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Abstract: Wind power forecasting techniques have received substantial attention recently
due to the increasing penetration of wind energy in national power systems. While the initial
focus has been on point forecasts, the need to quantify forecast uncertainty and communicate
the risk of extreme ramp events has led to an interest in producing probabilistic forecasts.
Using four years of wind power data from three wind farms in Denmark, we develop quantile
regression models to generate short-term probabilistic forecasts from 15 min up to six hours
ahead. More specifically, we investigate the potential of using various variability indices as
explanatory variables in order to include the influence of changing weather regimes. These
indices are extracted from the same wind power series and optimized specifically for each
quantile. The forecasting performance of this approach is compared with that of appropriate
benchmark models. Our results demonstrate that variability indices can increase the overall
skill of the forecasts and that the level of improvement depends on the specific quantile.

Keywords: wind power forecasting; wind power variability; quantile forecasting; density
forecasting; quantile regression; continuous ranked probability score; quantile loss function;
check function
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1. Introduction

Wind power is one of the fastest growing renewable energy sources (Barton and Infield [1]).
According to the European Wind Energy Association (EWEA), the wind industry has had an average
annual growth of 15.6% over the last 17 years (1995–2011). In 2011, 9616 MW of wind energy capacity
was installed in the EU, making a total of 93957 MW, which is sufficient to supply 6.3% of the European
Union’s electricity. These figures represent 21.4% of new power capacity showing that wind energy
continues to be a popular source of energy.

However, due to the large variability of wind speed caused by the unpredictable and dynamic nature of
the earth’s atmosphere, there are many fluctuations in wind power production. This inherent variability of
wind speed is the main cause of the uncertainty observed in wind power generation. Recently, scientists
have been directly or indirectly attempting to model this uncertainty and produce improved forecasts of
wind power production.

According to Boyle [2], the most important application for wind power forecasting is to reduce
the need for balancing the energy and reserve power which are needed to optimize the power plant
scheduling. Moreover, wind power forecasts are used for grid operation and grid security evaluation.
For maintenance and repair reasons, the grid operator needs to know current and future values of wind
power for each grid area or grid connection point. Wind power forecasts are also required for small
regions and individual wind farms.

The length of the relevant forecast horizon usually depends on the required application. For example,
in order to schedule power generation (grid management), forecast horizons of several hours are usually
sufficient, but for maintenance planning forecast horizons of several days or weeks are needed [3].

Since there is no efficient way to store wind energy, the wind power production decreases to zero if
wind speed drops below a certain level known as the “cut-in speed”. On the other hand, excessively
strong winds can cause serious damage to the wind turbines, and hence they are automatically shut down
at the “disconnection speed”, leading to an abrupt decline of power generation. In addition, the wind
power generated is limited by the capacity of each turbine. Therefore, it is important to produce accurate
wind power forecasts for enabling the efficient operation of wind turbines and reliable integration of
wind power into the national grid.

The literature of wind power forecasting starts with the work of Brown et al. [4] where they used
autoregressive processes to model and simulate the wind speed, and then estimate the wind power
by applying suitable transformations to values of wind speed. Most of the early literature focuses on
producing wind power point forecasts, directly, or indirectly in the sense that the focus is on modelling
the wind speed and then transforming the forecasts through a power curve [5,6]. The approach of
modelling the wind speed series is found to be quite useful because in many situations researchers do not
have access to wind power data due to its commercial sensitivity. This approach has as an advantage the
fact that the wind speed time series is much smoother than the corresponding wind power time series.
An obvious disadvantage is that, since the shape of the power curve may vary with the time of year and
different environmental conditions, it is much more difficult to model this type of behaviour.

Recent research has focused on producing probabilistic or density forecasts, because the point forecast
methods are not able to quantify the uncertainty related to the prediction. Point forecasts usually inform
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us about the conditional expectation of wind power production, given information up to the current time
and the estimated model parameters. Only a fully probabilistic framework will give us the opportunity
to model the uncertainty related to the prediction, and avoid the intrinsic uncertainty involved in a point
forecasting calibrated model. Up to now, the number of studies on multi-step quantile/density forecasting
is relatively small compared with point forecasting.

Moeanaddin and Tong [7] estimated densities using recursive numerical methods, which are quite
computationally intensive. Gneiting et al. [8] introduces regime-switching spaceCtime (RST) models
which identify forecast regimes at a wind energy site and fit a conditional predictive model for each
regime. The RST models were applied to 2-h-ahead forecasts of hourly average wind speed near the
Stateline wind energy center in the U.S. Pacific Northwest. One of the most recent regime-based
approaches is the one used by Trombe et al. [9], where they propose a general model formulation
based on a statistical approach and historical wind power measurements only. The model they propose
is an extension of Markov-Switching Autoregressive (MSAR) models with Generalized Autoregressive
Conditional Heteroscedastic (GARCH) errors in each regime to cope with the heteroscedasticity.

Pinson [10], by introducing and applying a generalised logistic transformation, managed to produce
ten-minute ahead density forecasts at the Horns Rev wind farm in Denmark. Pinson and Kariniotakis [11]
described a generic method for the providing of prediction intervals of wind power generation and
Sideratos and Hatziargyriou [12] proposed a novel methodology to produce probabilistic wind power
forecasts using radial basis function neural networks. Taylor et al. [6] used statistical time series
models and weather ensemble predictions to produce density forecasts for five wind farms in the
United Kingdom. This is a relatively new approach for wind power forecasting that uses ensemble
forecasts produced from numerical weather prediction (NWP) methods [6,13]. Moreover, Lau and
McSharry [14] produced multi-step density forecasts for the aggregated wind power series in Ireland,
using ARIMA-GARCH processes and exponential smoothing models. Jeon and Taylor [15] modelled
the inherent uncertainty in wind speed and direction using a bivariate VARMA-GARCH model and then
they modelled the stochastic relationship of wind power to wind speed using conditional kernel density
(CKD) estimation. This is a rather promising semi-non-parametric model but unfortunately cannot be
used as benchmark in this article because we aim to make predictions using only wind power data.

The quantile regression method [16] has been extensively used to produce wind power quantile
forecasts, using a variety of explanatory variables among which are wind speed, wind direction,
temperature and atmospheric pressure. Recent literature includes papers by Bremnes [17],
Nielsen et al. [18], and Moller et al. [19]. More specifically, Bremnes [17] produced wind power
probabilistic forecasts for a wind farm in Norway, using a local quantile regression model. The
predictors used for the local quantile regression were outputs from a NWP model (HIRLAM10), and
used lead times from 24 to 47 h. Nielsen et al. [18] used an existing wind power forecasting system
(Zephyr/WPPT) and showed how the analysis of the forecast error can be used to build a model for the
quantiles of the forecast error. The explanatory variables used in their quantile regression model include
meteorological forecasts of air density, friction velocity, wind speed and direction from a NWP model
(DMI-HIRLAM). Moreover, Moller et al. [19] presented a time-adaptive quantile regression algorithm
(based on the simplex algorithm) which manages to outperform a static quantile regression model on
a data set with wind power production. In addition, Pritchard [20], discussed ways of formulating
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quantile-type models for forecasting variations in wind power within a few hours. Such models can
predict quantiles of the conditional distribution of the wind power available at some future time using
information presently available.

Davy et al. [21], proposed a new variability index that is designed to detect rapid fluctuations of
wind speed or power that are sustained for a length of time, and used it as an explanatory variable in the
quantile regression model they constructed. Bossavy et al. [22] extracted two new indices that are able
to recognize and predict ramp events (A ramp event is defined as a large change in the power production
of a wind farm or a collection of wind farms over a short period of time.) in the wind power series,
and used them to produce quantile estimates with the quantile regression forest method as their basic
forecasting system. Finally, Gneiting [23] studied the behaviour of quantiles as optimal predictors and
illustrated the relevance of decision theoretic guidance in the transition from a predictive distribution
to a point forecast using the Bank of England density forecasts of United Kingdom inflation rates, and
probabilistic predictions of wind energy resources in the Pacific Northwest.

This article does not have as a purpose to develop models that can compete with the commercially
available models that focus on forecast horizons greater than six hours (and are using NWPs). This is
also the main reason we chose a very short forecast horizon (six hours), since it has been shown that
statistical time series models may outperform sophisticated meteorological forecasts for short lead times
within six hours [24]. In fact, NWPs are not even available (for some regions) for lead times shorter than
three hours. So, as mentioned above, our choice of such a short forecast horizon is particularly useful
for the assessment of grid security and operation. We would like to investigate the extent to which the
use of quantile regression models with endogenous explanatory variables can improve the forecasting
performance of probabilistic benchmarks such as persistence and climatology.

In this article we use wind power series from three wind farms in Denmark, to produce very short-term
quantile forecasts, from 15 min up to six hours ahead. In order to produce quantile forecasts, we will
use a linear quantile regression model, with explanatory variables extracted from the same wind power
time series. Modelling the wind power series directly is preferable to a method based on wind speed
forecasts because we avoid the uncertainty involved in transforming wind speed forecasts back to wind
power forecasts using the power curve. The fact that we use only endogenous explanatory variables is
also a very important practical consideration that we have taken on board to ensure the ability to apply
our model to all wind farms. Power systems operators will require an approach to forecast a wide range
of sites, where a collection of different wind farm owners implies that the only variable that they are
guaranteed to have access to is the wind power generation over time.

Four new variability indices will be produced (extracted from the original wind power time series),
which serve to capture the volatile nature of the wind power series. These indices, together with some
lagged versions of the wind power series, will be used as explanatory variables in the quantile regression
model. As for any regression model, we need predictions (point forecasts) for the future values of the
explanatory variables in order to produce future quantile estimates. To produce these predictions we will
use time series models that are able to model both the mean and the variance of the underlying series.

The motivation behind the chosen model structure is based on understanding the way that the
underlying weather variability can affect the conditional predictive density of the wind power generation.
We would like to keep the model structure as simple as possible and therefore assume that the probability
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of observing a value of wind power below a certain level can be written as a function of some local mean
plus the local variability involved in observing the specific wind power value. A linear combination
of recently observed wind power values seems to be the easiest way to identify a function that can
forecast the expected value of a specific quantile, given recent information. It is worth noticing that the
model may be linear in parameters but the nonlinearity is attained in the explanatory variable themselves,
and especially in the variability indices. In addition, the variability indices can capture the underlying
weather variability, and hence help to improve the probabilistic forecasts given a certain weather regime.

The three Danish wind farms were chosen according to their monthly wind power capacity
and standard deviation. We choose one high, one low, and one average variability wind farm,
in order to understand better the ability of each model to produce probabilistic forecasts under
different circumstances.

The indices used will be independently optimized for each of the three wind farms, using a one-fold
cross validation technique. In fact, two different optimizations will take place for each wind farm:
The first one will aim to minimize the Check Function Score (defined in Section 4.2) produced by a
1-step ahead quantile regression forecast, for each of 19 different quantiles. The second one will aim to
minimize the averaged Check Function Score, produced by taking the average over all 24 predicted lead
times (equal to six hours), for each quantile. The final forecast results will be compared with those of
some widely used benchmark models (persistence distribution and unconditional distribution).

The remainder of the article is presented as follows. In Section 2 we will introduce the wind power
data, and the new variability indices will be derived in Section 3. Section 4 will present the methodology
behind the various models and explain ways to evaluate the resulting quantile forecasts. In Section 5
we will present the four competing quantile regression models and optimize their quantile forecast
performance on the in-sample testing set. In Section 6 the out-of-sample quantile and density forecast
performance of the competing quantile regression models will be assessed, and Section 7 will conclude
the article.

2. Wind Power Data

We use wind power data recorded at three wind farms in Denmark summarized in Table 1. These wind
farms were chosen to have different amounts of wind power variability, located in different geographical
regions (The 446 wind farms in Denmark are assigned to 15 different geographical regions, but no further
information about the actual locations of the wind farms is disclosed), and have the smallest percentage
of missing values among all available wind farms. The percentage of missing values (mostly isolated
points) is found to be less than 0.025% for all three wind farms, and missing values were imputed using
linear interpolation. For such a small percentage of missing values, the smoothing effect caused by using
linear interpolation to impute the missing values is practically negligible.
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Table 1. The Danish wind farms used in this study.

Wind farm station name Wind power variability Wind farm rated capacity (kW)

DØR Low 1000
ALB Medium 25,500
VES High 2195

Our data sets contain wind power measurements recorded every 15 min for four years, from 1 January
2007 to 31 December 2010. The data of each wind farm is bounded between zero and the maximum
capacity of the wind farms. The zero value is attained in the case of excessively strong wind, where the
turbines shut down in order to prevent them from damage, or in the case of very weak wind (the cut-in
wind speed, usually 3–4 ms−1 according to Pinson [10]). In order to facilitate comparisons between the
data sets of different capacities, we normalize the wind power data of each wind farm by dividing by
the total (rated) capacity, which is constant over the four years period. Hence, the data is now bounded
within the interval [0,1].

We dissect the data of each farm into a set of exactly two years (2007 and 2008) for in-sample model
training and calibration, and an out-of-sample testing set (the remaining two years) for out-of-sample
testing and model evaluation. The in-sample set is dissected again into two sub-sets, a training set and a
testing set. For the in-sample training set we use the first 1.5 years and for the in-sample testing set the
remaining half year. This way, we can use a one-fold cross validation technique to optimize the indices
introduced in Section 3, and test the performance of our final chosen model using the out-of-sample
testing set.

The time series plots for the year 2010, together with the monthly mean power output and standard
deviation, are shown in Figure 1. The monthly mean power output and monthly standard deviation were
generated by taking the mean and standard deviation of wind power, respectively, for each month over
the entire four year period. As we observe, the three wind farms have different wind power variability.
More specifically, the first and last wind farms of Figure 1 have the lowest and highest possible wind
power variability for all four years (from all the available wind farms in Denmark), without having any
significant changes (Wind power variability may change from year to year by addition of new turbines
or removal (maybe for maintenance) of existing ones.) in the capacity from year to year. The second
wind farm of Figure 1 was chosen to have an average (medium) wind power variability compared with
the other two farms, but again without having any significant changes in the monthly capacity from year
to year.

3. Indices of Wind Power Variability

Davy et al. [21] proposed a variability index that is designed to detect rapid fluctuations of wind
speed or power that are sustained for a length of time. They defined this variability index as the
standard deviation of a band-limited signal in a moving window, and they constructed such an index
for a wind speed time series. This variability index depends on four parameters: the order of the filter
(integer greater than one), the upper and lower frequencies of the extracted signal, and the width of
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the moving window. We would like to use such an index as an explanatory variable in our quantile
regression, but a proper optimization of this is too computationally expensive because of the number of
parameters involved.

Figure 1. Time series plots of normalized power data for the three chosen Danish wind
farms, for the year 2010. Please note that the point on the time axis labelled Jan refers to
00:00 on 1 January and similarly for every month.

Instead, we propose a parsimonious variability index which depends only on two parameters, (m,n)
where m,n ∈ N0\{1}, and is constructed as follows. Firstly we smooth our original wind power series
using an averaging window of size m, in order to obtain the smoothed wind power series,

rt =

 1
m

∑m
i=1 yt−i+1 if m > 1

yt if m = 0
(1)

for t ≥ m. Note that this series behaves in a fully retrospective way, in the sense that each point of the
series depends only on the historical values of the original series. Since the smoothed series is m − 1

points smaller than the original series, we set rt = rm, for t = 1, 2, ...,m− 1.
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Finally, the new variability index is just the standard deviation of the extracted smoothed wind power
series in a moving window of width n. So, if rt is a given point of the smoothed series, we define the
new index as

SDt =


√

1
n−1

∑n
i=1

(
rt−i+1 − 1

n

∑n
j=1 rt−j+1

)2 if n > 1

rt if n = 0
(2)

for t ≥ n. Again, we impute the first n − 1 points of the series by setting SDt = SDn, for
t = 1, 2, ..., n − 1. This index can be optimized much more easily than the one proposed by
Davy et al. [21], since it has only two parameters: the smoothing parameter m, and the variability
parameter n.

By similar reasoning, we create another three variability indices. We create the smoothed wind power
series, rt, as defined by Equation (1), and then instead of finding the standard deviation we find the
sample interquartile range (IQR), the 5% and the 95% sample quantiles of the smoothed series over a
moving variability window (different for each series) of width n.

There are many different ways to define the quantiles of a sample. We use the definition recommended
by Hyndman and Fan [25] and presented as follows. Let Rt = {rt−n+1, ..., rt−1, rt} for t ≥ n > 1,
denote the order statistics of Rt as {r(1), ..., r(n)} and let Q̂Rt(p) denote the sample p-quantile of Rt with
proportion p ∈ (0, 1). We calculate Q̂Rt(p) (for a chosen proportion p) by firstly plotting r(k) against pk,
where pk =

k−1/3
n+1/3

and k = 1, .., n. This plot is called a quantile plot and pk a plotting position. Then, we

use linear interpolation of (pk, r(k)) to get the solution (p, Q̂Rt(p)) for a chosen 0 < p < 1. Therefore,
the three new indices can be defined as:

IQRt =

Q̂Rt(0.75)− Q̂Rt(0.25) if n > 1

rt if n = 0
(3)

Q05t =

Q̂Rt(0.05) if n > 1

rt if n = 0
(4)

Q95t =

Q̂Rt(0.95) if n > 1

rt if n = 0
(5)

for t ≥ n. We also impute their values for t = 1, ..., n − 1 in a similar way as we did for the SD index.
An example of the construction of the three variability wind power indices is shown in Figure 2. A first
observation is that the IQR and SD indices behave similarly, but the IQR index has higher peaks than
the SD index, and hence gives more emphasis to the high variability regions of the wind power series.
Moreover, the Q05 and Q95 indices also behave quite similarly, capturing the two tails of the wind power
distribution over a predefined window.

These indices will be properly optimized and will be used, together with some lagged values of the
original power series, as explanatory variables in the quantile regression introduced in the next section.
It is worth mentioning that the choice of firstly smoothing the wind power series is taken in order to take
into consideration the fact that any noise may hide or alter the pattern of the underlying weather regime
we wish to capture. By choosing m = 0 we do not remove any of the underlying noise, and hence we
assume that the weather variability is fully captured by using the original wind power time series.
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Figure 2. Wind power time series plot of the low variability farm, together with the four
variability indices (Q05, Q95 on upper plot, and SD, IQR on lower plot). The parameters are
chosen to be the same for all indices to facilitate comparison (m = 30 and n = 30).
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4. Quantile Regression, Forecasting, and Evaluation Methodology

In order for the paper to be self-consistent, we include the theory of linear quantile regression in
Section 4.1. In Section 4.2 we introduce the methodology we will use to evaluate the produced quantile
and density forecasts.

4.1. Quantile Regression

Given a random variable, yt, and a strictly increasing continuous CDF, Ft(y), the αi-quantile, q(αi)
t (y),

with proportion αi ∈ [0, 1] is defined as the value for which the probability of obtaining values of yt
below q

(αi)
t is αi:

P (yt < q
(αi)
t ) = αi or q

(αi)
t = F−1t (αi) (6)

Note that the notation yt is used for denoting both the stochastic state of the random variable at time
t = 1, 2, ..., T , and the measured value at that time for a training set of size T .
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Quantile regression, introduced by Koenker and Bassett [16], models q(αi)
t for αi ∈ [0, 1], as a linear

combination of some given explanatory variables (also called regressors or predictors). So, the αi-
quantile is modelled as:

q
(αi)
t = γ

(αi)
0 + γ

(αi)
1 xt,1 + ...+ γ(αi)

p xt,p

= γ
(αi)
0 +

p∑
j=1

γ
(αi)
j xt,j

(7)

where γ(αi)
j are unknown coefficients depending on αi, and xt,j are the p known explanatory variables. In

quantile regression, a regression coefficient estimates the change in a specified quantile of the response
variable produced by a one unit change in the corresponding explanatory variable.

We define the quantile loss function [16], also known as the check function, for a given proportion
αi ∈ [0, 1] as:

ραi
(u) =

(
αi − 1{u<0}

)
u

=

αiu, u ≥ 0

(αi − 1)u, u < 0

(8)

where u is a given value. Then, the sample αi-quantile can be calculated by minimizing
∑T

t=1 ραi
(yt−q)

with respect to q. Hence, we can estimate the unknown coefficients, γ(αi)
j , by replacing q with the

right-hand side of Equation (7):

γ̂(αi) = argmin
γ

T∑
t=1

ραi

{
yt − (γ0 + γ1xt,1 + ...+ γpxt,p)

}
(9)

where γ̂(αi) is a vector containing the unknown coefficients. Usually, these estimates are calculated using
linear programming techniques as in Koenker and D’Orey [26].

In this article we will use quantile regression to forecast the values of quantiles with nominal
proportion αi = {0.05, 0.10, ..., 0.95}, for forecast horizons k = 1, 2, ..., 24, measured in time steps of
15 min. We denote the forecast for the quantile with nominal proportion αi issued at time t for forecast
time t + k, by q̂(αi)

t+k|t(y). In order to produce these forecasts, we use Equation (7), and the estimated
coefficients, γ̂(αi):

q̂
(αi)
t+k|t(y) = γ

(αi)
0 + γ

(αi)
1 x̂t+k|t,1 + ...+ γ(αi)

p x̂t+k|t,p

= γ
(αi)
0 +

p∑
j=1

γ
(αi)
j x̂t+k|t,j

(10)

where x̂t+k|t,j for j = 1, ..., p denote the forecasts of the explanatory variables xt,j , issued at time t with
lead time t+ k.

The random variable yt will represent the normalized wind power time series, (yt), and the
explanatory variables will be represented by time series, (xt,j), extracted from the normalized wind
power series. In order to produce the forecasts, x̂t+k|t,j , we will fit suitable time series models to the
variables (xt,j), and then predict from these models up to t+ k values ahead.
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It is worth mentioning that by producing quantile forecasts using quantile regression, we may end
up with some quantile forecasts crossing each other. This is a not very common phenomenon for
so few quantile forecasts (19 in our case), but monitoring its occurrence is very important. In our
analysis, whenever this phenomenon happens (it occurs very rarely because we fit the models to a large
amount of data) we just shift the crossing quantile forecasts in order to keep F̂t+k

(
q̂
(αi)
t+k|t

)
= αi, for

αi = {0.05, 0.10, ..., 0.95}, a strictly increasing function.

4.2. Quantile and Density Forecast Evaluation

The evaluation of the quantile forecasts, for each quantile, αi = {0.05, 0.10, ..., 0.95}, will be
undertaken using the quantile loss function:

The quantile loss function, also known as the check function [3,27] is used to define a specific
quantile of the distribution and was defined in Section 4.1, Equation (8). Hence, given a testing set of
size N , we can estimate a particular quantile, q̂(αi), with proportion αi, using

q̂(αi) = min
q

N∑
t=1

ραi
(yt − q) (11)

and therefore we can evaluate a series of quantile forecasts, q̂(αi)
t+k|t, issued at time t with lead time t + k

and nominal proportion αi, using:

QL(k, αi) =
1

N

N∑
t=1

ραi
(yt+k − q̂(αi)

t+k|t) (12)

This is the average over the whole testing set of the check function score, ραi
(yt+k − q̂

(αi)
t+k|t), for the

quantile αi, for a k-step ahead prediction. From now on we will call this function the Check Function
(CF), and the its score the Check Function Score (CFS) .

Using the different quantile forecasts we can also reconstruct the whole probability / cumulative
forecasted distribution. We use the Continuous Ranked Probability Score (CRPS) in order to evaluate
the density forecasts for each forecast horizon:

The crps [28] is computed by taking the integral of the Brier scores for the associated probability
forecasts at all real valued thresholds,

crps(F̂t+k|t(y), yt+k) =

∫ +∞

−∞

(
F̂t+k|t(y)− 1{y≥yt+k}

)2
dy (13)

=

∫ 1

0

QSαi

(
F̂−1t+k|t(αi), yt+k

)
dαi (14)

where F̂t+k|t(y) corresponds to the CDF forecast, and yt+k to the corresponding verification. 1{y≥yt+k}

is an indicator function that equals one if y ≥ yt+k and zero otherwise. The quantile score, QSαi
[29], is

defined by
QSαi

(q, y) = 2
(
αi − 1{y<q}

)(
y − q

)
(15)
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Hence, the average of these crps values over each forecast-verification pair gives the CRPS for each
forecast horizon k:

CRPS(k) =
1

N

N∑
t=1

crps(F̂t+k|t(y), yt+k) (16)

= 2

∫ 1

0

QL(k, αi) dαi (17)

where QL(k, αi) is CF defined in Equation (12). Representation (17) is useful to produce a rough
estimate of the in-sample CRPS for each forecast horizon, using the CFS for each quantile. This
is a rather poor approximation of the CRPS, because the number of quantiles used in this article
(19 quantiles), is not large enough to produce an accurate approximation of the integral in Equation (17).

In order to find the out-of-sample CRPS for each k, we will use the following alternative
representation of the crps, introduced by Gneiting and Raftery [29]:

crps(F̂t+k|t(y), yt+k) = E F |X − yt+k| −
1

2
E F |X −X ′| (18)

where X and X ′ are independent copies of a random variable with CDF F̂t+k|t. This representation is
particularly useful when F̂ is represented by a sample, as in our case. Then, the CPRS for each forecast
horizon k is given by Equation (16).

Moreover, it will be necessary to quantify the gain/loss of some forecasting models with respect to
a chosen reference model. Following McSharry et al. [3], this gain, denoted as an improvement with
respect to the considered reference forecast system, is called a Skill Score and is defined as:

Skill Score(k) =
SCOREref(k)− SCORE(k)

SCOREref(k)
= 1− SCORE(k)

SCOREref(k)
(19)

where k is the lead time of the forecast and SCORE is considered the evaluation criterion score (such
as CRPS or CFS). By using the above definition we can also introduce the Average Skill Score. This
is just the Skill Score with the scores of the competing and reference models averaged over all forecast
horizons. It is defined as:

Average Skill Score = 1−
∑kmax

k=1 SCORE(k)∑kmax
k=1 SCOREref(k)

(20)

So, when we are talking about Score, the lower the value the better the performance; but, when we are
talking about Skill Score (or Average Skill Score), the higher the value the better, since we are comparing
the candidate model to the reference model. Please note that the reference model will be different each
time, and chosen according to the comparison we wish to make.

In order to formally rank and statistically justify any possible difference in the CRPS and CFS of
the competing models with respect to the reference models, we will use the Amisano and Giacomini
test [30] of equal forecast performance. This test is based on the statistic

tN,k =
√
N

SCORE(k)− SCOREref(k)

σ̂N,k
(21)
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where SCORE again is considered the evaluation criterion score such as the CRPS or CFS, N is the
out-of-sample size, and

σ̂2
N,k =

1

N − k + 1

k−1∑
j=−(k−1)

1+N−k−|j|∑
t=1

δt,kδt+|j|,k where δt,k = S(t+ k|t)− Sref(t+ k|t) (22)

The functions S and Sref represent the before averaging scores (such as the crps of Equations (13) or
(18) and check function score defined just after Equation (12)) of the competing and reference models,
respectively. Assuming suitable regularity conditions, according to Amisano and Giacomini [30],
the statistic tN,k is asymptotically standard normal under the null hypothesis of zero expected score
differentials. Small p-values of this test provide evidence that the difference in the forecast performance
of the two forecasting (given a specific evaluation score) is statistically significant.

5. Optimization of the Variability Indices

In this section we will introduce four different quantile regression models, and using one-fold cross
validation try to optimize their probabilistic forecasting performances. Our main goal is to evaluate
whether or not the four variability indices (introduced in Section 3) can help to provide trustworthy
quantile forecasts of wind power, when used as explanatory variables in the quantile regression
model (7). For this purpose, we have to find the optimal set of parameters (m,n) of these indices,
which provides the best quantile forecast performance, for each individual quantile. We do that using
the following procedure.

For each index, we sample different combinations of parameters from the range
m,n = {0, 8, 16, ..., 192}, in order to produce 625 different realizations of each index, for each
wind farm. A preliminary analysis showed that creating a moving window larger than 192 time-points
wide (2880 min i.e., 2 days) did not increase the performance of the indices.

Then, for each set of parameters, we fit the following four different quantile regression models on the
in-sample training set (of each wind farm), for each of the 19 quantiles αi = {0.05, 0.1, ..., 0.95}:

SD model: qt =γ01 + γ11yt−1 + γ21yt−2 + γ31yt−3 + γ41SD
(αi)
t

IQR model: qt =γ02 + γ12yt−1 + γ22yt−2 + γ32yt−3 + γ42IQR
(αi)
t

Q05 model: qt =γ03 + γ13yt−1 + γ23yt−2 + γ33yt−3 + γ43Q05
(αi)
t

Q95 model: qt =γ04 + γ14yt−1 + γ24yt−2 + γ34yt−3 + γ44Q95
(αi)
t

(23)

where qt ≡ q
(αi)
t is defined in Equation (6), γhl ≡ γ

(αi)
hl are the regression coefficients, and yt−j are lagged

wind power series. The choice of the number wind power series lags used as explanatory variables was
taken by considering the AIC (a prediction based criterion according to Akaike [31]) of different quantile
regression models which have different numbers of lags as explanatory variables. We also investigated
the improvement obtained by adding to the right hand side of Equation (23) a combination of variability
indices. Due to collinearity effects, the SD and IQR indices cannot coexist in the same equation. Any
other combinations of the variability indices did not provide reduction to the AIC for more than 14 out
of 19 quantile regression equations, at any of the three wind farm sites. Hence, we considered examining
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the effect that each individual variability index will provide by being included as an explanatory variable
to the quantile regression equations, as defined by Equation (6).

Moreover, we also considered adding to the right hand sides of Equation (23) a trigonometric function
(also introduced in Equation (24) below) which uses two pairs of harmonics to regress wind power
quantile, qt, on the 15 min time step of the day. The addition of this function, which is used to model the
diurnal component of each quantile of the wind power production at each wind farm, was not found to
provide reduction to the AIC of 17 out of 19 quantile regression equations, at any of the three wind farm
sites. Hence, in order to obtain parsimonious models we excluded these functions from the final models.
Nevertheless we must acknowledge the fact that a diurnal effect may be relevant and very important for
wind farms in other locations or countries.

The models in Equation (23) are regression models, and hence, in order to predict their responses,
q
(αi)
t , we need predictions for their explanatory variables. These are just lagged versions of the original

wind power series, and the different variability indices. All of these explanatory variables have similar
characteristics as they result from the original wind power series. The lagged versions of the wind power
series are certainly non-stationary and all 4 × 625 different realizations of the variability indices (for
every wind farm), even though they can be much smoother (for large values of m,n) than the original
wind power series, are also non-stationary.

The predictions (point forecasts) of the explanatory variables are produced using ARIMA and
ARIMA (in mean)-GARCH (in variance) models. By modelling the mean of the series using an ARIMA
model, we allow for its non-stationary nature, and by modelling the variance using a GARCH process
we allow for its heteroskedastic nature. Due to the fact that the wind power series (and the resulting
variability indices) is bounded and does not follow any known parametric distribution, one may argue
that an ARIMA or an ARIMA-GARCH model may not be appropriate. A modified (This version of
ARIMA-GARCH model limits the forecasts to be bounded between two specific values (zero and one
in our case) ARIMA/ARIMA-GARCH model with limiter (as proposed by Chen et al. [32]) is used to
deal with the problem of the data being bounded. Moreover, the empirical density of the differenced
series is close to a Student’s t-distribution density. Hence, we fit an ARMA/ARMA-GARCH model
to the transformed series, (wt) (or differenced variability index), assuming those data come from a
Student’s t-distribution whose parameters are estimated for each series. We incorporate this distributional
assumption by assuming the resulting residual series (white noise) follows a Student’s t-distribution.

The next step is to produce point forecasts from 15 min up to 6 h ahead (k = 1, 2, ..., 24), from
each point of the in-sample testing set, by fitting ARIMA(1, 1, 1) models to each realization of the four
variability indices of the above regressions. Our choice of ARIMA(1, 1, 1) model may seem unappealing
and arbitrary, but was made mainly for simplicity after exploring the forecast performances of various
time series models. Choosing the best ARIMA-GARCH model (according to AIC) for each of the 625

different realizations of each index (for each wind farm) is extremely computationally expensive and
hence we have to make some simplifications in order to make our optimization process computationally
feasible. An ARIMA(1,1,1) is able to capture the non-stationary nature of the indices, and avoid
overfitting at the same time. In order to assess the goodness of the fits, we use the Ljung–Box test,
and restrict our selection to the fits that do not reject the null hypothesis of this test (so the corresponding
residuals are consistent with white noise).
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Modelling the variance of the indices using ARCH/GARCH models (in combination with an ARIMA
model for the mean) does not provide a consistent and significant improvement of the RMSE (We used
the Root Mean Square Error to evaluate the point forecast performance of various time series models.)
of the point forecasts. This is mainly because of the very small forecast horizon we have, and hence it
suffices to use a simple ARIMA model with limiter. In order to produce point forecasts of the lagged
wind power series, the model solution using AIC (results are also the same using BIC) identified an
ARIMA(0, 1, 2) - GARCH(1, 1) model for the low variability farm, an ARIMA(1, 1, 3) - GARCH(1, 1)

for the medium variability farm, and an ARIMA(2, 1, 1) - GARCH(1, 1) for the high variability farm.
These models have the ability to capture the heteroskedastic effects that the wind power series have,
taking into account the non-linear nature of the variations. Also, these forecasts are calculated only once
for all different realizations of the quantile regression models, and hence there is no point in this case
to sacrifice the (small) accuracy gain for simplicity and computational efficiency. Table 2 shows the
selected time series models for each wind farm and the two tests that assess their fit.

Table 2. Best fitted models for the three wind power time series according to the AIC, with
Ljung–Box and LM tests p-values.

Wind farms Selected model LM test p-values LB test p-values
time series based on AIC for lags 5, 15, 25 for lags 5, 15, 25

Low Var. ARIMA(0, 1, 2)-GARCH(1, 1) 1.00, 1.00, 1.00 0.87, 0.99, 1.00
Medium Var. ARIMA(1, 1, 3)-GARCH(1, 1) 1.00, 1.00, 0.95 0.53, 0.98, 1.00

High Var. ARIMA(2, 1, 1)-GARCH(1, 1) 1.00, 1.00, 1.00 1.00, 1.00, 1.00

After producing quantile forecasts for 24 different forecast horizons, we evaluate them (i) using the
CFS of only the first step ahead forecasts; and (ii) using the CFS averaged over all forecast horizons. The
results justify our inspection of better forecast performance for the models with small (smoothing and
variability) moving windows. We repeat the above procedure by restricting the range of our parameters
even more for each variability index, and sample every different combination of parameters from the
range m,n = {0, 1, 2, ...50}.

We end up with distinct sets of parameters (for each model and wind farm) that minimize the averaged
and 1-step ahead CFS of each different quantile. The CFS minimization results are shown in Tables 3–6.
In general, we cannot distinguish any particular parameter pattern, but there are some features that are
worth mentioning. For all the models, it is more common to have the smoothing window width (m)
smaller than the variability window width (n), especially for quantiles less than or equal to the median.
This pattern changes for the upper quantiles (larger than the median) where we do not observe a clear
pattern. Also, on average, the parameters for the averaged over 24-steps ahead optimization are smaller
than the corresponding ones of the 1-step ahead optimization.
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Table 3. 1-step and averaged over 24-steps CFS optimization results for the SD model of
Equation (23).

Low Var. Med Var. High Var. Low Var. Med Var. High Var.
m n m n m n m n m n m n

αi 1-step optimization of SD model 24-steps optimization of SD model

0.05 0 9 0 18 2 7 2 5 3 3 2 7
0.10 0 4 0 20 2 7 0 6 3 2 2 4
0.15 0 4 0 21 0 7 0 4 2 2 3 2
0.20 0 4 0 21 0 7 3 2 2 2 2 2
0.25 2 3 0 21 2 4 2 2 0 3 2 2
0.30 2 3 2 4 2 4 0 2 0 2 0 2
0.35 2 3 2 2 0 7 0 2 0 2 0 2
0.40 5 3 2 2 5 3 0 2 0 2 0 3
0.45 5 3 0 4 6 3 0 2 0 2 7 0
0.50 28 2 6 3 9 0 0 0 7 0 7 0
0.55 14 2 0 0 2 2 0 0 0 0 0 3
0.60 0 8 13 2 2 2 0 0 0 12 0 2
0.65 0 8 2 11 2 2 5 3 0 3 0 2
0.70 0 9 0 12 3 2 5 3 0 2 0 2
0.75 0 9 0 12 0 2 5 3 2 2 2 2
0.80 0 15 0 9 0 2 3 2 2 2 2 2
0.85 0 8 0 12 0 2 2 3 3 2 3 2
0.90 0 9 2 9 0 3 0 12 3 2 3 2
0.95 2 8 0 12 0 10 3 7 0 15 0 14

Table 4. 1-step and averaged over 24-steps CFS optimization results for the IQR model of
Equation (23).

Low Var. Med Var. High Var. Low Var. Med Var. High Var.
m n m n m n m n m n m n

αi 1-step optimization of IQR model 24-steps optimization of IQR model

0.05 2 4 0 9 0 5 2 6 2 4 2 4
0.10 0 4 0 5 0 4 2 3 3 2 2 3
0.15 0 3 0 5 0 4 2 3 2 2 3 2
0.20 0 4 0 5 0 4 3 2 2 2 2 2
0.25 2 3 0 4 0 4 2 2 0 3 2 2
0.30 2 3 0 4 2 3 2 2 0 2 0 2
0.35 2 3 2 2 5 3 0 2 0 2 0 2
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Table 4. Cont.

Low Var. Med Var. High Var. Low Var. Med Var. High Var.
m n m n m n m n m n m n

αi 1-step optimization of IQR model 24-steps optimization of IQR model

0.40 5 3 2 2 5 3 0 2 0 2 0 3
0.45 5 3 0 3 6 3 0 2 0 2 7 0
0.50 28 2 6 3 9 0 0 0 7 0 7 0
0.55 14 2 0 0 2 2 0 0 0 0 0 3
0.60 11 2 13 2 2 2 0 0 0 7 0 2
0.65 2 4 0 4 2 2 5 2 0 3 0 2
0.70 0 11 0 7 3 2 5 3 0 2 0 2
0.75 0 11 0 7 0 2 5 2 2 2 2 2
0.80 0 11 0 7 0 2 3 2 2 2 2 2
0.85 0 11 0 2 0 2 2 3 3 2 3 2
0.90 0 11 0 12 0 3 0 9 3 2 3 2
0.95 2 7 0 12 4 2 5 4 0 7 0 4

Table 5. 1-step and averaged over 24-steps CFS optimization results for the Q05 model of
Equation (23).

Low Var. Med Var. High Var. Low Var. Med Var. High Var.
m n m n m n m n m n m n

αi 1-step optimization of Q05 model 24-steps optimization of Q05 model

0.05 0 18 48 48 2 10 0 14 0 14 7 4
0.10 0 14 15 4 2 10 0 12 3 6 3 9
0.15 0 11 25 3 2 7 0 8 0 7 0 7
0.20 0 11 35 6 2 7 0 6 0 7 0 7
0.25 0 11 24 3 0 11 0 6 0 6 0 5
0.30 0 17 24 2 2 7 0 6 0 3 0 5
0.35 2 11 24 3 2 7 0 6 0 3 0 5
0.40 2 17 25 2 0 8 0 6 0 3 0 7
0.45 2 16 24 3 2 5 0 6 0 3 5 3
0.50 2 16 13 12 6 2 0 6 0 2 5 3
0.55 21 0 0 0 6 2 2 5 0 0 5 3
0.60 21 0 2 14 9 0 0 0 7 0 0 18
0.65 17 0 2 14 0 7 2 5 7 0 0 16
0.70 16 0 2 11 0 7 2 5 7 0 0 15
0.75 16 0 2 11 0 5 2 5 0 18 0 15
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Table 5. Cont.

Low Var. Med Var. High Var. Low Var. Med Var. High Var.
m n m n m n m n m n m n

αi 1-step optimization of Q05 model 24-steps optimization of Q05 model

0.80 15 0 2 12 0 5 2 5 0 14 0 15
0.85 16 0 0 5 0 5 14 5 0 14 0 15
0.90 12 0 0 5 0 4 14 7 0 14 0 15
0.95 12 0 0 4 0 4 0 4 0 11 0 3

Table 6. 1-step and averaged over 24-steps CFS optimization results for the Q95 model of
Equation (23).

Low Var. Med Var. High Var. Low Var. Med Var. High Var.
m n m n m n m n m n m n

αi 1-step optimization of Q95 model 24-steps optimization of Q95 model

0.05 0 4 0 6 0 4 0 4 0 4 0 8
0.10 0 6 0 6 0 4 0 6 0 5 0 5
0.15 0 6 0 6 0 5 0 6 0 5 0 5
0.20 0 8 0 6 0 5 0 10 0 10 0 8
0.25 0 9 2 18 0 7 0 10 0 10 0 8
0.30 0 10 2 13 0 7 0 10 5 19 2 8
0.35 0 45 2 13 0 7 17 0 3 22 2 8
0.40 0 45 12 14 8 0 4 6 6 3 3 7
0.45 21 0 16 11 8 0 4 6 6 3 6 2
0.50 21 0 32 3 9 0 4 6 5 3 6 2
0.55 0 18 0 0 9 0 0 0 5 3 0 6
0.60 0 18 0 0 0 10 3 7 5 3 0 6
0.65 0 11 0 16 0 9 2 8 5 3 0 4
0.70 2 11 2 9 0 9 3 7 3 5 0 4
0.75 0 15 2 9 0 11 2 8 3 5 0 4
0.80 0 15 2 9 0 11 0 12 3 5 0 6
0.85 3 7 2 9 0 11 0 12 3 5 0 6
0.90 3 7 2 10 2 11 0 12 3 6 0 10
0.95 2 13 3 10 2 11 2 11 2 9 0 14
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6. Out-of-Sample Forecast Performance Results

In this section, after fitting the four optimized models of Equation (23) to the whole two years
in-sample learning set (for each farm), we will produce quantile forecasts from 15 min up to six hours
ahead from each point of the out-of-sample forecasting set, and assess their forecast performance using
the CFS, and the CRPS. In short, the CFS will be used to assess the skill of individual quantile forecasts,
and the CRPS to assess the skill of the density forecasts (produced by using all 19 quantile forecasts).

In order to facilitate the comparison of forecast performance across different models, we will
introduce two widely used probabilistic benchmarks:

• Persistence distribution: It is defined as the distribution of the last n observations. The persistence
benchmark is independently optimized (by estimating n) for each wind farm, by using the same
optimization methods as for the variability indices: 1-step ahead CFS minimization, and averaged
over 24-steps CFS minimization. So, when the persistence is optimized using one of the two CFS
minimization methods, different values of n are chosen to forecast each quantile.

• Unconditional distribution: We construct this benchmark by using all the past observations of the
time series. This benchmark assumes that the time ordering of the observations is not relevant
when attempting to predict the distribution of the response. It is also referred to as climatology.

The third benchmark used in this article is the quantile regression model with only the three lags
of wind power series as explanatory variables. This benchmark will help us to identify the gain in
forecast performance acquired by using the four variability indices and is defined as the 3-lagged
series benchmark.

Predictive distributions are often taken to be Gaussian even though the wind power series is bounded
and non-negative. Moreover, in our record of wind power measurements we have values of exactly 0
and 1 and hence the predictive distributions may require point masses at 0 and 1. A convenient way to
embed this property is through the use of cut-off normal predictive distributions as achieved by Sanso
and Guenni [33], Allcroft and Glasbey [34], Gneiting et al. [35] and Pinson [10]. The fourth benchmark
of this article uses a cut-off normal predictive density, N 0,1(µt+k|t, σ

2
t+k|t), and a fitted diurnal trend

component to the three wind power series. The parameters µt+k|t and σt+k|t > 0 for k = 1, ..., 24 are
called the location parameter (or predictive centre) and scale parameter (or predictive spread) of the
cut-off normal density with point masses at 0 and 1. Please note that a truncated normal predictive
distribution (with cut-offs at 0 and 1) has also been considered, with results very similar but worse than
those of the cut-off normal predictive distribution benchmark.

The procedure to construct the fourth benchmark used in this article (also described in
Gneiting et al. [35] and Gneiting et al. [8]) is as follows. At each of the three sites we firstly fit a
trigonometric function,

yt = a0 + a1 sin

(
2πd(t)

96

)
+ a2 cos

(
2πd(t)

96

)
+ a3 sin

(
4πd(t)

96

)
+ a4 cos

(
4πd(t)

96

)
(24)

where yt represents the normalised wind power for each farm at time t, and d(t) is a repeating function
that numbers the time variable (in 15 min steps) from 1 to 96 within each day. We then remove the
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ordinary least square (OLS) fit from each wind power series and use the resulting residual series, denoted
by εrt , to determine the predictive centre and predictive mean of the cut-off normal predictive distribution.

More specifically we introduce the following linear autoregressive system

εrt = b0 + b1ε
r
t−1 + b2ε

r
t−2 + b3ε

r
t−3 (25)

and use this to determine the forecasts ε̂rt+k|t in a straightforward way, for each k = 1, ..., 24 (from 15 min
up to 6 h ahead). Then, the predictive centre of the cut-off normal distribution is modelled as

µt+k|t = ŷt+k|t + ε̂rt+k|t (26)

where ŷt+k|t is the forecast issued at time t with forecast horizon k for the fitted diurnal trend of
Equation (24).

Finally, in order to model the predictive spread we introduce, following Gneiting et al. [8], the
volatility function at time t:

vt =

(
1

2

1∑
i=0

(yt−i − yt−i−1)2
) 1

2

(27)

So this benchmark allows for conditional heteroskedasticity by modelling

vt = c0 + c1vt−1 (28)

and setting the predictive spread as the forecast of vt issued at time t for a forecast time t+ k:

σt+k|t = v̂t+k|t. (29)

These four benchmarks will be used as the reference models mentioned in Section 4.2. In the
following tables we will present the evaluation results of the four models, for each evaluation criterion
and optimization type. As the relative performances of the methods are similar for each of the three
locations, following Taylor et al. [6], we will present the averaged results over the three wind farms.
Moreover, we will present only the Skill and Average Skill Scores of each evaluation criterion, as
we are particularly interested to quantify and statistically test (using the Anisano–Giacomini test [30])
the relative increase in forecast performance of the four competing models with respect to the four
benchmarks (reference models).

6.1. Out-of-Sample Model Comparison and Evaluation-Quantile Forecasting

In this subsection we compare the out-of-sample forecast performance of the competing models
for each quantile and model optimization method. We have a total of 19 quantile forecasts for each
model and for two different optimization methods. Please note that in order to avoid presenting any
unnecessary information, we summarise the results on the forthcoming tables by including results of
11 out of 19 quantiles (0.05, 0.10, 0.20,...,0.80, 0.90, 0.95 quantiles). Firstly, we present the results
obtained using the 1-step ahead CFS optimization, followed by the results obtained using the averaged
over 24-steps CFS optimization. For both optimization methods, the scores will be averaged over the
three wind farms because the relative performance of the models is similar across the wind farms.
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6.1.1. Quantile Forecasting: 1-Step Ahead CFS Optimization

Since the models in this subsection are optimized using a 1-step ahead CFS optimization method,
it makes sense to present results for the first lead time only, for each quantile and for each model.
Table 7 shows the Skill CFS (as defined by Equation (19)) of the best performing model among
the four competing ones and its percentage gain/loss with respect to the four reference (benchmark)
models, for each quantile. Moreover, the asterisks next to the scores indicate the level of statistical
significance (obtained using the Amisano–Giacomini test of Section 4.2) of the corresponding gain/loss
in performance with respect to the four reference models.

Table 7. The best performing model among the four competing ones, and its performance
gain/loss with respect to the four reference (benchmark) models, for each quantile. Reference
models: 3-lagged series (column 3), Cut-off normal (column 4), Persistence (column 5) and
Climatology (column 6). These results are outcomes from a 1-step ahead CFS optimization,
and we use the CFS only for the first predicted step. The asterisks indicate the statistical
significance of the gain/loss according to the Amisano and Giacomini test with the following
significance codes for the p-value of the test: ***: p ≤ 0.01, **: 0.01 < p ≤ 0.05,
*: 0.05 < p ≤ 0.1.

Skill CFS (%)
Best 3-lagged Cut-off Persistence Climatology

αi model series normal benchmark benchmark

0.05 Q95 4.01∗∗∗ 88.04∗∗∗ 54.82∗∗∗ 65.63∗∗∗

0.10 Q95 2.57∗∗∗ 81.70∗∗∗ 53.25∗∗∗ 71.89∗∗∗

0.20 Q95 1.23∗∗ 73.88∗∗∗ 55.61∗∗∗ 78.14∗∗∗

0.30 SD 0.81 69.53∗∗∗ 57.81∗∗∗ 81.56∗∗∗

0.40 SD 0.22 67.07∗∗∗ 59.18∗∗∗ 83.70∗∗∗

0.50 Q95 −0.21 65.93∗∗∗ 59.82∗∗∗ 85.18∗∗∗

0.60 Q05 −0.15 65.84∗∗∗ 59.53∗∗∗ 86.17∗∗∗

0.70 Q05 0.59 67.21∗∗∗ 58.62∗∗∗ 86.79∗∗∗

0.80 SD 2.74∗∗∗ 71.12∗∗∗ 57.57∗∗∗ 87.20∗∗∗

0.90 Q05 2.38∗∗∗ 78.00∗∗∗ 54.48∗∗∗ 86.46∗∗∗

0.95 Q05 3.44∗∗∗ 84.64∗∗∗ 54.46∗∗∗ 85.05∗∗∗

A general observation is that for almost all quantiles (except the 0.50–0.60 quantiles scores which
have negative signs), the best forecast performance is achieved by one of the four competing models and
not by the four benchmarks. The 0.05–0.10 and 0.90–0.95 quantiles form the two tails of the predictive
density, and represent the rare events (such as ramps, cut offs) of a wind power series. As we observe
from this table, both tails of the predictive density are quite well captured by the Q05 and Q95 models.
Out of the four competing models, the lower tail of the predictive density is better predicted by the Q95
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model and the upper by the Q05 model, but assuming the structure of the two variability indices used in
these models, we might intuitively expect the opposite to happen.

This phenomenon can be explained by having a look at Figure 3. Figure 3(a) shows the probability
density function (PDF) of the medium variability wind farm, together with the function values when
the normalized wind power is equal to zero and one. Figure 3(b) shows an example of a wind power
curve as presented by McSharry et al. [3]. On this plot we mark the “cut-in speed” (w1), the “nominal
speed” (w2) and the “disconnection speed” (w3). So, for very low wind speeds (<w1) the wind power
production is almost zero, for wind speeds greater than w2 but less than w3 the normalized wind power
production is equal to one, and for wind speeds greater than w3 the turbines shut down in order to prevent
damage, and hence the wind power production falls again to zero. By combining these two plots, we can
plot a rough estimate of the normalized wind power PDF versus the wind speed.

Figure 3. (a) Histogram of normalized wind power data (b) Deterministic power curve
(c) Probability density function of normalized wind power data (PDF) versus wind speed.
The equations used to reproduce (b) and (c) were taken from McSharry et al. [3].
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We expect the 0.95 quantile of the unconditional density (not to be confused with the predictive
density) to be close to the nominal (normalized) wind power value of one. But the produced wind power
is driven by the actual wind speed at any given time, and hence falling from the nominal wind power
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production (one) to zero can happen unexpectedly (Exceeding w3 can happen unexpectedly, given that
we do not have any information about the wind speed at any given time.) if we exceed the disconnection
speed w3 (Figure 3(b)). This results in a sudden jump from the 0.95 quantile to the 0.05 quantile of the
unconditional probability density and is represented by the lower tail of the predictive density. Hence,
the Q95 index which captures this sort of events can provide some extra information about the lower
tail of the predictive distribution that the 3-lagged series and the Q05 index do not describe. Similarly,
if the wind speed falls below w3, we are suddenly jumping from the 0.05 to the 0.95 quantile of the
unconditional density and these kind of rare events (jumping from low to high values) are represented
by the upper tail of the predictive density. Therefore, the Q05 index can provide some extra information
about the upper tail of the conditional predictive distribution.

In addition, Table 7 shows that the strongest benchmark for all quantiles is the 3-lagged series model.
The biggest and statistically significant improvement with respect to this benchmark is achieved near the
tails of the predictive density, and decays as we move towards the median. This has important practical
applications because it is exactly these extreme fluctuations that are of interest to transmission system
operators (TSOs). More specifically, we get a performance gain of up to 4.01% (for the 0.05 quantile,
achieved by the Q95 model), which is certainly not negligible. Unfortunately, the performance gain
by using one of the competing models with respect to this benchmark in order to forecast the quantiles
0.30–0.70 is negligible (statistically insignificant), and is in the range of−0.21% to 0.81%. Furthermore,
there is no gain for the quantiles close to the median of the predictive density (0.50–0.60).

Since the 3-lagged series model is our strongest benchmark and the performance gain with respect
to it is only worth mentioning near the tails of the predictive density, it makes sense to focus on the
performance gain achieved with respect to the last two benchmarks only for quantiles near the tails.
Table 7 shows that the increase in forecast performance with respect to the cut-off normal benchmark is
at least 78%, which shows that the cut-off normal is not capturing the tails of the predictive distribution
as well as our competing models.

Moreover, we get more than 53.25% increase in the forecast performance with respect to the
persistence benchmark when we use one of the four competing models. At the tails, where the Q05
and Q95 models are more suitable, we have a gain with respect to the persistence benchmark of up
to 54.82%. By using the climatology benchmark as reference model, we observe that the maximum
performance gain at the tails goes up to 86.46% (for the 0.90 quantile, achieved by the Q05 model), and
in general the Q05 and Q95 models manage to maintain the performance gain (at the tails) above 65.63%.

6.1.2. Quantile Forecasting: Averaged over 24-Steps CFS Optimization

This subsection has similar structure to the preceding one, but now we present the results for the
models which minimize the averaged (over six hours) CFS. Because the models are optimized on their
forecast behaviour over all 24 forecast horizons, it makes sense to present results with the scores averaged
over the 24 horizons, for each of the 11 selected quantiles.

Table 8 is analogous to Table 7, but here we provide the averaged over 24-steps CFS optimization
results. It presents the Average Skill CFS (instead of Skill CFS) as defined by Equation (20). Once
more, a general observation is that for almost all quantiles (except the first two and the median), the best
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forecast performance is achieved by our competing models and the strongest benchmark is the 3-lagged
series model.

Table 8. The best performing model among the four competing ones, and its performance
gain/loss with respect to the four reference (benchmark) models, for each quantile. Reference
models: 3-lagged series (column 3), Cut-off normal (column 4), Persistence (column 5) and
Climatology (column 6). These results are outcomes from an averaged over 24-steps CFS
optimization, and the CFS are also averaged over all 24 forecast horizons. The asterisks
indicate the statistical significance of the gain/loss according to the Amisano and Giacomini
test with the following significance codes for the p-value of the test: ***: p ≤ 0.01,
**: 0.01 < p ≤ 0.05, *: 0.05 < p ≤ 0.1.

Average Skill CFS (%)
Best 3-lagged Cut-off Persistence Climatology

αi model series normal benchmark benchmark
0.05 Q95 0.71 43.82∗∗∗ −102.14∗∗∗ −103.89∗∗∗

0.10 IQR 1.99∗∗ 31.81∗∗∗ −29.08∗∗∗ −29.91∗∗∗

0.20 IQR 5.95∗∗∗ 22.46∗∗∗ 14.54∗∗∗ 21.00∗∗∗

0.30 SD 4.57∗∗∗ 15.25∗∗∗ 18.86∗∗∗ 38.16∗∗∗

0.40 IQR 2.56∗∗∗ 10.22∗∗∗ 20.47∗∗∗ 46.64∗∗∗

0.50 Q95 −0.11 6.03∗∗∗ 20.13∗∗∗ 50.95∗∗∗

0.60 Q05 0.07 5.27∗∗∗ 20.05∗∗∗ 53.81∗∗∗

0.70 IQR 1.67∗∗∗ 7.15∗∗∗ 19.48∗∗∗ 54.67∗∗∗

0.80 SD 3.71∗∗∗ 11.94∗∗∗ 17.86∗∗∗ 52.16∗∗∗

0.90 SD 2.66∗∗∗ 19.55∗∗∗ 12.86∗∗∗ 38.12∗∗∗

0.95 Q05 1.09∗∗ 28.78∗∗∗ 8.29∗∗∗ 11.94∗∗∗

Table 8 also shows that the lower tail of the predictive density is quite poorly captured by our
competing models, and the last two benchmarks (persistence, climatology) are performing much better
than any other model. On the other hand, for all the other quantiles, the SD and IQR models have
quite similar performances and manage to outperform all the benchmarks. Moreover, the performance
gain by using one of the four competing models to forecast the quantiles near the median (0.50–0.60) is
statistically negligible or does not exist. A final general observation is that, as mentioned for the previous
optimization method, the 0.05 quantile is better predicted by the Q95 model and the 0.95 quantile by the
Q05 model.

By using one of the SD or IQR models (which perform almost identically) we get a performance gain
with respect to the 3-lagged series benchmark of up to 5.95% (for the 0.20 quantile, achieved by the IQR
model), which is statistically significant with a p-value less than 0.001. In addition all the competing
models are outperforming the cut-off normal model by at least 5.27% and attain the maximum increase
in forecast performance near the tails of the predictive density (up to 43.82% achieved by the Q95 model
for the 0.05 quantile).
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Table 8 also shows that we have up to 20.47% (for the 0.40 quantile, achieved by the IQR model)
increase of the forecast performance with respect to the persistence benchmark. The SD and IQR models
maintain the gain over the persistence benchmark above 8.29% for all quantiles larger than 0.10. By
using the climatology benchmark as reference model, we observe that the maximum performance gain
goes up to 54.67% (for the 0.70 quantile, achieved by the IQR model), and in general the SD and IQR
models can maintain the percentage performance gain with respect to the climatology benchmark above
11.94% for all quantiles larger than 0.10.

6.2. Out-of-Sample Model Comparison and Evaluation-Density Forecasting

In this subsection, we evaluate the out-of-sample density forecast performance of the competing
models, for each optimization method. We will use the quantile forecasts obtained from each
optimization method to reconstruct the whole predictive density, and assess its skill using the Skill
CRPS or the Average Skill CRPS. Firstly, we present the results obtained using the 1-step ahead CFS
optimization, followed by the results obtained using the averaged over 24-steps CFS optimization.
Moreover, because the relative performance of the models is similar across the wind farms, the scores
will be averaged over the three wind farms.

6.2.1. Density Forecasting: 1-Step Ahead CFS Optimization

In this subsection, the models’ forecast performance is optimized for only the first predicted step, so
it makes sense to focus (initially) on the first lead time and present the out-of-sample Skill CRPS for the
first step ahead.

Table 9 presents the out-of-sample Skill CRPS (%) for the 1-step ahead CFS optimized models,
together with significance codes for the Amisano–Giacomini test of equal forecast performance. This
table shows that the best benchmark model is the 3-lagged series. That was expected because this
benchmark was also the strongest one (for most quantiles) when we were looking at the quantile forecast
results for the same optimization method (Section 6.1.1). The SD and IQR models behave almost
identically and manage to outperform all the other benchmarks. The SD model performs slightly better
than the IQR model, and managed to outperform the 3-lagged series model by 1%, the cut-off normal
model by 1.48%, the persistence benchmark by 58.38% and the climatology benchmark by 84.23%.

Table 10 shows the best performing model among the four competing ones, and its performance
gain/loss with respect to the four reference (benchmark) models, for a collection of forecast horizons. For
simplicity, we present the results for seven of the 24 forecast horizons. The SD model is outperforming
the 3-lagged series for the first 16 forecast horizons (except for the second one) where the improvements
in forecast performance are also statistically significant for a 90% significance level. For the second
forecast horizon we get the maximum forecast performance gain over the 3-lagged series model (equal
to 1.96%) achieved by the IQR model. The SD model also manages to outperform the cut-off normal
benchmark for all forecast horizons, with all improvements in forecast performance being statistically
significant for a 99% significance level.
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Table 9. Out-of-sample Skill CRPS (%) (averaged over all wind farms) for the 1-step ahead
CFS optimized models. The scores are just for the first lead time. The asterisks indicate the
statistical significance of the gain/loss according to the Amisano and Giacomini test with the
following significance codes for the p-value of the test: ***: p ≤ 0.01, **: 0.01 < p ≤ 0.05,
*: 0.05 < p ≤ 0.1.

Performance Gain/Loss - Skill CRPS (%)
Reference model SD model IQR model Q05 model Q95 model

3-lagged series 1.00∗∗ 0.93∗∗ 0.29 0.20

Cut-off normal 1.48∗∗∗ 1.41∗∗∗ 0.77∗ 0.69∗

Persistence 58.38∗∗∗ 58.35∗∗∗ 58.08∗∗∗ 58.04∗∗∗

Climatology 84.23∗∗∗ 84.22∗∗∗ 84.12∗∗∗ 84.11∗∗∗

Table 10. The best performing model among the four competing ones, and its performance
gain/loss with respect to the four reference (benchmark) models, for forecast horizon k

(measured in 15 min steps). Reference models: 3-lagged series (column 3), Cut-off normal
(column 4), Persistence (column 5) and Climatology (column 6). These results are outcomes
from a 1-step ahead CFS optimization. The asterisks indicate the statistical significance of
the gain/loss according to the Amisano and Giacomini test with the following significance
codes for the p-value of the test: ***: p ≤ 0.01, **: 0.01 < p ≤ 0.05, *: 0.05 < p ≤ 0.1.

Skill CRPS(%)
k Best model 3-lagged series Cut-off normal Persistence Climatology

1 SD 1.00∗∗ 1.48∗∗∗ 58.38∗∗∗ 84.23∗∗∗

2 IQR 1.96∗∗∗ 6.79∗∗∗ 44.59∗∗∗ 76.78∗∗∗

3 SD 1.81∗∗∗ 13.02∗∗∗ 37.00∗∗∗ 71.34∗∗∗

4 SD 1.71∗∗∗ 14.09∗∗∗ 31.97∗∗∗ 66.73∗∗∗

8 SD 1.15∗∗∗ 13.95∗∗∗ 20.88∗∗∗ 51.62∗∗∗

16 SD 0.63∗ 15.12∗∗∗ 10.94∗∗∗ 27.55∗∗∗

24 SD 0.40 15.70∗∗∗ 5.87∗∗∗ 8.24∗∗∗

When the persistence and climatology benchmarks are used as reference models, Table 10 shows
that the gain in forecast performance by using the SD model is at least 5.87% and 8.24%, respectively.
Moreover, the noted density forecast improvements are statistically significant for all forecast horizons,
for a 99% level of significance.

In addition to the above results, we carried out a marginal calibration analysis and investigated how the
CRPS evolves conditional to some wind power levels. More specifically, Table 11 presents the marginal
Skill CRPS (%) conditional to the normalized wind power being ≤0.20 or ≥0.80, for a collection of
seven forecast horizons. We choose to focus on these specific wind power levels, because these form the
two tails of the unconditional wind power density (not to be confused with the predictive density).
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Table 11. The best performing model (according to the Marginal Skill CRPS) among the four
competing ones, and its performance gain/loss with respect to the four reference (benchmark)
models, for forecast horizon k (measured in 15 min steps). Reference models: 3-lagged
series (column 3), Cut-off normal (column 4), Persistence (column 5) and Climatology
(column 6). These results are outcomes from a 1-step ahead CFS optimization. The asterisks
indicate the statistical significance of the gain/loss according to the Amisano and Giacomini
test with the following significance codes for the p-value of the test: ***: p ≤ 0.01,
**: 0.01 < p ≤ 0.05, *: 0.05 < p ≤ 0.1.

Marginal Skill CRPS(%) conditional to the normalized wind power being ≤ 0.20
k Best model 3-lagged series Cut-off normal Persistence Climatology

1 Q05 1.32∗∗∗ 3.44∗∗∗ 60.21∗∗∗ 84.09∗∗∗

2 IQR 1.81∗∗∗ 7.44∗∗∗ 44.92∗∗∗ 75.51∗∗∗

3 IQR 1.83∗∗∗ 11.68∗∗∗ 36.81∗∗∗ 69.40∗∗∗

4 IQR 1.63∗∗∗ 13.28∗∗∗ 31.48∗∗∗ 64.29∗∗∗

8 IQR 1.04∗∗ 14.71∗∗∗ 20.74∗∗∗ 47.64∗∗∗

16 IQR 0.56 17.94∗∗∗ 11.58∗∗∗ 20.09∗∗∗

24 IQR 0.36 19.27∗∗∗ 6.40∗∗∗ −4.30∗∗∗

Marginal Skill CRPS(%) conditional to the normalized wind power being ≥ 0.80
1 IQR 4.95∗∗∗ 1.31∗∗∗ 57.74∗∗∗ 93.52∗∗∗

2 IQR 3.04∗∗∗ 13.51∗∗∗ 48.16∗∗∗ 91.11∗∗∗

3 SD 3.44∗∗∗ 18.99∗∗∗ 44.76∗∗∗ 89.57∗∗∗

4 SD 2.40∗∗∗ 22.23∗∗∗ 41.11∗∗∗ 87.88∗∗∗

8 SD 2.25∗∗∗ 19.97∗∗∗ 32.79∗∗∗ 81.42∗∗∗

16 SD 1.60∗∗∗ 17.60∗∗∗ 23.59∗∗∗ 68.09∗∗∗

24 SD 1.75∗∗∗ 15.42∗∗∗ 15.47∗∗∗ 53.93∗∗∗

Given that the normalized wind power is less than or equal to 0.20, the IQR seems to be the best
performing model for all except the first forecast horizon (where the Q05 model is performing better).
For small forecast horizons we observe statistically significant improvements over all competing models.
These improvements (with the exception of the cut-off normal benchmark) are getting smaller as we
move to larger forecast horizons, which is perfectly reasonable because the results are the outcome
of a 1-step ahead optimization. Conditioning on power levels which belong to the upper tail of the
unconditional wind power density, we observe that the IQR and SD models seem to provide the largest
performance gain according to the CRPS. These two models are outperforming all the benchmarks
with improvements that are also statistically significant for all forecast horizons, for a 99% level
of significance.
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6.2.2. Density Forecasting: Averaged over 24-Steps CFS Optimization

Now we would like to assess the out-of-sample density forecast performance of the four competing
models, for the averaged over 24-steps CFS optimization method. Our assessment criterion will be the
out-of-sample Skill CRPS or Average Skill CRPS.

Initially, it makes sense to have a look at the out-of-sample Average Skill CRPS (Equation (20))
with the four benchmarks as reference models (Table 12). The IQR model outperforms the 3-lagged
series benchmark by 2.45%, a considerably larger improvement than for the 1-step ahead results given
in Table 9. This model also outperforms the cut-off normal benchmark by 16.13%, the persistence
benchmark by 12.77% and the climatology benchmark by 39.15%. Moreover, the density forecast
performance of the SD model is quite close to that of the IQR model.

Table 12. Out-of-sample Average Skill CRPS (%) (also averaged over all wind farms) for
the averaged over 24-steps CFS optimized models. The asterisks indicate the statistical
significance of the gain/loss according to the Amisano and Giacomini test with the following
significance codes for the p-value of the test: ***: p ≤ 0.01, **: 0.01 < p ≤ 0.05,
*: 0.05 < p ≤ 0.1.

Performance Gain/Loss - Average Skill CRPS (%)
Reference model SD model IQR model Q05 model Q95 model

3-lagged series 2.37∗∗∗ 2.45∗∗∗ −0.07 0.42

Cut-off normal 16.06∗∗∗ 16.13∗∗∗ 13.96∗∗∗ 14.38∗∗∗

Persistence 12.70∗∗∗ 12.77∗∗∗ 10.51∗∗∗ 10.96∗∗∗

Climatology 40.91∗∗∗ 40.96∗∗∗ 39.43∗∗∗ 39.73∗∗∗

Since our optimization considers all 24 forecast horizons, it will be interesting to investigate how the
four competing models perform in producing density forecasts for each forecast horizon, k, from 15 min
up to 6 h ahead. As for the 1-step ahead optimization case, we present the results for only a collection
of seven out of 24 forecast horizons. The best competing model together with the performance gain
obtained for each forecast horizon k with respect to the four benchmarks can be found in Table 13.
Clearly, the best performing benchmark is the 3-lagged series model, and the IQR is the best performing
model out of the four competing models.

The competing models’ performances are disappointing for the first lead time, where the 3-lagged
series benchmark offers a performance gain (of at least 1.57%) with respect to these models. On the
other hand, for predictions larger than 30 minutes ahead (second predicted step), Table 13 shows that the
IQR model manages to maintain the gain in density forecast performance with respect to the 3-lagged
series model above 2.14%, with a recorded maximum of 3.59% (achieved at the fourth predicted step).
Moreover, all the scores (except the first two) produce p-values which give strong evidence to reject the
null hypothesis of equal forecast performance between the competing and reference model. Hence, the
observed gain in forecast performance is statistically significant for a 99% significance level. The gain
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in forecast performance with respect to the cut-off normal model is at least 4.96% (excluding the first
lead time) and attains a maximum of 17.18% for the 24th predicted step.

Table 13. The best performing model among the four competing ones, and its performance
gain/loss with respect to the four reference (benchmark) models, for forecast horizon k

(measured in 15 min steps). Reference models: 3-lagged series (column 3), Cut-off normal
(column 4), Persistence (column 5) and Climatology (column 6). These results are outcomes
from an averaged over 24-steps CFS optimization. The asterisks indicate the statistical
significance of the gain/loss according to the Amisano and Giacomini test with the following
significance codes for the p-value of the test: ***: p ≤ 0.01, **: 0.01 < p ≤ 0.05,
*: 0.05 < p ≤ 0.1.

Skill CRPS(%)
k Best model 3-lagged series Cut-off normal Persistence Climatology

1 Q95 −1.57∗∗∗ −1.07∗∗ 59.08∗∗∗ 83.82∗∗∗

2 IQR 0.03 4.96∗∗∗ 44.84∗∗∗ 76.32∗∗∗

3 IQR 3.28∗∗∗ 14.33∗∗∗ 38.53∗∗∗ 71.77∗∗∗

4 IQR 3.59∗∗∗ 15.74∗∗∗ 33.21∗∗∗ 67.37∗∗∗

8 IQR 3.34∗∗∗ 15.86∗∗∗ 20.02∗∗∗ 52.69∗∗∗

16 IQR 2.59∗∗∗ 16.79∗∗∗ 6.80∗∗∗ 28.98∗∗∗

24 IQR 2.14∗∗∗ 17.18∗∗∗ -0.44 9.85∗∗∗

If we consider the persistence benchmark as the reference model (column 4 of Table 13), we note that
the Skill CRPS of the best model starts at 59.08% (Q95 model) and then decays to meet approximately
the performance of the persistence benchmark for the last forecast horizon. When the climatology
benchmark is used as a reference model (column 5 of Table 13), we again observe a decay of the skill
scores, with the performance gain remaining above 9.85% for all forecast horizons (for the IQR model).

From the results presented we conclude that this optimization method is found to produce models
(mainly the IQR model) that can substantially outperform the density forecast performance of the
widely used benchmarks (persistence, climatology) and fully parametric models such us the cut-off
normal benchmark. Moreover the gain used by including a variability index such as the (IQR)
improves considerably the performance (up to 3.59%) of a quantile regression model which uses only
autoregressive terms as explanatory variables (3-lagged series benchmark).

Finally, as for the 1-step ahead optimization case, we present some marginal calibration analysis
results by investigating how the CRPS evolves conditional to some wind power level. Table 14 presents
the marginal Skill CRPS(%) conditional to the normalized wind power being ≤0.20 or ≥0.80, for a
collection of seven forecast horizons.

Given that the normalized wind power is less or equal to 0.20, the IQR model is outperforming all
the benchmarks for forecast horizons larger than two steps ahead (except the last forecast horizon of
the persistence and climatology benchmarks). The Q05 seems to be the best performing model for the
first two steps ahead, but still cannot outperform the 3-lagged series benchmark for the first step ahead.



Energies 2013, 6 691

The second part of this table shows that, given normalized power levels greater or equal to 0.80, the
SD model is the overall best model among all the others. It manages to outperform all the benchmarks
for all forecast horizons, with improvements that are also statistically significant using a 99% level
of significance.

Table 14. The best performing model (according to the Marginal Skill CRPS) among the four
competing ones, and its performance gain/loss with respect to the four reference (benchmark)
models, for forecast horizon k (measured in 15 min steps). Reference models: 3-lagged
series (column 3), Cut-off normal (column 4), Persistence (column 5) and Climatology
(column 6). These results are outcomes from an averaged over 24-steps CFS optimization.
The asterisks indicate the statistical significance of the gain/loss according to the Amisano
and Giacomini test with the following significance codes for the p-value of the test:
***: p ≤ 0.01, **: 0.01 < p ≤ 0.05, *: 0.05 < p ≤ 0.1.

Marginal Skill CRPS(%) conditional to the normalized wind power being ≤ 0.20
k Best model 3-lagged series Cut-off normal Persistence Climatology

1 Q05 −0.13 2.02∗∗∗ 59.10∗∗∗ 83.86∗∗∗

2 Q05 1.20∗∗∗ 6.87∗∗∗ 42.75∗∗∗ 75.36∗∗∗

3 IQR 3.45∗∗∗ 13.14∗∗∗ 34.89∗∗∗ 69.90∗∗∗

4 IQR 3.93∗∗∗ 15.32∗∗∗ 29.05∗∗∗ 65.13∗∗∗

8 IQR 3.81∗∗∗ 17.10∗∗∗ 15.50∗∗∗ 49.10∗∗∗

16 IQR 3.12∗∗∗ 20.06∗∗∗ 1.77∗∗∗ 22.15∗∗∗

24 IQR 2.71∗∗∗ 21.18∗∗∗ −6.61∗∗∗ −1.84∗∗∗

Marginal Skill CRPS(%) conditional to the normalized wind power being ≥ 0.80
1 SD 6.27∗∗∗ 2.68∗∗∗ 66.58∗∗∗ 93.61∗∗∗

2 SD 4.92∗∗∗ 15.18∗∗∗ 58.01∗∗∗ 91.28∗∗∗

3 SD 1.78∗∗∗ 17.60∗∗∗ 52.60∗∗∗ 89.39∗∗∗

4 SD 1.33∗∗∗ 21.38∗∗∗ 49.18∗∗∗ 87.75∗∗∗

8 SD 1.95∗∗∗ 19.73∗∗∗ 39.04∗∗∗ 81.36∗∗∗

16 SD 1.95∗∗∗ 17.89∗∗∗ 27.42∗∗∗ 68.20∗∗∗

24 SD 2.13∗∗∗ 15.75∗∗∗ 17.99∗∗∗ 54.11∗∗∗

7. Conclusions

In this paper we showed how to produce wind power quantile and density forecasts, for lead times
from 15 minutes up to six hours ahead, using three different univariate wind power series. This was
achieved by introducing innovative variability indices, which are able to capture the volatile behaviour
of the wind power series.

We used linear (in parameters) quantile regression as our main tool for producing quantile forecasts
for 19 different quantiles, with three lagged versions of the wind power series as the main explanatory
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variables. Four models were proposed, each one having as a fourth explanatory variable one of the four
extracted variability indices.

In order for the final results to be consistent, we used data from three wind farms in Denmark, each
one chosen to have different wind power variability (low, medium and high). We investigated four years
of wind power data, with a 15 min resolution, for each wind farm. The first two years were used for
estimating the parameters of the models, and the final two years for out-of-sample forecast evaluation.

All four quantile regression models were optimized using the in-sample training data set, in order to
find their specific set of indices’ parameters, (m,n), which minimizes (i) the first lead time CFS and (ii)
the Average CFS over all forecast horizons, for each individual quantile.

Our main goal was to evaluate how well these models performed compared with the cut-off
normal, persistence and unconditional distribution (climatology) probabilistic benchmarks. It is worth
mentioning that persistence is a strong yet simple benchmark for very short forecast horizons, and was
optimized using the same cost (optimization) functions as the four regression models. The use of a
cut-off normal benchmark provided a good comparison between a fully parametric model (as the cut-off
normal model) and the non-parametric quantile regression models used in this article.

The fourth and strongest benchmark used was a quantile regression model with three lags of the
original series as explanatory variables. The comparison of the competing models with this benchmark
provides evidence of how useful our extracted variability indices are for forecasting wind power
production. The individual (out-of-sample) quantile forecasts were evaluated using the Skill or Average
Skill CFS for direct comparison between the competing models and the benchmarks. The density
forecasts of the models were evaluated using the Skill or Average Skill CRPS.

In the following we summarize the quantile and density forecasts results found using the two different
types of model optimization:

Quantile forecasting: 1-step ahead CFS optimization

• The best competing models are the Q05 and Q95 models, which outperform our best benchmark
(3-lagged series) by a maximum of 3.44% (0.95 quantile) and 4.01% (0.05 quantile), respectively.

• The largest gain in performance with respect to the best benchmark is noticed when forecasting
the quantiles which form the tails of the conditional predictive density. In addition, the Q05 model
performs better for the upper tail, and the Q95 model for the lower tail.

• The best quantile regression models for each forecast horizon manage to maintain the performance
gain with respect to the cut-off normal, persistence and climatology benchmarks above 65.73%,
53.25% and 65.63%, respectively.

Quantile forecasting: Averaged over 24-steps CFS optimization

• The SD and IQR models have the best quantile forecast performance, with similar CFS. They
manage to maintain the performance gain with respect to the best benchmark (3-lagged series)
above 1.99% for 11 out of 19 quantiles. The maximum Skill CFS is 5.95%, and is achieved by the
IQR model for the 0.20 quantile.

• The SD and IQR models maintain the performance gain with respect to the cut-off normal,
persistence and climatology benchmarks above 5.25%, 12.86% and 21.00%, respectively, for
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15 out of 19 quantiles. The performance gain by using one of the two quantile models over
the persistence and climatology benchmarks is much lower (or does not exist) for predicting the
tails (0.05, 0.10,0.90, 0.95 quantiles) than for predicting the quantiles close to the median of the
conditional density.

Density forecasting: 1-step ahead CFS optimization

• The best competing model is the SD model, which has almost equal density forecast performance
with the IQR model. It manages to outperform the best benchmark (3-lagged series) by 1.00%
(improvement which is statistically significant for a 95% significance level), for the first lead time.
All four competing models manage to outperform the cut-off normal, persistence and climatology
benchmarks by at least 0.69%, 58.04% and 84.11%, respectively, for the first lead time.

• Across all 24 forecast horizons, the average gain in forecast performance using the SD or IQR
model with respect to the best benchmark is statistically significant (using a 90% significance level)
for the first 16 forecast horizons. Moreover, these two models manage to outperform the cut-off
normal persistence and climatology benchmarks by at least 1.48%, 5.87% and 8.24%, respectively.

Density forecasting: Averaged over 24-steps CFS optimization

• The IQR model is the best competing model, and manages to outperform the best benchmark
(3-lagged series) by, on average (over all forecast horizons), 2.45%. It also outperforms the
cut-off normal, persistence and climatology benchmarks by, on average, 16.13%, 12.77% and
40.96%, respectively.

• Across all 24 forecast horizons (excluding the first two lead times), the IQR model manages to
maintain a performance gain over the best benchmark by more than 2.14%. Moreover, the noted
improvements in density forecast performance are statistically significant for 22 out of 24 forecast
horizons, for a 99% significance level.
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