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Abstract: Power-level control is a crucial technique for the safe, stable and efficient 

operation of modular high temperature gas-cooled nuclear reactors (MHTGRs), which have 

strong inherent safety features and high outlet temperatures. The current power-level 

controllers of the MHTGRs need measurements of both the nuclear power and the helium 

temperature, which cannot provide satisfactory control performance and can even induce 

large oscillations when the neutron sensors are in error. In order to improve the fault 

tolerance of the control system, it is important to develop a power-level control strategy that 

only requires the helium temperature. The basis for developing this kind of control law is to 

give a state-observer of the MHTGR a relationship that only needs the measurement of 

helium temperature. With this in mind, a novel nonlinear state observer which only needs the 

measurement of helium temperature is proposed. This observer is globally convergent if 

there is no disturbance, and has the L2 disturbance attenuation performance if the disturbance 

is nonzero. The separation principle of this observer is also proven, which denotes that this 

observer can recover the performance of both globally asymptotic stabilizers and L2 

disturbance attenuators. Then, a new dynamic output feedback power-level control strategy 

is established, which is composed of this observer and the well-built static state-feedback 

power-level control based upon iterative dissipation assignment (IDA-PLC). Finally, 

numerical simulation results show the high performance and feasibility of this newly-built 

dynamic output feedback power-level controller. 

Keywords: modular high temperature gas-cooled reactor (MHTGR); nonlinear state 

observer; helium temperature feedback; power-level control 
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1. Introduction 

Although there have been some severe accidents, i.e., Three Mile Island, Chernobyl and Fukushima, 

nuclear energy is still the sole energy source that can substitute for fossil fuels in a centralized way and in 

a great amount with commercial availability and economic competitiveness. These accidents should not 

hinder the renaissance of nuclear energy, and they can stimulate the nuclear energy community to 

develop more safety, reliable and efficient nuclear power plants. It is well known that modular high 

temperature gas-cooled reactors (MHTGRs, such as the HTR-Module designed in Germany and the 

MHTGR designed in the US), which have inherent safety features and market flexibility, are candidates 

for the next generation of nuclear power plants. MHTGRs use helium as coolant and graphite as both 

moderator and structural material, and its fuel elements contain thousands of very small coated particles 

that are embedded in a graphite matrix. The coatings surrounding the particle kernel produce a robust 

energy source by acting as the containment boundary for the encapsulated material. There are two kinds 

of fuel elements for the MHTGR design, i.e., spherical and the prismatic elements. The former are 

exemplified by pebble-bed cores such as those in the AVR, THTR-300 and HTR-Module, and the latter 

leads to cylindrical cores such as Peach-Bottom and Fort. St. Vrain. The development of the MHTGR in 

China is inspiring. Supported by the Chinese national high-technology program, a 10 MWth high 

temperature gas-cooled test reactor (HTR-10) reached criticality and full power generation in December 

2000 and January 2003, respectively [1]. Five safety experiments were then carried out on the HTR-10 

in October 2003, which verified and demonstrated many inherent safety features of the MHTGR 

design [2]. A schematic view of the HTR-10 unit is shown in Figure 1. Based upon the experience in 

design and construction of the HTR-10, the high temperature gas-cooled reactor pebble-bed module 

(HTR-PM) project is then proposed. The major target of this project is to build a pebble-bed MHTGR 

demonstration plant which consists of two pebble-bed one-zone module reactors of combined 

2 × 250 MWth power, and adopts the operation scheme of two modules connected to one steam 

turbine/generator set [3,4]. Figure 2 shows that the module here is just a nuclear steam supplying system 

(NSSS) which is composed of an MHTGR, a helical coiled once-through steam generator (OTSG) and 

the necessary connecting pipes. 

Power-level regulation is a significant technique guaranteeing the safe, stable and efficient operation 

of all types of nuclear reactors. Due to the wide development of pressurized water reactors (PWRs), 

there have been some strong results in the field of power-level control for the PWRs. Edwards et al. 

developed the state feedback assisted classical controller (SFAC) which utilizes the state-feedback to 

modify the demand signal for an embedded classical output feedback controller, and is useful for 

existing power plant implementation since it leaves the current classical feedback loop in place [5]. In 

order to strengthen the robustness of the SFAC, a linear quadratic Gaussian regulation with loop transfer 

recovery (LQG/LTR) technique is then applied under the SFAC configuration [6,7]. A diagonal recurrent 

neural network was also applied for the improvement of temperature regulation performance [8]. These 

power-level control laws require a measurement of the nuclear power and provide regulation of both the 

nuclear power and coolant temperature. Moreover, there are some other types of advanced power-level 

control for nuclear reactors such as the nonlinear sliding mode control [9], the adaptive control based on 

neural networks [10], the fuzzy model predictive control [11], and the robust nonlinear model predictive 

control [12]. However, these advanced controllers still rely on the measurement of nuclear power. It is 
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clear that the MHTGRs are less mature than the PWRs, and less work has been done on power-level 

control in MHTGRs than has been done for PWRs. However, there are some promising power-level 

regulators. A feedback dissipation based power-level control law (FDBC) was developed, which has 

the virtues of being globally asymptotically stabilizing and easy implementation [13]. In order to 

improve the control performance, a nonlinear state-feedback power-level control based upon the 

technique of iterative damping assignment (IDA-PLC) was then proposed [14]. Further, a dynamic 

output feedback power-level control strategy composed of the IDA-PLC and the well-built dissipation 

based high gain filter (DHGF) [15,16] was established. It is noteworthy that these power-level 

regulators for MHTGRs need the measurement of both the nuclear power and the helium temperature. 

Figure 1. Schematic structure of the HTR-10. 

 

Figure 2. Schematic structure of the HTR-PM power plant. 
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For the pebble-bed MHTGRs such as HTR-10, HTR-Module and HTR-PM, spherical fuel elements 

are loaded into or unloaded from the reactor core without the need of shutting down the reactor. This 

causes sharp reactivity disturbances which drive the control rods to move at a high frequency and may 

lead to unexpected oscillations. Since the helium temperature is less sensitive to the reactivity 

disturbance than the nuclear power is, and in order to restrain oscillation and maintain the reactor 

thermal power, it is meaningful to develop the power-level control strategy only based upon the 

measurement of helium temperature. Moreover, if the neutron sensors are in fault so that the nuclear 

power cannot be directly obtained through measurement, then it is very meaningful to develop a 

power-level controller that only needs the measurement of helium temperature. Since there are 

well-designed static nonlinear state-feedback power-level control laws such as the IDA-PLC for the 

MHTGR, the central task in building the power-level control strategy that only requires a feedback loop 

for helium temperature is to give a state-observer that only needs the measurement of helium temperature. 

With this in mind, a novel nonlinear state observer providing globally convergent observation is 

proposed in this paper. It is proven that this observer is globally convergent if there is no disturbance, and 

has the L2 disturbance attenuation performance in case of nonzero disturbance. Moreover, the separation 

principle of this observer is also proven, which means that it can recover the performance of a globally 

asymptotic stabilizer and that of an L2 disturbance attenuator. A new nonlinear dynamic output feedback 

power-level control law which consists of this observer and the IDA-PLC given in [14] is then 

established. Numerical simulation results with discussion are finally given, which show both the 

feasibility and the satisfactory performance of this newly-built power-level control law. The structures of 

the feedback loops of the dynamic output feedback power-level control strategies presented in [14] and 

this paper are shown in Figure 3. Figure 3(a) shows the feedback loop in [14], and Figure 3(b) shows the 

feedback loop in this paper, which means that the control strategy given in this paper needs less 

measurement information than those in [13] and [14] need. 

Figure 3. Structures of feedback loops. 

 

2. Problem Formulation 

2.1. Nonlinear State-Space Model 

To carry out the problem formulation, it is necessary to introduce the nonlinear state space model 

used for observer design and controller formulation. Here, the dynamic model of the MHTGR can be 

written as [13,14,17]: 
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(1)

where nr is the relative nuclear power, cr is the relative concentration of delayed neutron precursor, β is 

the fraction of delayed fission neutrons, Λ (s−1) is the effective prompt neutron life time, ρr is the 

reactivity given by the control rods, λ (s) is the effective radioactive decay constant of the delayed 

neutron precursor, αc and αr (1/°C) are respectively the reactivity coefficients of the fuel and reflector 

temperatures, P0 (W) is the rated reactor thermal power, Tc (°C)is the average fuel temperature, Td (°C) is 

the average temperature of the helium inside the pebble-bed, Tdin (°C) is the temperature of the helium 

entering into the pebble-bed, Tc,m and Td,m are initial equilibrium values of Tc and Td respectively, Tr (°C) 

is the reflector temperature, Ωcd and Ωcr (W/°C) are respectively the heat transfer coefficient between the 

fuel and helium in the pebble-bed and that between the fuel and reflector inside the riser, Mp (W/°C) is 

the mass flowrate times the heat capacity of the helium inside the primary loop, μc and μd (Ws/°C) are 

respectively the total heat capacities of the fuel and the helium inside the reactor, Gr is the differential 

reactivity worth of the control rod, and zr is the rod speed signal. To obtain the state-space model for 

observer design, the deviations of the actual values of nr, cr, Tc, Td, Tdin, Tr and ρr from their equilibrium 

values, i.e., nr0, cr0, Tc0, Td0, Tdin0, Tr0 and ρr0 are respectively defined as δnr = nr − nr0, δcr = cr − cr0,  

δTc = Tc − Tc0, δTd = Td − Td0, δTdin = Tdin − Tdin0, δTr = Tr − Tr0 and δρr = ρr − ρr0. 

Further, we define: 

 Td c r r rδ δ δ δ δT T n cx  (2)

 Tdin rδ δT Tw  (3)

and: 

r ru G z  (4)

Then, the nonlinear state space model utilized to design the state-observer can be written as: 

x  f x   gu G x w,

y  h x ,





 (5)
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and: 

  1h xx  (9)

It is worth noting that the heat capacity of the reflector of the MHTGR is so large that δTr varies very 

slowly, and δTdin reflects the influence of the other parts of the MHTGR to the reactor core dynamics. 

Therefore, it is quite reasonable to view w defined in Equation (3) as a disturbance. 

2.2. Problem Formulation 

Choose the state-observer corresponding to system (5) as: 

̂x  f x̂   gu  F y  h x̂    (10)

where x̂   R5 is the state-observation, vector-valued function f is determined by (6), g and h are given 

by (7) and (9) respectively, and here F is the observer gain to be designed. 

From Equations (5) and (10), it is easy to obtain the dynamic equation of observation error  

defined by: 

 T

1 2 3 4 5ˆ e e e e ee x x   (11)

i.e.: 

e  f
e

e   Fe
1
G x w  (12)

where: 

f
e

e   f x   f x̂   (13)

Equation (13) can be easily satisfied since the vector-valued function f defined by (6) is clearly 

analytic.Furthermore, in order to form the theoretical problem to be solved, the concept of disturbance 

attenuation observer is firstly introduced as follows. 

Definition 1 (L2 Disturbance Attenuation Observer). Consider the following nonlinear system: 

     
 

=  




 d       

  
 (14)

where χ  Rn is the state vector, υ   Rp is the input, θ   Rm is the system output, d   Rq is the 

disturbance, functions ω, ζ, η and Γ are all smooth, and ω(O) = O. Suppose the state observer of 

system (14) takes the form: 

     ˆ ˆ ˆ ˆ=      
          (15)

where χ̂   Rn is the observer state, Λ is the observer gain. Define the evaluation signal of observer (15) as: 
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     (16)

where τ is the observation error satisfying: 

ˆ τ χ χ  (17)

State observer (15) is called an L2 disturbance attenuation observer if there exists a semi-positive 

function Ω(τ), such that the following γ-dissipation inequality: 

     2 22

2 2

1

2
     d    (18)

is satisfied, where Φ(τ) is a semi-positive function, ||·||2 is the Euclidean norm, and γ is a positive scalar 
called the L2 gain from disturbance d to evaluation signal μ.           □ 

Finally, the theoretical problem to be solved in the following parts is formulated as follows: 

Problem 1. How to design the gain of observer (10) so that it has the L2 disturbance attenuation 

performance if disturbance w ≠ O, and is globally convergent if w ≡ O? Moreover, under what 

conditions can this observer be coupled in the feedback loop and recover the performance of a 

state-feedback regulator? 

3. Observer Design with Performance Analysis 

3.1. Disturbance Attenuation and Convergence 

This subsection focuses on solving the first part of Problem 1, i.e., finding a proper observer gain L 

such that (10) is an L2 disturbance attenuation observer if disturbance w ≠ O, and is globally convergent if 

w ≡ O. The result is summarized as following Theorem 1, which is the first main result of this paper. 

Theorem 1. Consider state-observer (10) of MHTGR dynamics (5). Suppose that observer gain 

matrix F of observer (10) takes the form as: 

 T1 20 0 0F FF  (19)

where both F1 and F2 are positive scalars. Choose the evaluation signal corresponding to observer (10) as: 

 T1 3e ez  (20)

where e1 and e3 are defined in equation (11). Since δρr0 = 0, it is not loss of generality to assume that: 

4,0 4,0 r0ˆ δ 0x x     (21)

where 4,0x̂ , x4,0 and δρr0 are the initial values of 4x̂ , x4 and δρr respectively. Then, state-observer (10) is 

an L2 disturbance attenuation observer when w ≠ O if: 

(a) 1,0 1,0x̂ x , and 

(b) both positive scalars F1 and F2 are large enough. 

Proof: Substituting (19) into the observation error dynamics (12), and it is easy to see that: 
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(22)

From assumption (21) and the 4th equation of (22), we have: 

4 0e   (23)

Substituting Equation (23) into (22), we can obtain that:  
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(24)

It is clear that the first two equations of (24) govern the observation error dynamics related to 

thermal-hydraulics of the MHTGR, and the other two equations is related to the neutron kinetics. 

Choosing the Lyapunov function corresponding to the first two equations of (24) as: 

   2 2
e1 1 2 d 1 c 2

1
,

2
V e e e e    (25)

and differentiating (25) along the trajectory given by the first two equations of (24):  
V
e1

=
d
e

1
e
1
 

c
e

2
e

2

 
cd

e
1
 e

2 2
 2M

p
+

d
F

1 e1
2 

cr
e

2
2  P

0
e

2
e

3
 2M

p
e

1
T

din


cr
e

2
T

r
 

(26)

To formulate the Lyapunov function for the entire observation error dynamics, we need to analyze the 

property of term e1e3 in the following. Differentiate e1e3 along the trajectory determined by (24), and we 

can see that: 
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From differential Equation (27), we have: 

    p2 cd
1 3 0 2 1 2 3 3 din r0 3 c 2 r r 1

d d0

2 1
δ δ d

t
t st M

e e c e e F e e e e T n x e T e s 
 

  
   

        
 

  (28)

where c0 is the initial value of term e1e3, and: 
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Suppose observer gains L1 and L2 are large enough so that: 
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       (31)

where both ε1 and ε2 are positive scalars.  

Substituting inequalities (30) and (31) into (28):  

       

      

1 11 1

1 1 1

2 2
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(32)

where σ  (0,t).  

From inequality (32), if: 

 22
0 1

1

0c e
 


   

it is clear that e1e3 < 0. Further, if:  
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0 1
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then, from inequality (32), it is clear that e1e3 < 0 when: 
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 (33)

Since the inlet and outlet helium temperatures of the MHTGR can be measured, it is feasible to set: 

1,0 1,0x̂ x  

i.e.: 

0 10 30 0c e e   (34)

where e10 and e30 are the initial values of e1 and e3 respectively. Based upon (33) and (34), it is so clear 

that e1e3 < 0 for any t > 0 if inequality (31) is satisfied. Since e1e3 can be negative definite for any t > 0, it 

is then possible for us to construct the whole Lyapunov function and guarantee the L2 disturbance 

attenuation performance for observer (10). The detail derivation is given as follows. 

If we choose the Lyapunov function for the entire observation error dynamics as: 

e1 d
e 1 3

0 cd

V
V e e

P




   (35)
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and then differentiate it along the trajectory given by the observation error dynamics: 
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For the MHTGR, we have the following physical relationship, i.e.: 
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where ε3 is a positive scalar. 

Based upon inequalities (36), (38) and (39), we have: 
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From Definition 1, we can see that observer (10) has the performance of F2 disturbance attenuation, 
which completes the proof of this theorem.              □ 

Remark 1: Here, it is clear that if e1 ≠ 0 (t > 0), then there must exist a gain F2 such that 

inequality (31) is well satisfied. Otherwise, substitute e1 = 0 (t > 0) to the first two equations of (24):  

 Tdin  
cd cr

c

Tdin 
2MpP0

ccd

e3 
2Mpcr

ccd

Tr
 (41)

Since the dynamics of δTdin are related directly with the variations of the outlet helium temperature and 

the mean steam temperature in the secondary loop of the steam generator, which means that it has no 

direct relationship with e3 and δTr, Equation (41) can be only satisfied if δTdin = δTr = e3 = 0, which 

contradicts with w ≠ O. Thus, it is no loss of generality to suppose that there exists a large enough F2 
such that inequality (31) is satisfied.                □ 

Remark 2: Observer gains F1 and F2 are large enough means that inequalities (30), (31) and (39) are 

all satisfied. The function of F2 is to guarantee that e1e3 < 0 for any t > 0, and the function of gain  

L1 is to guarantee the disturbance attenuation performance of observer (10). Moreover, from 
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inequality (39), it is clear that smaller L2 gain γ needs larger observer gain F1.      □ 

From Theorem 1, we know that state-observer (10) has the L2 disturbance attenuation performance 

when w ≠ O. The following Theorem 2, which is the second main result of this paper, gives the 

sufficient condition for state-observer (10) to be globally convergent. 

Theorem 2. Consider state-observer (10) of MHTGR dynamics (5) with gain matrix F taking the 

form as (19). Suppose (21) is well satisfied, and assume that w = O. Then observer (10) is globally 

convergent if conditions a) and b) in Theorem 1 are both satisfied. 

Proof: Substitute w = O to (24), and the observation error dynamics can then be written as: 
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Choose the Lyapunov function of the first two equations of (42) as (25), and differentiate it along the 

trajectory given by (42):  
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Moreover, differentiating e1e3, i.e.: 
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From (44), it is clear that: 
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  (45)

where c0 is the initial value of term e1e3, and κ is also defined by (29).  

In the following, we should discuss in the cases of e1 ≠ 0 and e1 = 0 for any t > 0.  

If e1 ≠ 0 (t > 0), then there exists large enough observer gains F1 and F2 are so that inequalities (30) 

and: 

 2 2cd c
2 1 2 3 r0 3 2 4 1

d

F e e e n x e e
 


 

     (46)

where ε4 is a positive scalar, are well satisfied, then from (45) and assumption (21), we have: 

  122
1 3 1

1

1 te e e e  


    (47)

where σ  (0,t).  

Similarly to the proof of Theorem 1, we set the Lyapunov function of the entire error system (42)  

as (35), and then differentiate it along the trajectory given by (42): 
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M F
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(48)

Also, from the negative definition of e1e3, there must exist a large enough F1 satisfying: 

 cd p 2c 2 4 c
1 1 3 2 1 r0 3 1 2 5 1 3

d

2 ˆ ˆM x x
F e e F e n x e e e e

   
   
 

       
 

 (49)

where ε5 is a positive scalar. Substitute (49) to (48), we have: 

 2 p d 1 2 2cd cr d
e 1 2 1 2 5 1 3

0 0 0 cd

2M F
V e e e e e e

P P P

  





       (50)

From inequality (50), Equations (23) and (42), observation error e must be in the set defined by: 

 5 5, 0, 1,2,3,4ie e e e i      (51)

in which any e must converge to origin. From the Lassalle’s invariance principle, observer (10) is 

globally convergent in the case of e1 ≠ 0 (t > 0). 

Furthermore, if e1 = 0 for any t > 0, then from (42): 

 
     

 

2

c 2 cd cr 2 0 3

3 3 5 c r0 3 2 c 2 4 3

5 3 5

0

ˆ ˆ

e

e e P e

e e e n x e x x e

e e e

  

   




    
       
  





  

(52)

Then substituting the 1st equation of (52) into the other three equations, we can easily see that e1 = 0 

means that the observation error e must in the set defined by (51). Also from the Lassalle’s invariance 

principle, observer (10) is globally convergent in the case of e1 = 0 (t > 0).  
This completes the proof of Theorem 2.               □ 

Remark 3: In Theorem 2, observer gains F1 and F2 are large enough means that inequalities (30), (46) 
and (49) are all well satisfied.                 □ 

Theorems 1 and 2 give us the solution to the first part of Problem 1 raised in Section 2, i.e., the 

method of adjusting the gain matrix F of observer (10) so that it is globally convergent in the case of 

e1 = 0 (t > 0), and is the L2 disturbance attenuation observer in the case of e1 ≠ 0 (t > 0). In the 

following, we shall focus on whether observer (10) can recover the performance a well-designed 

power-level regulator of the MHTGR. 

3.2. Performance Recovery 

Here, observer (10) can recover the performance of a well-designed state-feedback power-level 

control if the dynamic output feedback power-level control strategy composed of this static 

state-feedback power-level regulator and observer (10) still keeps the key characteristics of this static 

state-feedback regulator such as the L2 disturbance attenuation performance and asymptotic stability. 
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Before giving the theoretical result about performance recovery, the definition of L2 disturbance 

attenuator is given as follows: 

Definition 2. Consider nonlinear system (14) with evaluation signal defined as: 

 ξ ξ χ  (53)

Control input u is said to be an L2 disturbance attenuator if there is a semi-positive smooth function 

Σ(x) such that following  -dissipation inequality: 

     2 22

2 2

1

2
Q    w    (54)

is satisfied, where Q(x) is a semi-positive function, and   is a positive scalar called the L2 gain from  
disturbance w to evaluation signal ξ.                □ 

The following theorem, i.e., the 3rd main result of this paper tells us under what conditions can 

observer (10) recover the performance of an L2 disturbance attenuator. 

Theorem 3. Consider MHTGR dynamics (5) with state-observer (10), and assume that the MHTGR 

is in the normal power operation, i.e.: 

r r0 1a n n x b     (55)

where both a and b are given positive scalars. Suppose that static state feedback power-level control of 

the MHTGR taking the form: 

 u  x  (56)

is an L2 disturbance attenuator if disturbance w ≠ O, i.e., there exists a semi-positive differentiable 

function W1 and an evaluation signal υ = υ(x) such that: 

     2 22
1 2 2

1

2
W S    x x w   (57)

where S is a semi-positive function, and ς is a positive scalar denoting the L2 gain from w to υ. Here, we 

assume that there exists a positive scalar M1 such that: 

1
1

1

W
M

x





 (58)

Therefore dynamic output feedback power-level control: 

u  x̂ ,
̂x  f x̂   gu  F y  h x̂   ,






 (59)

where observer gain matrix F satisfies (19), is an L2 disturbance attenuator in case of w ≠ O, if conditions 

(a) and (b) in Theorem 1 are both satisfied and: 

(c) function Θ satisfies: 

   1 2 1 2 2
L   x x x x  (60)

where L is a positive scalar and x1, x2   Rn satisfying (55) are two state-vectors of the  

MHTGR dynamics. 
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Proof: First, we shall prove that dynamic output feedback power-level control law (59) can recover 

the L2 disturbance attenuation performance of static state-feedback controller (56) if conditions (a), (b) 

and (c) of this theorem are all satisfied. Since condition (a) is satisfied and observer gain F2 is high 

enough, it is quite clear that from the proof of Theorem 1 that e1e3 is definitely negative. The Lyapunov 

function for the entire system composed of MHTGR dynamics (5) and power-level control (59) can be 

chosen as: 

1 e 1V V W   (61)

where Ve is determined by (35). 

Differentiate V1 along the trajectory given by (5) and (59), we have: 

 

 
   

   

1 1 eˆ
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2 2 2 2

1

1 1
ˆ

2 2

e n x e e T

W

x

  
 

   

 
     

 


    


w z w x x  

(62)

Further, from (60) and (58), we have: 

   2 2 2cd p 2d c 2 4 c d r
1 1 1 3 r0 3 1 2 r 2 2

cd d cd c

2 ˆ ˆ 1

2

M x x
V F e e n x e e T

     
     

   
             

   


U
e w  (63)

where: 

2
pd

1 2 1 1 12 2
cd cd

41 1
diag 0

2 2

M
M L F M L M L M L


  

  
          

U  (64)

2 2    (65)

TT T   ψ z υ  (66)

Based upon (55), ||e||U is definitely bounded and there must exist a large enough gain F1 such that: 

 2cd p c 2 4 c d r
1 1 3 r0 3 1 2 r 6 1 3

d cd c

2 ˆ ˆ
δ

M x x
F e e n x e e T e e

     
    
   

          
   

U
e  (67)

where ε6 is a positive scalar, then: 

 2 22
1 6 1 3 2 2

1

2
V e e    w   (68)

Because of the negative definition of e1e3 and from the Definition 2, dynamic output feedback control 
strategy (59) is clearly an L2 disturbance attenuator. This completes the proof of Theorem 3.   □ 

In the following, we shall explore whether observer (10) can recover the performance of a global 

asymptotic stabilizer. Before giving the result, the inverse Lyapunov lemma is introduced as follows: 
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Lemma 1 [18]. Consider an autonomous nonlinear system: 

     (69)

where χ  Rn is the state vector, ω: D   Rn → Rn is local Lipchitz, and ω(O) = O. Here, suppose that 

χ = O is a asymptotic stable steady point, and RA   D is the attracting domain of χ = O. Therefore, for 
all χ   RA, there is smooth positive definite function   χ  and a continuous positive definite 

function W(χ) such that: 

   A, R  χ χ  (70)

    A,W R
   


ω

χ χ χ
χ  (71)

and for any c > 0, {   χ  ≤ c} is a compact subset of RA. If steady point χ = O is globally 

asymptotically stable, i.e., D = RA = Rn, then conditions (70) and (71) respectively change to: 

  2
,  χ χ  (72)

    , RnW


   


ω χ χ χ
χ  (73)

Based upon Lemma 1, the following theorem, which is the 4th main result of this paper, gives us the 

sufficient condition for observer (10) to recover the performance of a globally asymptotic stabilizer. 

Theorem 4. Consider MHTGR dynamics (5) with state-observer (10), and assume that the MHTGR 

is in normal power operation, i.e., (55) is satisfied. Suppose that static state feedback power-level control 

of the MHTGR (56) is a globally asymptotic stabilizer if disturbance w = O, i.e., there is a smooth 

positive definite function W2(x) and a continuous positive definite function E(x) such that: 

 2 2
,W  x x  (74)

   2 , R nW
u E


    


f g χ x

x  (75)

Moreover, we assume that there exists a positive scalar M2 such that: 

2
2

1

W
M

x





 (76)

Therefore, dynamic output feedback power-level controller (59) is still a globally asymptotic stabilizer 

in case of w ≡ O, if conditions (a) and (b) in Theorem 1 and (c) in Theorem 2 are all satisfied. 

Proof: Similarly to the proof of Theorem 3, the whole Lyapunov function can be chosen as: 

2 e 2V V W   (77)

where Ve is determined by (35) whose negative definition is provided by large enough observer gain F2. 

Differentiate V2 along the trajectory given by (5) and (59): 
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(78)

Substituting (60) and (76) into (78), we have: 

   

 

2 p d 1 2 2cd cr
1 1 2 1 2

0 0 0

2cd p 2d c 2 4 c cd 2
1 1 3 r0 3 1 2 2 1 2
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2
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 x

e  
(79)

and it is clear that there must exist a large enough F1 such that: 

  2cd p 2c 2 4 c cd 2
1 1 3 r0 3 1 2 2 1 7 1 32

d d

2 ˆ ˆM x x M L
F e e n x e e F e e e

    
    
 

        
 

e  (80)

where ε7 is a positive scalar. Then, based on inequalities (79) and (80) we have: 

V1  E x   cd

P0

e1  e2 2


2M p  d F1

P0

e1
2 

cr

P0

e2
2 

d7

cd

e1e3
 (81)

which denotes the globally asymptotic stabilizing ability of dynamic output feedback power-level 
control (59). This completes the proof of Theorem 4.           □ 

Remark 4: Here, “enough high gains” is quite different from “very high gains”. Actually, in Theorem 

3, observer gains F1 and F2 are high enough means that both inequalities (67) and (31) hold. Similarly, in 
Theorem 4, F1 and F2 are high enough means that (80) and (46) are satisfied.       □ 

Remark 5: Since we have assumed that inequality (55) holds, i.e., the MHTGR runs at the normal 

power operation state, it is clear that inequalities (60), (58) and (76) are all easily satisfied in a practical 
engineering case.                    □ 

Theorems 1, 2, 3 and 4 give the main properties of observer (10) with the gain matrix defined by (19), 

i.e., if the observer gains are high enough, then it can recover the L2 disturbance attenuation performance 

in case of w ≠ O and provide globally asymptotic stabilization performance in case of w = O. Now, we 

have solved Problem 1 raised in Section 2. In the following, the feasibility of dynamic output feedback 

power-level control strategy (59) is verified through numerical simulation. 

4. Numerical Simulation with Discussion 

In order to verify the feasibility and show the performance of dynamic output feedback power-level 

control strategy (59), this newly developed controller is applied to the power-level regulation of a NSSS 

of the HTR-PM plant. The static state-feedback power-level controller adopts the IDA-PLC presented  

in [14]. The influence of the observer gains to the control performance is shown and analyzed. The 
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simulation software utilized in this numerical simulation is developed by the use of Visual C++ [19]. The 

dynamic models of the reactor and the OTSG respectively adopt the results given in [20] and [21]. 

Furthermore, the dynamic models of the steam turbine and the electrical generator are also included in 

the simulation software. 

4.1. Simulation Results 

In the simulation, two case studies, i.e., power maneuver and performance comparison are done to 

show both the feasibility and performance of newly-built dynamic output-feedback power-level 

controller (59). Here, the variation speed of the power demand signal in case of power maneuver is set to 

be 10%/min, and the amplitude of reactivity disturbance in case of performance comparison is set to  

be 0.2β. 

Case A (power maneuver): 

1. Power-level increases linearly from 50% to 100% RFP in 5 minute; 

2. Power-level decreases linearly from 100% to 50% RFP in 5 minute. 

Case B (performance comparison): 

1. Reactivity disturbance attenuation in 50% RFP; 

2. Reactivity disturbance attenuation in 100% RFP. 

In case B, the performance of dynamic output feedback power-level control strategy (59) is compared 

with both the feedback dissipation based power-level control (FDBC) presented in [13] and the simple 

proportional feedback control taking the form as: 

1u Kx  (82)

where K is set to be 0.002, and x1 is defined by (2). 

In this simulation, gains F1 and F2 of observer (10) are chosen to be: 

1

2 10

F F

F F


 

 (83)

where F is a given positive scalar, and the maximal control rod speed is set to be 10 cm/s. 

Case A: 

In this verification, the power demand decreases and increases linearly between 100% and 50% 

reactor full power-level (RFP). Due to the increase of the power demand from 50% to100% RFP, there 

are negative errors between the actual and set values of the nuclear power and the temperatures of the 

fuel, the helium flow and the reflector. These errors drive the power-level control strategy to lift the 

control rods for weakening these error signals. The transient responses of the relative nuclear power, the 

average fuel temperature, the outlet helium temperature and the control rod speed signal are all 

illustrated in Figure 4. As the power demand signal decreases from 100% to 50% RFP, there must be 

positive errors between the actual and set values of the process state variables which result in the 

insertion of control rods. The transient responses caused by the power demand decrease from 100% to  

50% RFP are given in Figure 5. 
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Figure 4. Simulation Results in Case A1. 

 

 

Figure 5. Simulation Results in Case A2. 
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Figure 5. Cont. 

 

Case B: 

In this test, a step positive reactivity disturbance valued 0.2β is added when the reactor is steady at  

50% RFP for 1,000 seconds. This positive set of reactivity disturbance caused the increase of the nuclear 

power, which in turn leads to the increase of the temperatures of the fuel, the helium inside the reactor 

and the reflector. The transient responses of the process variables corresponding to the FDBC, controller 

(59) and simple proportional controller (82) are all shown in Figure 6. The simulation results at 100% 

RFP with the same step positive reactivity disturbance are shown in Figure 7. 

Figure 6. Simulation Results in Case B1. 
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4.2. Discussion 

The power demand increase leads δnr to be negative and decreasing, which drives the power-level 

controller to generate a positive control rod speed signal. This results in the increases of both the neutron 

concentration and the fuel temperature. The heated fuel elements provide the increase of the outlet 

helium temperature. The reactor enters a steady state if the reactivity caused by the temperature feedback 

effect cancels that induced by withdrawing the control rods. Similarly, the power demand decrease 

results in a positive and increasing δnr, which drives the control law to insert the control rods. This 

operation makes the neutron concentration, the fuel temperature and the outlet helium temperature 

decrease all. The entire system comes into a steady state if the reactivity given by the temperature 

feedback cancels that caused by inserting the control rods. 

From Figures 4 and 5, the newly-built power level control provides satisfactory regulation 

performance in cases of the power decrease and the power increase if scalar F is large enough. This 

shows the strong feasibility of this newly-built dynamic output power-level control law. Moreover, from 

Figures 4 and 5, if F is smaller, i.e., if both observer gains F1 and F2 are smaller, then steady control error 

is larger. This is because that the observer gains are smaller, the L2 gain from the disturbance to the 

evaluation signal is larger, which means that the modeling error between the dynamic model for control 

design and that for simulation leads to larger regulation error, as we can see from Figures 4 and 5. 

Figure 7. Simulation Results in Case B2. 
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From the performance comparison results illustrated by Figures 6 and 7, a simple proportional 

feedback controller leads to extensive large overshoot and quite long transition period, and the FDBC 

has the best disturbance attenuation performance. Since the FDBC has the feedback loops of both the 

nuclear power and helium temperature, its performance is surely the best. However, though the control 

law developed in this paper only has the feedback loop of the helium temperature, its performance is 

very close to that of the FDBC, and the transition period of this newly-built controller is  

even smaller than that of the FDBC. This is mainly because observer (10) provides enough good 

state-observation for recover the performance of globally asymptotic stabilizer IDA-PLC presented  

in [14]. 

Finally, from the simulation results and the above discussion we can see that the performance of the 

newly-built power-level control strategy, using only with helium temperature feedback loop, is 

satisfactory, and the application of this new control law to a practical engineering scenario is feasible. 

Especially when the sensor of the neutron concentration is in error, the dynamic output feedback control 

law proposed in this paper can maintain the control performance.  

5. Conclusions 

Power-level control techniques are crucial for the safe, stable and efficient operation of any nuclear 

reactor, including MHTGRs. The current power-level control laws for nuclear reactors mostly rely on 

the measurement of both the nuclear power and the coolant temperature. However, if the neutron sensors 

are in error, these control strategy cannot provide satisfactory performance, and may even cause 

extensive overshoots of the process variables. Since the inlet and outlet coolant temperatures are 

relatively easy to measure, it is meaningful to design power-level controllers only with the feedback loop 

of the coolant temperature. Furthermore, this type of power-level controller is also meaningful to those 

pebble-bed MHTGRs for regulating the total reactor thermal power in the phases of loading or unloading 

fuel elements. It is also clear that a state-observer only needing the measurement of the coolant 

temperature is key for develop this type of power-level controller. Stimulated by this, a novel nonlinear 

state-observer is established for the MHTGRs in this paper. It has been proven that this observer is 

globally convergent if there is no disturbance, and has the L2 disturbance attenuation performance if the 

disturbance is nonzero. Moreover, the separation principles of this observer are also proved, which 

denotes that this observer can cover the performance of the globally asymptotic stabilizer and the L2 

disturbance attenuator. Then a dynamic output feedback power-level control strategy is formed by this 

new observer and the IDA-PLC presented in [14]. Finally numerical simulation results are given to 

verify the feasibility of the newly-built controller. The simulation results in case of power maneuver 

show that the performance of this newly-built dynamic output feedback power-level controller can be 

satisfactory if the observer feedback gains are high enough. Moreover, this new control has also been 

compared to the FDBC given in [13] and proportional feedback controller (82), which further shows the 

high performance and feasibility of this newly-developed power-level controller. 
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