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Abstract: The partial discharge (PD) process in liquid dielectrics is influenced by several 

factors. Although the PD current contains the information representing the discharge 

process during the PD event, it is difficult to determine the detailed dynamics of what is 

happening in the bulk of the liquid. In this paper, a microscopic model describing the 

dynamics of the charge carriers is implemented. The model consists of drift-diffusion 

equations of electrons, positive and negative ions coupled with Poisson’s equation. The 

stochastic feature of PD events is included in the equation. First the model is validated 

through comparison between the calculated PD current and experimental data. Then 

experiments are conducted to study the effects of the amplitude of the applied voltage, gap 

distance and electrode type on the PD process. The PD currents under each condition are 

recorded. Simulations based on the model have been conducted to analyze the dynamics of 

the PD events under each condition, and thus explain the mechanism of how these factors 

influence the PD events. The space charge generated in the PD process is revealed as the 

main reason affecting the microscopic process of the PD events. 
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1. Introduction 

For many applications, liquid dielectrics are superior to solid or gaseous electrical insulation 

materials. Advantages of liquids include higher breakdown strength compared to compressed gases. 

When compared with solid dielectrics, their ability to circulate leads to better thermal management and 

easier removal of debris after breakdown or degradation. Liquid dielectrics are also better suited to 

applications involving complex geometries. Thus the electrical behavior of dielectric liquids subjected 

to high electric fields has been intensively studied [1]. The interest arises from various applications 

that include pulsed power systems, energy storage, highvoltage insulation, development of acoustic 

devices and spark erosion machines. 

Partial discharge (PD) measurement and analysis in liquid dielectric has become an essential tool in 

on-line monitoring systems to evaluate the performance of insulation systems. Many researches have 

been undertaken focusing on related areas [2–4]. Partial discharge in dielectric liquids is a very 

complex process that involves a succession of inter-correlated phenomena (electronic, mechanical, 

thermal, etc.). Moreover, experiments have shown that characteristic features of partial discharge 

phenomena greatly depend on experimental conditions (electrode geometry, shape and amplitude of 

applied voltage, liquid nature and purity, etc.). However, as a result of their small amplitude and wide 

bandwidth, it is difficult to find the relationship between the measured PD current and the physical 

mechanisms that occur during the event itself. Consequently the modeling of PD is important in 

providing a better understanding of this phenomenon.  

In previous research concerning gas discharge mechanisms, the implementation of the  

electro-hydrodynamic model has been validated in describing the discharge process [5,6]. Also, 

breakdown processes in transformer oil have been investigated based on a similar physical and 

mathematical theorem [7,8]. By treating liquid dielectrics as a dense fluid, the drift-diffusion equations 

of positive ions, negative ions and electrons are solved coupled with Poisson’s equation in this work. 

Rather than attempt to treat all phenomena associated with breakdown, it has been decided for the sake 

of clarity and brevity to restrict discussion in this paper to DC partial discharge process occurring in 

mineral transformer oil. The finite element method based commercial software Comsol Multiphysics is 

used for numerical calculations. A 2D axisymmetric needle-sphere electrode configuration is utilized. 

The PD process simulation is modeled as a response to a positive DC voltage applied to the needle 

electrode. First the model is validated through comparison of the PD current between simulation and 

experimental results. Then the effect of amplitude of applied voltage, gap distance, electrode type on 

the PD process is analyzed based on estimations of the main features of the PD process. 

2. Experimental Setup 

Figure 1 shows a schematic diagram of the experiment setup used in this work to measure PD 

activity. The experiment consists of high voltage direct current voltage supply (maximum 50 kV). A 

coupling capacitor Ck with 2000 pF is used as circuit of the PD current. The PD current is coupled by 

a Rogowski coil sensor with bandwidth of 40 MHz. A digital oscilloscope is used to observe and 

record PD signals. The sampling frequency of the oscilloscope for recording PD signals is 1 GS/s.  
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Figure 1. Schematic diagram of the partial discharge experimental setup. 

 

Figure 2 shows a schematic diagram of the test sample used both in experimental and simulation 

studies. In order to obtain a reliable PD generation from the stressed electrode, a needle-sphere 

electrode configuration is utilized. The electrode configuration of the sample consists of a stressed 

needle electrode with tip radius of 15 μm and an earthed sphere electrode with radius of 1.5 mm, 

separated by a gap distance S. Two gap distance values are utilized which are 5 mm and 10 mm, 

respectively. The test sample is immersed in transformer oil. 

Figure 2. Schematic diagram of the experimental test sample. 

 

3. Model Description 

With the treatment of liquid dielectrics as a dense fluid, the hydrodynamic drift-diffusion model 

consisting of three charge carriers is utilized accounting for the movement, generation and loss of 

electrons, positive and negative ions and for the development of space charge. The continuum 

equations of the charge carriers are coupled with Poisson’s equation and consequently the effect of 

space charge on the electric field is included. The equations are given as: 
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where t is time, e the electronic charge, ε0 the vacuum permittivity and εr the relative permittivity of the 

medium, V the electric potential; Ne, Np and Nn the electron, positive and negative ion concentrations, 

respectively; We, Wp and Wn the electron, positive and negative ion drift velocities; | | , and β, the 

ionization, and recombination coefficients for electrons and positive and negative ions, respectively. 

The swarm parameters are given in Table 1 [7,8]. 

Table 1. Swarm parameters. 

Parameters Expressions 

We 10−4E 
Wp 10−9E 
Wn 10−9E 
βnp 1.64×10−17 m3s−1 

 3×10−10 m  
m* 9.1×10−32 kg 
n0 1023 m−3 
∆ 7.1 eV 

The generation term | |  of charge carriers consists of two parts, which are respectively the 

generation rate | |  and a stochastic term represented by F. The generation rate | |  is modeled 

based on Zener tunneling model [9]: 

| |
| |

exp
∆

| |
 (5)

where e is the electronic charge,  is the molecular separation, E is the electric field, h is Planck’s 

constant, m* is the effective electron mass in the liquid, n0 is the number density of ionisable species 

and ∆ is the molecular ionization energy. 

In the real situation the transformer oil cannot be treated as ideal dielectrics with homogeneous bulk 

characteristics. The impurities, bubbles, and variation of dielectric constant may lead to fluctuation in 

the local micro-fields acting on the molecules. Meanwhile the micro dynamics of charge carriers 

including the collision process of the electrons into the oil molecules is also characterized with 

stochastic features. In former research [10–15] it has been shown that the probability of the discharge 

events in local area of dielectrics should depend upon magnitude of local electric field strength in this 

area. In some macroscopic models developed from the L. Niemeyer, L. Pietronero, H.J. Wiesmann 

(NPW) method and lattice gas automata algorithm, a power-law dependant function with respected to 

the electric field strength is implemented as the probability density function [16–18]. In this model, the 

probability density of the generation term can be expressed with similar function. With the generation 
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rate calculated with Equation (5), it is unnecessary to set any cut-off voltage as the criteria for the stop 

of the discharge event. Compared with the implementation of cut-off voltage as criteria, which is 

generally dependant on the empirical expression and may lead to a stepwise change of the discharge 

process, the product of the generation rate and the stochastic term, which are both based on the electric 

field strength, will continuously decrease with the weakening electric field until the electric field 

strength is not high enough to sustain generation of charge carriers.  

The P = A(| |/Eb)
n is chosen as the probability density function in this model, where A, Eb, and n 

are respectively non-dimensional constant, threshold electric field strength, and power index [10–15]. 

These parameters are greatly dependant on the experimental conditions. Generally A is a non-dimensional 

constant with the value less than 10. The threshold electric field strength for the transformer oil 

discharge is around 108–109 V/m [7,8]. Also, in some literatures describing the oil discharge inherited 

from NPW method, the choice of power index n varies from 1 to 4. Based on our former research, the 

specific values for A, Eb, and n corresponding to this experimental condition can be respectively 

chosen to be 1 for A, 109 for Eb, and 4 for n.  

With the definition of probability density function, the incremental probability W, that there will be 

the generation of charge carriers during time t to t + τ, can be expressed as: 

d 1 d  (6)

The solution to this equation can be expressed as: 

1 exp  (7)

However, the probability for the charge carrier generation is a calculated number between 0 and 1. 

In order to make it a random process, the stochastic term F is introduced: 

, (8)

where H represents the Heaviside function and has a stepwise jump from 0 to 1 when W becomes 

larger than r. r is a random number, which evenly distributes on the range of (0,1), generated at every 

calculation node and time. Thus the product of generation rate | |  and the stochastic term F can 

describe the stochastic generation process of charge carriers.  

The discharge current of the external circuit is calculated based on Sato’s equation [19]. By 

integrating the charged particle fluxes through the cathode surface plus the changes of the induced 

surface charge at the cathode, the current can be expressed as:  

· · d · d   (9)

Multiplying the discharge current with the transform function of the current sensor generates the 

simulated PD waveform. 

For Poisson’s equation, the boundary condition of the needle electrode is set as stressed electrode, 

and the sphere electrode is earthed according to the experimental setup. The outer insulating 

boundaries have been set to have zero normal displacement field components. For the drift-diffusion 

equations, the outer boundaries are set to have no flux of any charge carriers. Considering the 

repetitive rate is small for a DC partial discharge process, the simulation work is restricted to a single 

pulse process. Thus the electrode boundary condition for the charge drift-diffusion equations is 

convective fluxes for all species.  
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4. Validation of the Model 

The partial discharge current essentially contains all the information of the partial discharge 

process. Thus the comparison between the PD current of the simulation result and the experiment data 

can represent the accuracy of the model. Before simulation, the permittivity of the transformer oil 

should be chosen. However the permittivity of mineral transformer oil can vary in a certain range 

according to its specific composition. Even using the same source of oil, the permittivity also can be 

different from its initial condition as a result of the storage and testing environment. The permittivity 

will affect the electric field distribution and consequently parameters related to electric field strength. 

In order to obtain an accurate simulation result, five different relative permittivity values based on 

physical characteristics of mineral transformer oil (2.0, 2.1, 2.2, 2.3 and 2.4) are chosen. The PD 

currents as a response to 1.2 and 1.5 partial discharge inception voltage (PDIV) under 5 mm and 

10 mm gap distance are calculated. As the model is characterized with stochastic characteristics, the 

simulation is conducted 10 times for each experimental condition and the mean value of the 10 PD 

currents are compared with the measured value of the same experimental condition. The mean square 

error e between the simulation and the measurement result is calculated as follows: 

∑
 (10)

where i represents the sampling point decided by the sampling frequency of the experiment and  

N equals 1000. 

From Figure 3 it can be concluded that the mean square error between the simulation and 

experiment results are quite small, which means the simulation result is in good accordance with the 

experimental data. The mean square value reaches its minimum value when the relative permittivity is 

2.2 in all cases. Thus the relative permittivity in this model is set as 2.2. The PD current as a response 

to the 1.2 PDIV of 10 mm needle-sphere electrode configuration is presented and compared with 

experiment data in Figure 4.  

Figure 3. Mean square error analysis.  
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From Figure 4 it can be concluded that despite the noise of the experiment data, the simulation 

result is in good accordance with the measured PD waveform. However, only the current signal  

can tell us the macroscopic information of the PD process. With the implementation of the  

electro-hydrodynamic model, several microscopic characteristics can be assessed.  

Figure 4. Comparison of the partial discharge (PD) current between the simulation and 

experiment as a response to 1.2 PDIV with 10 mm needle-sphere electrode configuration. 

 

Figures 5 and 6 plot the electric field distribution and potential drop along the electrodes axis. For 

all time, the peak value of the electric field does not occur at the needle electrode tip as it does for 

Laplacian field distribution, which means under voltage levels exceeding the PDIV, the space charge 

generated by the molecule ionization contributes a significant distortion to the original electric field 

distribution. Also the peak value of the electric field is moving far away from the needle electrode. As 

the development of PD is a result of the ionization of neutral molecules, the movement of peak value 

of electric field represents the propagation of the PD.  

Figure 5. Electric field distribution along the needle-sphere axis as a response to 1.2 PDIV 

with 10 mm needle-sphere electrode configuration. 
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Figure 6. Potential drop along the needle-sphere axis as a response to 1.2 PDIV with  

10 mm needle-sphere electrode configuration. 

 

The potential drop is characterized with a flat region near the needle electrode. The potential drop in 

this region is quite different from the original distribution, which indicates the area affected by the PD 

process. Also the position of this region is in accordance with the peak value of the electric field. 

From the electric field distribution and voltage drop along the axis it can be concluded that the 

dynamics of the PD process is influenced by both the applied voltage and the space charge generated 

by the electric field. Space charge is the sum of positive ions, negative ions and electrons. By checking 

the source and sink term in Equations (1–3) it is obvious that the generation of the negative charge 

only results from the attachment of the electrons and liquid molecules. However, this process is 

characterized with a long time scale compared with the collision and recombination process. Thus the 

negative charge density is quite small compared with those of positive ions and electrons. Also Table 1 

shows that the electrons travel with a velocity five orders of magnitude higher than that of positive 

ions. Additionally, with electric field strength as Figure 5 shows, electrons will quickly sweep over the 

gap with positive ions remaining almost stationary. Thus the net space charge density is mainly a result 

of the positive charge density. Figures 7 and 8 plot the space charge density distribution and positive 

charge distribution along the needle-sphere axis at time 10, 20, 50, 100 and 1000 ns. 

In Figures 7 and 8 the space charge density is characterized with several peaks, which are in the 

same position with the corresponding peaks of electric field. This means that when the needle 

electrode is stressed with high voltage, the molecules near the needle tip are ionized. Positive ions and 

electrons are generated. And these charge carriers are driven to move by the electric field. When the 

net charge density becomes high enough, it will distort the original Laplacian electric field and the 

maximum value of the electric field will be a small distance away from the needle tip. After 10 ns, the 

peak value of space charge and positive charge density start to decay, which represents the decay of 

the PD current. After 1000 ns, the electric field is so weak that no significant space charge can be 

generated, and thus the PD current is approximately 0. 
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Figure 7. Space charge density distribution along the needle-sphere axis as a response to 

1.2 PDIV with 10 mm needle-sphere electrode configuration. 

 

Figure 8. Positive charge distribution along the needle-sphere axis as a response to  

1.2 PDIV with 10 mm needle-sphere electrode configuration. 
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case, 1.5 PDIV is implemented in the 10 mm gap experiments. The comparison between the 

experimental data and simulation results is plotted in Figure 9.  

Figure 9. Comparison of the PD current between the simulation and experiment as a 

response to 1.5 PDIV with 10 mm needle-sphere electrode configuration. 

 

It can be concluded that the PD current under 1.5 PDIV is higher than 1.2 PDIV. This is in 
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Figure 10. Electric field distribution along the needle-sphere axis as a response to  

1.5 PDIV with 10 mm needle-sphere electrode configuration. 
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Figure 11. Potential drop along the needle-sphere axis as a response to 1.5 PDIV with  

10 mm needle-sphere electrode configuration. 
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Figures 12 and 13 plot the space charge density distribution and positive charge distribution along 

the needle-sphere axis at time 10, 20, 50, 100 and 1000 ns.  

Figure 12. Space charge density distribution along the needle-sphere axis as a response to 

1.5 PDIV with 10 mm needle-sphere electrode configuration. 
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Figure 13. Positive charge density distribution along the needle-sphere axis as a response 

to 1.5 PDIV with 10 mm needle-sphere electrode configuration. 
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Figure 14. Comparison of the PD current between the simulation and experiment as a 

response to 1.2 PDIV with 5 mm needle-sphere electrode configuration. 
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Figure 15. Electric field distribution along the needle-sphere axis as a response to  

1.2 PDIV with 5 mm needle-sphere electrode configuration. 
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Figure 16. Potential distribution along the needle-sphere axis as a response to 1.2 PDIV 

with 5 mm needle-sphere electrode configuration. 

 

Figures 17 and 18 show the space charge density and positive charge density distribution between 

the two electrodes along the needle-sphere axis at time 10, 20, 50, 100 and 1000 ns. Similar with the 

electric field distribution, the space charge density and positive charge density distribution for 10 mm 

cases are higher than those for 5 mm cases at 10 ns and 20 ns. 
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Figure 17. Space charge density distribution along the needle-sphere axis as a response to 

1.2 PDIV with 5 mm needle-sphere electrode configuration. 
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Figure 18. Positive charge density distribution along the needle-sphere axis as a response 

to 1.2 PDIV with 5 mm needle-sphere electrode configuration. 
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Figure 19. Comparison of the PD current between the simulation and experiment as a 

response to 1.2 PDIV with 10 mm needle-plate electrode configuration. 

 

Figure 20. Electric field distribution along the needle-sphere axis as a response to  

1.2 PDIV with 10 mm needle-plate electrode configuration. 

 

Figure 21. Potential distribution along the needle-sphere axis as a response to 1.2 PDIV 

with 10 mm needle-plate electrode configuration. 
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Figures 22 and 23 show the space charge density and positive charge density distribution between 

the two electrodes along the needle-sphere axis at time 10, 20, 50, 100 and 1000 ns. As a result of the 

electric field distribution, the space charge density and positive charge density distribution for  

needle-plate electrodes are higher than those for needle-sphere electrodes. Also their distribution 

covers a wider area. 

Figure 22. Space charge density distribution along the needle-sphere axis as a response to 

1.2 PDIV with 10 mm needle-plate electrode configuration. 

 

Figure 23. Positive charge density distribution along the needle-sphere axis as a response 

to 1.2 PDIV with 10 mm needle-plate electrode configuration. 
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6. Conclusions 

This paper presents a study concerning the factors influencing the partial discharge process in liquid 

dielectrics. Experiments have been conducted to study the effects of amplitude of applied voltage, gap 

distance, and electrode type on the PD process. An electro-hydrodynamic model describing the dynamics 

of charge carriers has been implemented to generate the simulation data. This model is validated 

through the comparison between the simulation results and experimental data of the PD current. With 

the implementation of this model, the effects of amplitude of applied voltage, gap distance, and 

electrode type on the PD process are studied. Analysis based on the simulation results explains the 

mechanism of how these factors affect the PD process. The results may be summarized as follows: 

(1) For higher amplitude of applied voltage, the Laplacian electric field strength will be stronger. 

The space charge will increase in a superliner relationship with the electric field, which will enhance 

the electric field in front of the PD channel. Thus the peak value of the PD current will be higher for 

higher amplitude of applied voltage, and the PD process will cover a larger area. 

(2) The PDIV has a superliner relationship with the gap distances. For longer gap distance with the 

same PDIV level, the original electric field will be the stronger. Thus the peak value of the PD current 

is higher for longer gap distances. However, with the decay of the PD current, the generation of new 

charge carriers cannot distort the electric field distribution and thus the PD current will gradually 

become the same. 

(3) The needle-plate electrode configuration will lead to a flatter electric field distribution near the 

needle electrode compared to the needle-sphere arrangement. Although the peak value of the electric 

field is smaller than that of the needle-sphere electrode, with its flatter distribution, more space charge 

can be generated within the same area. Thus the PD current will be higher for the needle-plate 

electrode geometry with the same PDIV level than the needle-sphere electrode. 
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