground floor, three apartments on the first 

floor and two apartments on the second floor. 

Building 5 It is constituted by three rectangular buildings made of brick masonry walls coating 

with plaster, reinforced concrete basement and a tiled gable-roof (Figure 1e). 

Building 6 The structure is similar to the one of building 1 (Figure 1f). 

Building 7 It is a split-level building with two/three stages and a basement, rectangular shaped 

(Figure 1g). The last two floors host duplex apartments. The top-floor has a  

mono-pitched roof and apartments on the first floor are provided with a roof garden. 

Building 8 This compound consists of five similar buildings. Each building has two stages above 

the ground and a basement (Figure 1h). It is divided into two apartments on the ground 

floor and two apartments on the first floor. 
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Building 9 The three-storey building has an elongated shape, with its long axis running east/west 

(Figure 1i). It has wooden porches attached to the building skin facing the south 

direction. It is divided into 12 apartments: flats on the ground floor (527 m2) and duplex 

apartments on the first floor with attic (937 m2). 

The examined buildings present interesting features, such as sunspaces (over 50% of the 

investigated situations), sustainable insulation materials (wood in 1/3 of the cases), and solar shadings 

(about 50% of the cases) [12]. All the buildings are provided with under-floor heating systems, seven 

of them are provided with rain water recovery systems. Most of the buildings are integrated with PV 

modules and/or solar collectors, some of them are also equipped with geothermal heat pumps. 

Figure 1. (a) Building 1; (b) Building 2; (c) Building 3; (d) Building 4; (e) Building 5;  

(f) Building 6; (g) Building 7; (h) Building 8; and (i) Building 9. 

  
(a) (b) (c) 

  
(d) (e) (f) 

  
(g) (h) (i) 

3. Simulations: Methodology and Description of the Codes 

The energy analysis of buildings through simulations is possible by means of different 

methodologies: some of them use simplified energy analysis tools, with a quick evaluation of the 

annual energy consumption, others use more detailed analysis based on dynamic algorithms [13–15]. 

In this study, the primary energy consumptions for heating, cooling, and domestic hot water 

production were estimated by the code MC4 Suite [16], that follows the calculation algorithms 

proposed by the European Standard on energy certification: EN ISO 13790:2008 [17] based on a 

quasi-steady-state monthly method. As stated in the European Directive 2002/91/CE [18] and other 
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Italian Laws [19], buildings can be classified according to their energy performance during winter and 

summer seasons (Figure 2). 

As reported in the UNI/TS 11300-1 [20], the inner air temperature was set to 20 and 26 °C, for 

winter and summer conditions respectively; the weather external conditions (temperature and solar 

radiation) were taken from UNI 10349 [21]; the standard conditions of convective heat exchange on 

the external wall were calculated according to EN ISO 6946 [22]. Moreover, all internal heat gains such 

as rate of occupation, lights and other devices were defined according to the European Standard [17]. 

The buildings performance for winter season was calculated also considering the generation and 

distribution heating system, as required by UNI/TS 11300-2 [20] that describes the calculation method 

to evaluate primary energy need and system efficiencies for space heating and domestic hot water 

production. All the buildings analyzed have floor heating system but different heat generation plants: 

condensing boiler, heat pump and geothermal heat pump. On the other hand, for summer season, 

simulations considered only the envelope performance. 

Figure 2. Model of buildings in MC4 Suite and Energy Building Classification. 

 

Some buildings include special elements aimed to improve the energy performance such as 

sunspaces, solar thermal and photovoltaic plants; their contribution was simulated by means of 

different software packages and methodologies. The 5000 Method was adopted to evaluate the solar 

passive systems [23]; the methodology divides the overall energy contribution of the sunspace to the 

heating of the adjacent room into four different solar gains: the solar radiation that penetrates directly 

into the room through its window after having passed through the sunspace, the thermal radiation 

stored in the opaque wall between the room and the sunspace due to the solar radiation incident on the 

wall, which is reduced by the presence of the sunspace, and the “buffer effect” due to the warm air 

contained in the sunspace; the pre-heating of ventilating air that passes through the sunspace increases 

its temperature. Solarius T and Solarius PV [24,25] were used for the evaluation of the plants 

efficiency (solar thermal and photovoltaic plants). These software packages allow the evaluation of the 

main plants output after defining all parameters: number and characteristics of the modules, 

geographical site, orientation of the modules and all components that define the two systems. Both 

software packages use weather data taken from UNI 10349 [21] and other technical Standards specific 

for the assessment of the solar energy received [26]; of course the energy provided by solar thermal 

and photovoltaic plants improves the performance of the energy generation systems. 
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4. In Situ Monitoring Methodology 

4.1. Infrared Analysis and Thermal Transmittance Measurements 

The evaluation of the thermal resistance of walls is very important for buildings thermal analyses [13]. 

The thermal properties of a building component can be evaluated by theoretical calculations (according 

to EN ISO 6946 [22]), by laboratory measurements (according to EN 8990 [27–29] and EN 1934),  

or by in-situ measurements (according to ISO 9869 [30]). 

In general, the thermal transmittance values evaluated by in-situ measurements result higher than 

the ones obtained by theoretical calculations. 

The latter are useful to assess quickly the thermal performance of the building envelope, but they do 

not usually define the real thermal behavior that instead in-situ measurement can show [31]. 

According to the ISO 9869, in order to consider the transient effects (storage and release of energy) 

induced in the wall, the average values of heat flow and temperatures are used, instead of the 

instantaneous values, evaluated over a sufficiently long period (average method [32–34]). The heat 

flow passing through the sample and the temperatures (surface or air) of the internal and external side 

of the measurement area should be acquired to evaluate the in-situ thermal transmittance. In order to 

perform the measurement, it is necessary to provide a heat flow meter (internal side) and at least two 

temperature sensors for each side. The temperature probes are usually installed on the surface of the 

sample, so that the measuring parameter is the conductance of the wall. Thermal transmittance is 

calculated by means of Standard heat convective coefficients [22]. 

Before the execution of the in-situ thermal transmittance measurements, it is therefore necessary to 

investigate the wall by infrared thermography, in order to avoid placing the sensors in correspondence 

of thermal bridges or defects in the envelope. Furthermore, infrared analysis results useful to assess the 

conditions of the overall building and to conduct a survey of building elements. 

4.2. Indoor Air and Comfort Analysis 

The indoor measurement sessions were carried out in winter and summertime for each building, 

trying to obtain an overall assessment of the comfort situation. It is necessary to consider that everyone 

inside its house administrates the technological systems in a different way, everyone manages 

windows or sunscreen openings in their own way, as well as the domestic hot water consumption; all 

these factors contribute to involve a high number of variables. Two multichannel systems (Figure 3) 

linked to different probes (in compliance with UNI EN ISO 7726 standard) [35] were used to get the 

instrumental data set, which were post-processed to obtain the classical comfort indexes PMV and 

PPD [36], according to UNI EN ISO 7730 [37,38]. Moreover, the measurement station was equipped 

with local discomfort probes: draft risk percentage of dissatisfied, floor temperature, vertical 

temperature gradient (between ankle and neck), and radiant asymmetry. The following values of 

metabolism and thermal clothing insulation were assumed: all people did light work such as domestic 

tasks, so the activity level was supposed equal to 70 W/m2 (1.20 met). Two configurations for males 

and females were considered in terms of Icl: summer male clothing was supposed of 0.70 clo, while 

female clothing was 0.50 clo. Winter clothing was 1.20 for male and 1.05 clo for female; finally, 

spring and autumn clothing was 0.98 clo for men and 0.88 for women [39,40]. The measurement 
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points were chosen for each room considering the inhabitants positions and the placement of cold or 

warm vertical and horizontal surfaces (for instance windows and skylights [41,42]). The selected 

rooms, mainly living rooms or bedrooms, were chosen as the most representative situations for the 

normal use conditions. The measurement sessions lasted one week for each apartment, with an 

acquisition rate of ten minutes. In the other rooms, the indoor conditions were controlled by stand- 

alone programmable sensors (Figure 4b). In order to have a complete view of the situation, each 

survey was linked to the external conditions of temperature and relative humidity. UNI EN ISO 7730 

(Annex A) [37] classifies the rooms into three categories according to PMV and PPD: the A category 

includes PPD < 6% while PMV is in the −0.2 ÷ +0.2 range; for the B category PPD < 10% and  

PMV = −0.5 ÷ +0.5; finally, for the C category PPD < 15% and PMV = −0.7 ÷ +0.7. 

Figure 3. (a) Multi channel systems and probes during the acquisition in a selected room; 

and (b) temperature and relative humidity sensors (red circle) in other rooms. 

 
(a) (b) 

4.3. Lighting Measurements 

Suitable lighting conditions enable people to perform visual tasks [43]; hygiene, health and energy 

saving requirements [44–48] recommend the use of daylight in residential buildings. In green buildings, 

particular attention is therefore given to daylighting to maximize visual comfort and energy efficiency. 

A preliminary survey of the rooms selected as representatives of the tested apartments was 

necessary to check the size and the position of windows, light sources and furniture. After identifying 

the main visual tasks, a grid was traced for the measurements, according to standard values of point 

spacing [43]. The following parameters were measured in the tested rooms, switching off the electric 

lighting sources (Figure 4): illuminance E (lux) due to daylight, both in winter and summer conditions 

(at the same time the outdoor illuminance was also measured), luminance L (cd/m2) due to daylight, 

window and floor areas Sw and Sf (m
2). 

Illuminance and luminance were also measured in artificial lighting condition, shielding the 

daylight, to give a comprehensive overview of visual comfort inside the buildings. 

Finally, the collected data were processed to calculate the reference indicators, adopted to assess 

both the indoor daylight and the artificial lighting performance. Results were compared with regulatory 

requirements [43,46] (see Table 2). 
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Table 2. Main indicators and limit values concerning indoor lighting performance. 

Indicators Quantity Description 

Statutory and  

regulatory  

requirements 

Average daylight  

factor 

DF = (E/E0) 

× 100 (%) 

E = average indoor illuminance on reference working 

planes; E0 = simultaneous average outdoor illuminance 

from the unobstructed sky, excluding direct sunlight 

≥DFlim = 2% 

Window-to- floor  

area ratio 
Sw/Sf Daylight ≥1/8 

Luminance ratio and  

distribution 
Lvo/Lx,y 

Lvo = average indoor luminance of visual object area; 

Lx,y = Lb ÷ s,light ÷ dark = maximum ÷ minimum indoor 

luminance of background ÷ surrounding areas 

≥ or ≤ (Lvo/Lx,y)lim 

according to areas 

Average illuminance E (lux) Artificial lighting 
≥Elim (lux) according 

to visual tasks 

Illuminance uniformity U0 = Emin/E Artificial lighting: Emin = minimum indoor illuminance ≥0.8 

Figure 4. Experimental lighting measurements: (a) illuminance measurements by an 

illuminance-chroma-meter; (b) luminance measurements by a luminance-meter; and  

(c) grid for the measurements, main visual tasks (hatched area) and position of light source 

(L) and windows (F) in a monitored room in Building 6. 

 
(a) (b) (c) 

4.4. Acoustic Measurements 

Noise affects health in terms of physical and psychological effects [49], becoming a primary issue 

when inadequate sound insulation conditions in buildings influence the well-being of occupants. 

Therefore, local building regulations introduced sound insulation requirements in order to improve 

acoustical comfort in dwellings [50,51]. National building regulations specify requirements for 

buildings in terms of airborne and impact sound insulation from traffic noise (roads, railways, airports) 

and service equipment. In Italy, specific requirements depending on the building type (dwellings, 

school, hospital, commercial buildings, etc.) were introduced since 1997 [52]. Sound insulation and 

indoor acoustic comfort conditions were analyzed in all the investigated buildings by means of field 

measurements, according to specific technical standards [52–55]; results were compared to the limits 

given by legislation requirements. In order to evaluate airborne and impact sound insulation properties 

of buildings elements, the descriptors (single-number indexes) defined in ISO 717 [54], and reported in 

Table 3 were used. Figure 5 shows the experimental equipment during the tests: a loudspeaker was 
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used as an artificial sound source, which can simulate external noise for the estimation of airborne 

sound insulation of façades [53] (Figure 5a).The tapping machine showed in Figure 6c was used for 

the evaluation of the impact sound insulation between dwellings [53]. 

Table 3. Main descriptors and limit values [50]. 

Descriptor Quantity Description 
Reference 

Technical Standard 

Statutory  

requirements limit 

Airborne sound  

insulation between rooms  

(in different dwellings) 

R’w Weighted Sound Insulation Index  
ISO 140-4  

ISO 717-1 
≥50 dB 

Facade sound insulation D2m,nT,w Façade acoustic insulation index  
ISO 140-5  

ISO 717-1 
≥40 dB 

Impact sound  

insulation of floors 
L’nw 

Impact sound pressure level index 

(corrected with the reverberation time) 

ISO 140-7  

ISO 717-2 
≤63 dB 

Noise from building  

service equipment 
LASmax 

A-weighted maximum sound pressure 

level (Slow-timeweighting) 

ISO 16032  

ISO 717-1 
≤35 dB (A) 

Figure 5. Experimental acoustic campaign in the investigated buildings: (a) façade sound 

insulation; (b) airborne sound insulation between rooms; and (c) impact sound insulation  

of floors. 

 
(a) (b) (c) 

Moreover, measurements of sound pressure level from service equipments (discontinuously 

working systems, discharge units of toilets) were carried out according to ISO 16032 [56]. For all the 

investigated buildings, at least one measurement for each descriptor was carried out. The investigated 

rooms, mainly living rooms or bedrooms, were chosen as the most representative situations. In some 

cases, the descriptor was evaluated for different situations: for instance, in dwellings with different kinds 

of floor (ceramic tiles or wood parquet), the impact sound pressure level L’nw was measured in both 

cases and the highest value (the worst situation for people, typically ceramic tiles) was considered in 

the results. 

4.5. Real Energy and Water Consumptions 

Real energy and water consumptions were analyzed in all the investigated buildings, in order to 

evaluate their actual performance. For each building some sample flats were chosen. The methodology 

of the consumptions data acquisition is based on the Italian standard UNI/TS 11300 [20]. 
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The analysis of the real consumptions was carried out monitoring periodically the energy and the 

water meters; the consumptions data were also provided by occupants and building managers. The 

heating energy consumptions in winter and the energy spent for production of domestic hot-water and 

cooking were separately counted. Energy consumptions for winter heating were obtained trough  

gas-meters or heat meters in case of central heating systems. Italian Standards impose different 

conventional heating periods, considering different Italian localities; the investigated buildings are 

located in the D and E Italian climatic zones, with a heating period that ranges respectively from  

1 November to 15 April and from 15 October to 15 April. Electricity energy consumptions were 

gathered trough electronic meters and water consumptions were collected through flow meters. 

Based on the reading of the meters, the difference between recorded values at the beginning and at 

the end of the monitoring period represented the amount of natural gas, electricity and water supplied 

in each flat. 

5. Results and Discussion 

5.1. Infrared Analysis and Thermal Transmittance Measurements 

Figure 6 shows several typologies of analysis aimed at verifying some aspects of the buildings. 

Thermograms can show, for instance, the thermal behaviour of windows (Figure 6a), doors, thermal 

bridges (Figure 6b) [19], air leakages, and HVAC systems (Figure 6c). 

Figure 6. Infrared images of monitored buildings. (a) Windows; (b) Thermal bridges;  

(c) HVAC systems Under-floor heating systems. 

  
(a) (b) (c) 

Infrared analysis supports in situ thermal transmittance measurement to install sensors on the wall, 

in order to avoid particular thermal fields due to thermal bridges or defects. Furthermore, the correct 

evaluation of the temperatures is useful to avoid the sun direct radiation on the external side of the wall 

during the measurement campaign; the heat flow-meter on the internal side has also to be shielded and 

the difference between the internal and the external temperatures should be at least 10 K. The 

acquisition period considered in these experimental campaigns is seven days, according to the 

recommendations of the Standards. Figure 7 shows one example of in situ thermal transmittance 

measurement conducted in one of the buildings. The main feature of these measurements is the 

unsteady-state of external temperatures trend due to the night-day alternation, while the internal 

temperature remains quite steady around 18 °C. The trend of the heat flux is strongly linked to the 

temperature difference between internal and external conditions; it shows the delay of thermal flux that 

reaches his maximum value of the day (probe installed on the internal side) some hours later than the 
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temperature difference peak between internal and external conditions. The specific wall studied is 

exposed towards north-east and it is not directly struck by solar radiation; in this specific case, the 

theoretical thermal transmittance of the wall studied results equal 0.39 W/m2·K while the thermal 

transmittance measured is equal 0.44 W/m2·K. 

Figure 7. Trends of internal and external temperature (a) and heat flux during (b) the  

in-situ thermal transmittance measurement. 

 
(a) 

 
(b) 

5.2. Comfort Analysis 

During the measurement campaigns, no guidance was given to the owners in order to obtain a 

standard evaluation, so everyone administrated their own house in an independent way. The comfort 

analysis is strictly related to inhabitants’ routine in the heating system management, temperature 

settings and duration of heating period in the day. The natural ventilation during autumn or winter has 
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a significant influence: window opening in the morning is a habit that modifies the thermal comfort 

response, despite building features or heating system efficiency. In summer buildings equipped with 

sunspaces are instead marked out with a significant shift in air temperature range. This event happened 

mainly when a wrong use of sunspaces occurred: Figure 8 shows a comparison between the indoor air 

temperature trend in two flats in Building 3: the first one is without sunspaces while the second one 

has one sunspace. The wrong management of ventilation causes a raise in the temperature of the room 

immediately adjacent to the sunspace. All these considerations lead to a deep variation in comfort 

measurements, giving the results described in the next section. 

Figure 8. Trends of internal air temperature in two flats, with and without sunspace. 

 

5.3. Lighting Measurements 

The indicators of indoor lighting performance were found to be in compliance with the statutory 

requirements in all the tested rooms. Only few cases showed daylight factors lower than the limit value 

(2%), both in winter and summer monitoring. The most critical indicators belonged to the Building 9 

(Table 4) due to the window-to-floor area average ratio that was lower than the limit (1/6 instead of 1/8 

because some windows open onto wide loggias or porches). 

Table 4. Indoor daylight in a monitored room in Building 9. 

Measure Regulatory requirements Verified 

Swindows 5.04 m2 
≥1/6·Sfloor = 5.57 m2 (porch) Negative 

≥1/8·Sfloor = 4.18 m2 Positive 

 Em E0m ηm = FLDm - - 

Winter 83.7 lx 4316 lx 1.9% ≥2% Negative 

Summer 147.7 lx 8530 lx 1.7% ≥2% Negative 
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5.4. Acoustic Measurements 

As far as the acoustic performance of the investigated buildings is concerned, the most critical 

descriptor was the façade acoustic insulation index (dB), which was found to be in agreement with the 

statutory requirements only for few cases. In most circumstances, poor façade sound insulation 

conditions depended on the presence of roller shutter boxes or aeration systems, which can improve 

thermohygrometric comfort conditions but can disadvantage acoustic sound insulation from external 

noise sources. For instance, in Building 9 two different façade acoustic insulation indexes were 

obtained considering the same kind of window (D2m,nT,w = 32 and 37 dB). Different values were 

obtained from the tests because of the wrong installation of the windows, as shown in Figure 9. This 

aspect is quite important for a good evaluation of the measurement results.  

Figure 9. Façade sound insulation (D2m,n,T): influence of wrong installation for the same 

type of window. 

 

Impact sound pressure level strongly depends on the kind of floor (ceramic tiles or parquet) and on 

the type of resilient material used in the floating floor installation. Figure 10 shows the comparison 

between two sound pressure level trends for Building 1. The sound pressure level index is 62 dB for 

the ceramic tiles and 46 dB for the parquet floating floor, considering the same total thickness. 
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Figure 10. Impact sound pressure level (L’n): influence of kind of floor (ceramic tiles  

or parquet). 

 

5.5. Real Energy and Water Consumptions 

The indicators of natural gas, electrical energy and water real consumptions were evaluated 

referring to a sample flat selected in each building; representative flats have similar net floor areas and 

numbers of occupants. The consumption data were divided by the number of days of the monitoring 

period to evaluate the daily average consumption of energy (kW·h/d) and water (l/d). 

The consumption of natural gas (m3) was converted in terms of primary energy (kW·h); the gas 

consumption for the domestic hot water production was evaluated during summer season (Figure 11b). 

The consumption of thermal energy for winter heating was estimated multiplying the daily average 

value by the number of days of the conventional heating period; then, it was divided by the net floor 

area of the sample flat to obtain the indicator of real energy consumption (kW·h/m2·yr). 

The indicator of electricity consumption (Figure 11a) was evaluated multiplying the daily average 

value by a period of 365 days and normalized by the net floor area of the flat (kW·h/m2·yr). 

The daily average consumption of water was divided by the number of the occupants of the flat to 

evaluate the average supply of water per capita in each flat (l/d·person). 

The natural gas consumptions were collected only for the first five buildings, since the other ones 

were occupied quite recently by the users, leaving the consumption data still not robust.  

Figure 12 compares the real thermal energy consumption for winter heating with the estimated 

winter energy performance index. The differences between actual and predicted values are lower than 

30% in all cases, except for Building 4, where the behavior of the occupant probably deviates 

significantly from the standard profile. 
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Figure 11. Daily average consumption of (a) electricity and (b) natural gas estimated for a 

reference flat of the Building 2, for the period 2008–2011. 

(a) (b) 

Figure 12. Estimated energy needs and real energy consumption for the reference  

flats (kW·h/m2·yr). 

  

6. Overall Analysis 

Figure 13 summarizes the main results of the monitoring activities, of the simulations and of the 

real consumption data; since the investigated parameters are so numerous, the evaluation of the overall 

performance can only be quali-quantitative. The so called Chercoff icons were chosen in Table 4. 

As far as the energy performance indexes, Italian Laws define the limits of buildings thermal 

transmittance for the opaque vertical walls, depending on the climatic zone and according to the year 

of construction; they are 0.50 W/m2·K for Buildings 3, 4 and 7 (climatic zone D) and 0.46 W/m2·K for 

Buildings 1, 2, 5, 6, 8 and 9 (Climatic zone E). Building 5 does not comply with the limits and the low 

energy performance of the envelope is evident also in wintertime. Its walls, according to data sheet of 

the envelope materials, should have a thermal transmittance equal to 0.29 W/m2·K, thanks to an 
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innovative insulation plaster, but in situ measurement did not confirm this performance. In general, 

summer and winter energy performance complies with the building energy classification, with the 

majority of the interventions (eight out of nine) falling in the winter energy classes A or B. The 

behavior of the constructions in summer seasons could be considered satisfactory (between Classes II 

and III for all buildings, considering that, for the Italian Law, Class I is the best and Class V is the 

worst). The lack of excellent marks is due to the scarce attention towards the control systems of solar 

gain, such as glass external film, or sunscreens, together with the paintings of the external surfaces, which 

obey more to aesthetic requirements than to radiation reflection properties. 

Figure 13. Results of the monitoring process for the nine analyzed buildings (Chercoff 

icons). Green = Satisfactory; Yellow = Average; Red = Unsatisfactory. 

 

1 2 3 4 5 6 7 8 9
Sunspaces
Sustainable insulation materials wood wood wood cork
Solar shadings
Heating System (centralized)
Under-floor heating system
Natural depuration system (phytodepuration)
Rain-water recovery system
Thermal transmittance  (W/m2K) 0.34 0.37 0.34 0.39 0.56 0.44 0.47 0.22 0.26

Winter Energy performance index  (kWh/m2*yr) 63 73 89 29 56 32 37 60 54

Summer Energy performance index  (kWh/m2*yr) 24 19 23 17 11 24 22 13 17

Energy Class (winter/summer) B/II C/II C/III B/II B/II A/III B/III B/II C/II

FACE

Solar Heating and DHW
Photovoltaic plants
Unconventional Heating System (Geothermal)

Natural gas (kWh/m2*yr) 82 95 78 18 71 n.a. n.a. n.a. n.a.

Electric Energy (kWh/m2*yr) 14 51 23 26 30 n.a. 24 n.a. 14
Water (l/d*person) 93 260 230 30 125 45 55 43 100

FACE

Daylight Factor DF (%) 3.6 2.7 3.3 2.7 3.3 3.2 5.9 2.9 2.1
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PPD Spring Summer 6.63 15.72 19.96 16.75 12.07 19.98 9.23 12.16 29.72
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The renewable energy sources proposed are constituted by the installation of solar collectors for 

domestic hot water production and rooms heating, photovoltaic plants, and unconventional heating 

systems (geothermal plants). The best score was assigned to those buildings, where at least two 

different kinds of renewable sources are included, a medium score when only one renewable plant is 

realized, and the worst score when no renewables are present. 

The reported values of real consumption represent the averages calculated with the data collected 

during the monitoring period and normalized to the net floor area or the number of occupants of each 

flat. The indicator of real consumptions were compared with performance benchmarks. The actual 

energy consumptions were referred to the same limit of the corresponding winter energy performance 

index, falling in the same winter energy class (only Buildings 1 and 2 result belong in a worse class 

than the estimated performance). The indicator of water consumption was referred to daily domestic 

water supply per capita suggested by the Italian Law (150 l/d·person). The benchmark of the 

household electricity consumption was the average value per capita calculated in 2011 by the Italian 

National Institute of Statistics (ISTAT) [57]. On this basis, the investigated buildings performed 

generally well (except for the sample flat of the Building 2). Focusing the attention on lighting, the 

daylight factor average values ranged from 2.1% to 5.9%, therefore all buildings showed a generally 

positive and effective use of daylight. Only two rooms of a total of 27 gave daylight factors lower than 

DFlim (2%), both during winter and summer monitoring. One of these two rooms belongs to Building 9, 

where average daylight factor was just 2.1%. A confirmation comes from the fact that, in the same 

building, window-to-floor area average ratio was lower than (Sw/Sf)lim (the limit is 1/6 instead of 1/8 

because some windows open onto wide loggias or porches). 

The acoustic experimental campaign showed that the Italian statutory requirements were totally 

satisfied only for the Buildings 5 and 8. On the other hand, the airborne sound insulation between rooms 

in different dwellings is good in almost all the cases (R’w ≥ 50 dB), except for Building 4 (R’w ≥ 48 dB). 

The most critical descriptor was the façade acoustic insulation index (dB): the values are in the 35–41 dB 

range and the measured value was higher than the limit value only for Building 2. Impact sound 

pressure level index values varied in 49–68 dB range, depending on the floor kind and on the type of 

resilient material used in the floating floor installation (as discussed in Section 5.4). In some cases 

(Buildings 4, 6 and 9), the selected materials or the wrong installation led to higher values than the 

maximum ones fixed by the Law. Regarding the comfort, results showed that only Buildings 1 and 7 

reached a comfortable indoor condition: Building 1, in particular, showed PMV and PPD values in 

spring and summer seasons typical of the A category. Building 7, despite its PPD value in autumn and 

winter (lightly over the C category), showed good comfort conditions. Buildings 3, 6 and 8 obtained 

sufficient scores, not far from the comfort situation. The other Buildings (2, 4, 5 and 9) showed a 

certain criticality: the worst situation was found in PPD spring and summer values for Building 9, and 

in PPD autumn and winter values for Building 5. In all these buildings both PMV and PPD calculated 

fell considerably out of the optimal ranges. 

Finally, the environmental quality of the buildings was evaluated through the method of the 

Certification of Environmental Sustainability by Umbria Region, inspired to ITACA protocol (similar 

to LEED). The ARPA-Umbria promotes the environmental certification of the residential buildings 

and it provides 22 worksheets to calculate the value of the performance indicators classified into five 

macro-areas and many sub-criteria: quality of the site (three sheets), resources consumption  
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(ten sheets), environmental loads (three sheets), indoor comfort (four sheets) and quality of the service 

(two sheets) [58]. The single final score is the sum of the value of each indicator, weighted according 

to its importance, and it allows to assign an environmental class (from A to D) to the buildings. A 

building in class D does not obtain the certification. Although the buildings were realized before the 

introduction of the ARPA procedure, the environmental impacts of all the interventions resulted low 

and obtained the ARPA-Umbria certification, except for Building 2. 

Finally, the cost effectiveness of the capital investment was evaluated. The energy-economic 

analysis is different case-by-case because each building is equipped with different innovative systems 

(under-floor heating systems, sunspaces, solar thermal plans, photovoltaic plans, natural materials, etc.). 

The cash flow can be analyzed for 30 years; considering an increasing of the initial investment of 

about 10%, the cost-benefit analysis shows that the pay-back times are approximately equal to  

13–14 years. 

7. Conclusions 

A growing interest is focusing in the recent years on green buildings, both for energy saving and 

low GHG emissions. Nevertheless they require higher investments than conventional ones, due to the 

higher cost of materials and of the integrated systems (such as Renewable Energy Systems—RES); 

therefore public funds are necessary for the development and the spreading of innovative solutions 

able to reach the environmental aims such the ones of the EU Directive 20-20-20. 

The Umbria Region in Italy recently funded some residential buildings, characterized by green 

technologies and sustainable solutions. An extended monitoring was carried out by the University of 

Perugia, in order to evaluate the energy, comfort, and environmental benefits really achieved thanks to 

the innovative solutions proposed, in a wide sample of buildings realized all over the Region. Many 

parameters were monitored and verified, such as energy consumption, thermal properties of materials 

and components, lighting and noise insulation characteristics, thermal comfort, and environmental 

sustainability by means of ITACA procedure, an Italian methodology similar to LEED. 

Numerous solutions were found and monitored, involving different materials, construction 

techniques, technological plants, passive and/or active solar systems, so that it is not possible to 

directly compare them by means of a single number index, able to take into account all the different 

aspects. A complex performance assessment methodology was therefore developed, characterized by 

wide experimental campaigns, in order to really characterize the different proposed solutions; 

numerical simulations were also performed for the prevision of energy requirements and for the 

comparison with the actual consumptions. In this way a critical comparison of all the examined aspects 

is provided, able to obtain a global viewpoint of each examined building. 

Overall results were satisfactory. A great part of the examined buildings had singular features, such 

as sunspaces, sustainable insulation materials, underfloor heating systems, and rainwater recovery 

systems. The thermal performance indexes were always good, especially the thermal transmittance; 

Energy Classes were in the A–C range for winter and in the I–III range for summer.  

At least one Renewable Energy Source system was present in all the buildings; six of the nine 

examined buildings were provided with two RES systems. Also the values of Daylight Factor and 

Window-to-floor area ratio were generally in compliance with the limitations imposed by the Law. 
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Finally, the measured natural gas, electric energy, and water consumptions were in a good agreement 

with the data obtained by the simulations; the environmental sustainability analysis, which includes all 

the above mentioned aspects and also some others, can be considered satisfactory: eight of the nine 

examined buildings obtained the certification. It may be concluded that the proposed approach can be a 

very useful to monitor the characteristics of green buildings, in order to verify their global energy and 

environmental performance and to provide the public bodies with a tool to control the actual 

achievement of design objectives. 
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