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Abstract: Reconfiguration, by exchanging the functional links between the elements of the 

system, represents one of the most important measures which can improve the operational 

performance of a distribution system. The authors propose an original method, aiming at 

achieving such optimization through the reconfiguration of distribution systems taking into 

account various criteria in a flexible and robust approach. The novelty of the method 

consists in: the criteria for optimization are evaluated on active power distribution systems 

(containing distributed generators connected directly to the main distribution system and 

microgrids operated in grid-connected mode); the original formulation (Pareto optimality) 

of the optimization problem and an original genetic algorithm (based on NSGA-II) to solve 

the problem in a non-prohibitive execution time. The comparative tests performed on test 

systems have demonstrated the accuracy and promptness of the proposed algorithm. 
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1. Introduction 

The most important measures which can improve the performance in the operation of a distribution 

system are: (i) reconfiguration of the system, exchanging the functional links between its elements 

(system/network/feeder reconfiguration problem); (ii) variation and control of the reactive power flow 

through the system (optimal reactive power dispatch problem), using bank capacitors, power 

generators, etc.; (iii) variation and control of the voltage by using on-load tap-changers for power 

transformers (by using automatic voltage regulators); and (iv) changing the operating scheme of the 

parallel connected power transformers, etc. This paper focuses on optimization through the 

reconfiguration of power distribution systems. 

The reconfiguration problem is one of the multi-criteria optimization types, where the solution is 

chosen after the evaluation of some indices (e.g., active power losses, reliability indices, branch load 

limits, voltage drop limits, etc.), which represent multiple purposes. These criteria can be grouped in 

two different categories: (i) objective functions: criteria that must be minimized; and (ii) constraints 

(restrictions): criteria that must be included within some bounds. On the other hand, the criteria are 

incompatible from the point of view of measurement units and are often conflicting. Moreover, some 

criteria can be (or it is important for them to be) modeled, at the same time as objectives and 

constraints. For instance, the active power losses must be minimized but we can simultaneously 

impose a maximal acceptable value (constraint). Thus, in order to solve the problem, first of all, a 

proper model has to be chosen. The problem of optimization through the reconfiguration of a power 

distribution system, in terms of its definition, is a historical single objective problem with constraints. 

Since 1975, when Merlin and Back [1] introduced the idea of distribution system reconfiguration for 

active power loss reduction, until nowadays, a lot of researchers have proposed diverse methods and 

algorithms to solve the reconfiguration problem as a single objective problem. The most frequently 

used one is the main criterion method (ε-constraint) where the problem is defined in the following 

conditions: a main criterion is chosen, concomitantly indicating acceptable values for the other criteria. 

Usually, active power losses are adopted as the main criterion [1–22]. This approach has a major 

weakness because there is more than one index that must be taken into account in the optimization 

process and, without any prior information about the different criteria, choosing the acceptable value 

can be problematic. Additionally, this approach alters the essence of the original technical problem. On 

the other hand, some authors have studied this problem using aggregation functions, converting the 

multi-objective problem into a single objective one that assumes a (weighted or not) sum of the 

selected objective functions [23–30]. The major difficulty in this kind of problem consists in the 

incompatibility of different criteria. To create a global function, all criteria must be converted to the 

same measurement unit; a frequently used method is to convert them into costs, which is usually a 

tricky and often inaccurate operation. In addition, subjectivity appears, caused by the introduction of 

weighting factors for different criteria. Thus, the existence of a model that could take into 



Energies 2013, 6 1441 

 

 

consideration more objective functions and constraints at the same time is of great interest. To 

eliminate the subjectivity and rigidity of the classic methods, the authors propose an original approach 

to formulate this problem using the Pareto optimality concept that defines a dominate relation  

among solutions. 

Regardless of the problem formulation, searching for the solution is also a very complex issue due 

to its combinatorial nature. An absolute (e.g., ―brute force‖ [10]) method which generates the entire 

space of candidate solutions in order to choose the best one, requires a prohibitive execution time. In 

order to avoid the evaluation of the entire space of the candidate solutions and to minimize the 

computation burden, several algorithms have been developed. Most authors have used different well 

known heuristics (branch exchange [2,3,21], branch and bound [1,4], simulated annealing [5]), other 

heuristic rules or meta-heuristics [7–9,11–13,15,17,22,23,25,27,28] or multi-agent technologies [20]. 

On the other hand, some authors have developed methods based on evolutionary computation 

techniques [6,14,16,18,19,24,26,29,30]. An important drawback of these methods is the fact that they 

solve the reconfiguration problems as single objective problems. Nevertheless, some authors have 

proposed Pareto optimality based approaches (including active power losses and reliability indices as 

objectives). With these approaches, linear programming cannot be used because we have more than 

one objective function. Thereby, different artificial intelligence based methods have been used: 

evolutionary [31], branch exchange [32] and particle swarm optimization [33]. 

Taking into account these considerations, we can observe the fact that this problem is arduous 

particularly from two points of view: (i) the formulation of the problem, because there is more than one 

objective; (ii) the search for the optimal solution, because of the prohibitive execution time demanded 

by applying an absolute method. In this paper an original method, aiming the optimization through the 

reconfiguration of distribution systems, is proposed. The novelty of the method consists in:  

 the criteria for optimization are evaluated on active power distribution systems (containing 

distributed generators connected directly to the main distribution system and microgrids 

operated in grid-connected mode);  

 the original formulation of the optimization problem, as a Pareto optimal one, with two 

objective functions (active power losses and system average interruption frequency index); 

 an original genetic algorithm (based on NSGA-II) to solve the problem (as a Pareto optimal 

one) in a non-prohibitive execution time. 

2. Problem Formulation 

2.1. Criteria for Optimization 

2.1.1. Active Power Losses (ΔP) 

Active power losses represent the most important criterion and cannot be ignored in reconfiguration 

problems [1–33]. In order to evaluate this criterion it is necessary to perform the load flow calculus. 

Basically, power flow algorithms are iterative and are based on different procedures: Gauss-Seidel, 

Newton-Raphson, backward/forward sweep. For distribution systems which are operated in radial 

configurations, the most recommended approaches are backward/forward sweep based algorithms. 
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Due to its accuracy, the relatively small iteration number required and its robust convergence, the 

version presented in [34] has been chosen (where the sources are modeled as PQ nodes). 

2.1.2. Reliability of the Distribution System 

The essential attributes of interruptions in the power supply of the customers are the frequency and 

duration. While duration is predominantly influenced by the distribution system structure (radial, 

meshed, weak meshed) and the existing automations, the frequency is mainly influenced by the 

adopted operational configuration; it can be minimized by the suitable choice of the effective 

configuration. In other words, through reconfiguration, we can improve those reliability indices which 

refer to the interruption frequency [32]. Otherwise, the reliability of a distribution system can be 

considered from two different angles: 

 Reliability of a particular customer: e.g., the average number of interruptions to the power 

supply. This index can represent a possible objective and/or constraint in the optimization 

problem (because some customers can impose maximal/minimal limits in their supply contracts); 

 Reliability of the entire supply system: e.g., the number of interrupted customers per year [32], 

system average interruption frequency index (SAIFI) [35] (defined as: total number of customer 

interruptions longer than 3 minutes per total number of customers served). 

For any fault that will lead to the interruption of the power supply from the main distribution 

system, the existing distributed generators will be switched off owing to a variety of reasons. We point 

out only two of them: (i) an operation of a power island purely with dispersed generators is usually 

considered unacceptable; (ii) it is important to create conditions for auto-reclose of the main circuit 

breaker (if this equipment is used in the distribution system). An exception appears if we have 

microgrids connected to the distribution network (which contains controllable loads, DG sources, 

storage devices, automations, etc.). In this case the consumers (loads) from the microgrid will be 

supplied even if a fault has occurred in the distribution system. For instance, if a fault occurred on the 

electric line 4–7 (Figure 1), the DG connected to node 4 and the microgrid connected to node 3 will be 

isolated (e.g., by loss of mains protection [36]). In this case, the microgrid is expected to operate as a 

power island (even if is necessary to operate the automatic load-shedding control equipment). The 

customers from the microgrid will be supplied even if a fault has occurred in the main distribution 

system because a microgrid must have both primary and secondary control algorithms [37]. 

Figure 1. A distribution smart grid with a distributed generator and a microgrid. 

 

Knowing the failure rates at the level of each supplied node (load point), we can estimate the SAIFI 

using the relationship (in a similar form to the one given in [38]): 
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where N represents the total number of customers served; Ni is the total number of customers supplied 

from node i; T is the reference period [year], (T = 1 year); n is the number of load nodes of the system; 

λti is the total failure rate of the equivalent element corresponding to the reliability block diagram at the 

level of node i [year
−1

]. 

The total failure rate at the level of a node i (for a configuration) can be calculated as λti = λi + k λi’, 

where λi is the failure rate when the restoring of supply is performed after the fault repair; while λi’ is 

the failure rate when the restoring of supply is performed after the fault isolation through  

non-automatic maneuvers; and k = [0, 1] is a coefficient that estimates the weight of restoring after 3 

minutes (sustained interruption restored after fault isolation). In a first approximation, for 

reconfiguration studies, we consider k = 1, which corresponds to the most unfavorable case (when all 

restorations of supply after fault isolations through non-automatic maneuvers are performed after 3 

minutes) [31]. It must be also specified that the contingencies are considered simple and the electric 

distribution system components are independent from the reliability point of view. A numerical 

example in order to explain how the SAIFI index is computed is given in what follows. Considering 

the sample system from Figure 1 we assumed that each branch has the failure rate λ = 0.5 [year
−1

], on 

each supplied node there are 30 customers and the microgrid connected to node 3 (which contains 30 

customers and DG units) behaves as a source. In this case we will have (T = 1 year): 

 N = 30 ∙ 6 = 180 (six nodes, 30 customers for each node); 

 λt2 ∙ N2 = 0.5 ∙ 30 = 15; 

 λt3 ∙ N3 = 0.5 ∙ 3 ∙ 0 = 0 (three branches, the microgrid is expected to operate as an island and 

customers from a microgrid will be supplied even if a fault has occurred in the main distribution 

system); 

 λt4 ∙ N4 = 0.5 ∙ 3 ∙ 30 = 45 (three branches, if a fault occurs on the path 1-7-4-3, the DG unit will 

be switched off and the customers will be not supplied); 

 λt5 ∙ N5 = λt6 ∙ N6 = 0.5 ∙ 2 ∙ 30 = 30 (two branches); 

 λt7 ∙ N7 = 0.5 ∙ 3 ∙ 30 = 45; 

 SAIFI = (15 + 0 + 45 + 30 + 30 + 45)/180 = 0.9167. 

2.1.3. Other Criteria 

 Node Voltages (Vi): Basically, each voltage r.m.s. value of the network nodes must be framed 

within the allowable limits. 

 Branch Load Limits through Lines (Iij): a typical constraint on the reconfiguration problem. 

 Safeguard of power supplies for all customers: The attached graph of the electric system should 

be connected (a tree or a forest). 

 Configuration of the Distribution System: Generally, electrical distribution systems are operated 

in radial configuration. This condition can be expressed as follows: 
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where αij is a binary variable, representing the status of a tie line (0–open, 1–closed); n is the number 

of electric system nodes; E is the set of power system lines (branches) and p is the number of 

connected components. In graph theory terms, for a system with one source (p = 1) we are talking 

about an optimal tree and for a system with more than one feeder (p > 1) we are talking about an 

optimal forest with a number of trees (connected components) equal to that of source nodes. 

2.2. Pareto Optimality Problem Formulation 

The criteria presented above are not unique, but we consider them to be the most important ones. 

Taking into account these criteria, we can begin to perceive the real dimensions of the problem. These 

criteria are incompatible from the point of view of measurement units and can be grouped in two 

different categories: objective functions and constraints (restrictions). In Pareto optimization, the 

central concept is named non-dominated solution. This solution must satisfy the following two 

conditions: (i) there is no other solution that is superior at least in one objective function; (ii) it is equal 

or superior with respect to other objective function values. Usually, the solution is not unique and 

consists of a set of acceptable optimal solutions (Pareto optimal). The set of Pareto solutions forms the 

Pareto front associated with a problem. Figure 2 presents a possible Pareto front for the optimization 

problem based on two objectives (ΔP and SAIFI). The Pareto front allows an informed decision to be 

made by visualizing an extensive range of options since it contains the solutions that are optimal from 

an overall standpoint. 

Figure 2. A Pareto front for a bi-objective reconfiguration problem. 

 

As a Pareto optimal multi-objective problem, we propose the following form: 

Objective function 

min[ , ]P SAIFI  (3) 
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3. Problem Solving 

In the case of multi-objective problems, the literature proposes several Pareto-based genetic 

algorithms: MOGA (Multi Objective Genetic Algorithm) [39], NPGA (Niched Pareto Genetic 

Algorithm) [40], SPEA/SPEA-II (Strength Pareto Evolutionary Algorithm) [41], and NSGA/NSGA-II 

(Non-dominated Sorting Genetic Algorithm) [42]. After experimental comparison of these algorithms, 

the authors have decided to solve the multi-objective optimization problem through reconfiguration by 

using the NSGA-II algorithm with significant results (optimal solutions in short execution times). The 

logical diagram of the proposed NSGA-II based algorithm (MOReco–Multi Objective Reconfiguration) 

is given in Figure 3. The initial population is generated using the branch-exchange heuristic algorithm 

presented in [3]. A potential solution is selected only if all considered constraints are satisfied. 

Figure 3. Logical diagram of the proposed algorithm (MOReco) dedicated to the 

reconfiguration of power distribution systems. 
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3.1. Genetic Encoding and Decoding of Power Distribution System Topology 

3.1.1. Genetic Encoding 

In this implementation, the representation using the branch lists was chosen because a power 

system node is only linked with a small part of the other nodes (it results in a rare graph, i.e., the 

associated matrix contains many zero elements). Consequently, the graph associated with the electric 

network can be described by a matrix with 2 lines and m columns (where m is the number of the 

branches), each column indicating the two ends of a branch. This matrix does not contain zero 

elements. Therefore, using the representation via the branch lists, a binary codification of the problem 

(binary chromosome with fixed length) can be obtained. Binary values of the chromosome will 

indicate the status of every electric line: 0–open, 1–closed. Figure 4a exemplifies the graph (which 

indicates the network topology) attached to a distribution system, represented by branch lists (α and β), 

and the binary attached chromosome g (system/grid encoding). 

Figure 4. A power distribution system: (a) the branch lists of the attached graph (α and β) 

and the attached chromosome (g); (b) Branch lists (α and β) obtained by decoding the 

chromosome a. 

  

(a) (b) 

3.1.2. Genetic Decoding 

The operation scheme of the system will be obtained by making the preservation of the 

corresponding branch value equal 1 (in operation). For instance, by decoding the chromosome a, the 

radial operation scheme will be obtained (with corresponding α and β lists) (Figure 4b). Using this 

codification, we have a population that consists of a set of chromosomes of type a. By decoding each 

chromosome, a particular configuration will be obtained and its performance can be tested. 

3.2. Genetic Operators 

3.2.1. Selection 

The goal of the selection operator is to assure more chances to replicate for the best chromosomes 

of a population. The selection is performed taking into account the fitness of the chromosomes. The 

most used selection methods are Monte Carlo and tournament. For this multi-objective optimization 

problem, the author has used the ecological niche method [43]. 
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3.2.2. Crossover 

Choosing the number and position of crossover points for the crossover operator depends on the 

system topology. If these points are selected in an inadequate mode we will obtain ―bad‖ 

chromosomes: (i) un-connected systems with isolated nodes; or (ii) connected systems with loops 

(meshed). In order to reduce the number of these cases, we propose that the number of cut points be 

equal to CN − 1. CN represents the cyclomatic number (the number of fundamental circuits/loops) 

corresponding to the attached graph: CN = m − n + p (where m is the number of branches, n is the 

number of nodes/vertices and p is the number of connected components). 

3.2.3. Mutation 

One of the two conditions in order to have a tree or a forest is to assure n-p closed branches (in 

operation), as in relationship (2). A radial configuration cannot be converted to another radial one by 

simply altering the value of a chosen gene. Therefore, we use this operator only in the case when, by 

performing the crossover operator, non-radial configurations are obtained. Thus, if in a chromosome 

there are more or fewer than n-p genes equal to 1, the mutation operator randomly replaces the 

excess/insufficiency of genes equal to 1 (in order to have n-p genes equal to 1). 

3.2.4. Inversion 

The second condition in order to have a tree or a forest is to have a connected graph (for a tree) or a 

graph with connected components (for a forest). Thus, this operator makes some branch-exchanges 

(each inversion between two genes of a chromosome behaves as a branch-exchange), repairing 

existing non connected graph chromosomes (which are not connected but which have n-p genes equal 

to 1) and increases the diversity of a population. In our algorithm, this is an intensively used operator 

after performing crossover and mutation. 

4. Simulation Results 

The Pareto front allows an informed decision to be made by visualizing an extensive range of 

options since it contains the solutions that are optimal from an overall standpoint. The proposed 

algorithm was implemented in the C++ programming language. The implementation was adapted in 

order to work with one objective (ΔP) and with two objectives (ΔP and SAIFI). Thus, the user can 

choose (in a flexible mode) ΔP as the objective function and some criteria as constraints (voltage 

deviation, loads limits through lines, etc.) or a vector objective function with ΔP and SAIFI as 

variables (at the same time) and other criteria as constraints. The stopping criterion of the algorithm is 

an imposed maximum number of generations. All tests were performed on a PC equipped with an  

Intel Core Duo (3 GHz) processor and 4 GB of memory. Validation of the proposed algorithm 

implementation has been a difficult process especially because of the load flow computation unit. Data 

regarding different quantities (active power losses, voltages nodes) have been presented in literature in 

a variety of forms (p.u., actual values or a mixture) and there are some approximations caused by the 

load flow algorithm which was used. E.g., in case [2], before the reconfiguration (in the base case), the 

total active power losses are 0.00511 p.u. After reconfiguration (by applying the MOReco algorithm), 
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the total active power losses are 0.004658 p.u. This result represents the optimal configuration and is 

confirmed in [9] and [11]. Another example is given in [5]. Before the reconfiguration, the total active 

power losses are 20.87 kW. This value is different from the 69.76 kW value which was presented in [5]. 

After reconfiguration, the total active power losses are 9.43 kW. These results are confirmed in [16]. 

In order to test the correctness and convergence speed of the proposed algorithm, the authors 

studied, first of all, five well known single-objective (active power losses) test systems. Table 1 

presents two single-objective (active power losses) test cases where power distribution systems contain 

distributed generation: 

 System A (Figure 5a) [3,27]: There are four DG units installed on nodes 3, 6, 24 and 29 [27]. In 

the base case, the total active power losses are 169.881 kW. By applying MOReco algorithm 

(after reconfiguration), the total active power losses are 115.748 kW. The evolution of the active 

power losses along the searching process is presented in Figure 6a. 

 System B (Figure 5b) [27]: In this case, there are eight DG units installed on nodes: 7, 12, 19, 28, 

34, 71, 75 and 79 [26]. Before the reconfiguration, the total active power losses are 425.131 kW 

(as in [26]). After reconfiguration, we obtained a better configuration than the one presented in 

[26]. The total active power losses are 380.656 kW, therefore smaller than 383.524 kW. The 

evolution of the active power losses along the searching process is presented in Figure 6b. 

Figure 5. Test distribution systems: (a) system A [3]; (b) system B [27]. 

  

(a) (b) 

The proposed algorithm has an excellent behavior obtaining good quality solutions in reduced 

computation times (seconds); usually, a reduced number of generations is necessary for convergence. 

Performing reconfiguration for the test system B [27] as a Pareto problem, the operating configurations 

are obtained by optimizing two criteria: ΔP and SAIFI (Table 2). The Appendix indicates the failure 
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rates of branches considered in reconfiguration calculus. It is assumed that each node has three 

supplied consumers. In these study cases we considered two scenarios: 

Figure 6. The evolution of the active power losses along the searching process (in the case 

of minimum CPU runtime): (a) for test distribution system A with DGs; (b) for test 

distribution system B with DGs. 

  

(a) (b) 

Table 1. Results for different single-objective reconfiguration (test cases with DGs). 

System Configuration Open branches (tie lines) 
Active power 

losses 

CPU runtime for  

100 runs 

Population/ 

Generations 

A 

Base case 8–21, 9–15, 12–22, 18–33, 25–29 169.881 kW -  

MOReco 7–8, 9–10, 14–15, 28–29, 32–33 115.748 kW 

Minimum (3 s: 804 ms) 

Maximum (3 s: 974 ms) 

Average (3 s: 910 ms) 

10/4 

B 

Base case 

5–55, 7–60, 11–43, 12–72, 13–76,  

14–18, 16–26, 20–83, 28–32,  

29–39, 34–46, 40–42, 53–64 

425.131 kW -  

MOReco 

6–7, 12–13, 32–33, 38–39, 41–42,  

54–55, 62–63, 71–72, 82–83,  

11–43, 14–18, 16–26, 28–32 

380.656 kW 

Minimum (6 s: 202 ms) 

Maximum (7 s: 108 ms) 

Average (6 s: 675 ms) 

10/8 

Table 2. Results for Pareto reconfiguration with two objectives. 

System Open branches (tie lines) 
Active power 

losses 
SAIFI 

CPU runtime  

for 100 runs 

Population/ 

Generations 

B
 w

it
h

 D
G

s 

6–7, 12–13, 32–33, 38–39, 41–42, 54–55, 62–63,  

71–72, 82–83, 11–43, 14–18, 16–26, 28–32 
380.656 kW 1.143 

Minimum  

(6 s: 952 ms) 

Maximum  

(7 s: 279 ms) 

Average  

(7 s: 40 ms) 

10/9 

5–55, 6–7, 11–43, 12–72, 13–76, 14–18, 16–26,  

20–83, 28–32, 29–39, 32–33, 40–42, 53–64 
396.143 kW 0.751 - 

5–55, 6–7, 11–43, 12–72, 13–76, 14–18, 16–26,  

20–83, 28–32, 29–39, 34–46, 40–42, 53–64 
409.526 kW 0.648 - 

5–55, 7–60, 11–43, 12–72, 13–76, 14–18, 16–26,  

20–83, 28–32, 29–39, 34–46, 40–42, 53–64 
425.131 kW 0.472 - 
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Table 2. Cont. 

System Open branches (tie lines) 
Active power 

losses 
SAIFI 

CPU runtime  

for 100 runs 

Population/ 

Generations 

B
 w

it
h

 m
ic

ro
g

ri
d

s 6–7, 12–13, 32–33, 38–39, 41–42, 54–55, 62–63,  

71–72, 82–83, 11–43, 14–18, 16–26, 28–32 
380.656 kW 0.988 

Minimum  

(7 s: 114 ms) 

Maximum  

(7 s: 342 ms) 

Average  

(7 s: 171 ms) 

10/9 

5–55, 6–7, 11–43, 12–72, 13–76, 14–18, 16–26,  

20–83, 28–32, 29–39, 32–33, 40–42, 53–64 
396.143 kW 0.619 - 

5–55, 7–60, 11–43, 12–72, 13–76, 14–18, 16–26,  

20–83, 28–32, 29–39, 34–46, 40–42, 53–64 
425.131 kW 0.427 - 

 System B with DG units: The proposed algorithm has obtained a Pareto front with four 

solutions (Figure 7a). In this case, the first non-dominated solution was obtained from initial 

population. After the first generation, the algorithm found the second non-dominated solution 

(the Pareto front contains two solutions). The searching process continued and the third  

non-dominated solution was found in generation 2 (at the end of generation 2, the Pareto front 

contains three solutions). The searching process continued, but without finding other  

non-dominated solutions until generation 9, where the fourth and final non-dominated solution 

was found. In the end, the Pareto front contains four non-dominated solutions. 

 System B with microgrids (instead of DG units, as sources on the points of common coupling): 

The proposed algorithm obtained a Pareto front with three solutions (Figure 7b). As in the 

previous case, along the searching process, the Pareto front increases from one solution (from 

the initial population), to two solutions (generation 2) and, finally, to three solutions (in 

generation 9). We can observe that the SAIFI index is smaller in the case of existing microgrids 

than in the case where we consider just distributed generators. 

Figure 7. The Pareto front (in the case of minimum CPU runtime): (a) for system B with 

DG units; (b) for system B with microgrids. 

  

(a) (b) 

It is important to mention the fact that, in the case of the proposed algorithm, we obtained the same 

results for 100 runs. The differences consist only in the execution time required (e.g., between 6 s:  

952 ms and 7 s: 279 ms, for the test case B with DGs, Table 2, where multi-objective reconfiguration 

is done), especially because of the inversion operator (applied a random number of times). There are 

different execution times in a generation and an important advantage: a large breadth search and a 

convergence to optimum in a reduced number of generations. 
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The proposed algorithm tries to exploit the fundamental properties of a distribution system, i.e., to 

have a radial configuration in operation. It tries to generate just radial configurations (by using the 

branch exchange heuristic procedure to generate the initial population and by crossover operator.) By 

choosing the number of cut points equal to the cyclomatic number −1, usually, other valid 

chromosomes are obtained, increasing the diversity of the population. This implementation does not 

ensure just valid chromosomes because in some cases, non-valid chromosomes (non radial 

configurations) are obtained. However, in combination with the mutation, this disadvantage is 

transformed into an important advantage because the diversity of the population is substantially 

increased and new zones from the research space are explored. Not ultimately, the implemented 

inversion operator, applied a random number of times to the chromosomes, expands the search space 

enough in order to find a good solution in a reduced number of generations. 

5. Conclusions 

Reconfiguration represents one of the most important measures which can improve the performance 

in the operation of a distribution system. Optimization through the reconfiguration (or optimal 

reconfiguration) of a power distribution system is not a new problem but still represents a difficult one 

and nowadays has new valences. Besides active power losses, the average number of interruptions to 

the power supply represents an essential criterion which must be taken into consideration in the 

optimization problem. The criteria for optimization have been evaluated on active power distribution 

systems (containing distributed generators connected directly to the main distribution system and 

microgrids operated in grid-connected mode). The simulation studies on test systems have highlighted 

that the SAIFI index is smaller in the case of existing microgrids (because the consumers which are 

inside the microgrid are supplied even if a fault has occurred in the main distribution system) than in 

the case of distributed generators connected directly to the main distribution system. 

The original formulation of the optimization problem, as a Pareto optimal one, with two objective 

functions (active power losses and system average interruption frequency index) ensures an objective 

and robust solution. Thus, the weak points of the classic methods proposed in literature can be 

eliminated; we are especially talking about: (i) errors caused by the conversion of different objective 

functions into the same measurement units; and (ii) the subjectivities caused by the introduction of 

weighting factors for different criteria.  

Usually, the existing reconfiguration methods used nowadays either demand prohibitive execution 

times or result in non-optimal solutions (in the case of most common heuristics). The authors propose 

an original genetic algorithm (based on NSGA-II) to solve the problem (as a Pareto optimal one) in a 

non-prohibitive execution time. The comparative tests performed on some active test systems have 

demonstrated the accuracy and promptness of the proposed algorithm. 
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Appendix 

Table A1. Failure rates of system B (Figure 5b). 

Branch i j λ [year
−1

] Branch i j λ [year
−1

] Branch i j λ [year
−1

] 

1 B1 1 0.071 37 36 37 0.016 73 B10 73 0.019 

2 1 2 0.096 38 37 38 0.024 74 73 74 0.082 

3 2 3 0.078 39 38 39 0.064 75 74 75 0.009 

4 3 4 0.035 40 39 40 0.065 76 75 76 0.091 

5 4 5 0.065 41 38 41 0.095 77 B11 77 0.065 

6 5 6 0.082 42 41 42 0.046 78 77 78 0.017 

7 6 7 0.059 43 B6 43 0.085 79 78 79 0.017 

8 7 8 0.012 44 43 44 0.075 80 79 80 0.091 

9 7 9 0.012 45 44 45 0.062 65 B9 65 0.042 

10 7 10 0.011 46 45 46 0.036 66 65 66 0.054 

11 B2 11 0.007 47 B7 47 0.065 67 66 67 0.017 

12 11 12 0.039 48 47 48 0.093 68 67 68 0.016 

13 12 13 0.095 49 48 49 0.019 69 68 69 0.085 

14 12 14 0.036 50 49 50 0.065 70 69 70 0.066 

15 B3 15 0.048 51 50 51 0.017 71 70 71 0.052 

16 15 16 0.076 52 51 52 0.017 72 71 72 0.052 

17 16 17 0.023 53 52 53 0.051 73 B10 73 0.019 

18 17 18 0.094 54 53 54 0.026 74 73 74 0.082 

19 18 19 0.056 55 54 55 0.055 75 74 75 0.009 

20 19 20 0.067 56 B8 56 0.026 76 75 76 0.091 

21 20 21 0.099 57 56 57 0.017 77 B11 77 0.065 

22 21 22 0.045 58 57 58 0.032 78 77 78 0.017 

23 21 23 0.073 59 58 59 0.017 79 78 79 0.017 

24 23 24 0.046 60 59 60 0.068 80 79 80 0.091 

25 B4 25 0.049 61 60 61 0.055 84 5 55 0.052 

26 25 26 0.062 62 61 62 0.061 85 7 60 0.051 

27 26 27 0.066 63 62 63 0.098 86 11 43 0.072 

28 27 28 0.059 64 63 64 0.017 87 12 72 0.061 

29 28 29 0.099 65 B9 65 0.042 88 13 76 0.069 

30 B5 30 0.034 66 65 66 0.054 89 14 18 0.049 

31 30 31 0.114 67 66 67 0.017 90 16 26 0.036 

32 31 32 0.074 68 67 68 0.016 91 20 83 0.045 

33 32 33 0.065 69 68 69 0.085 92 28 32 0.066 

34 33 34 0.059 70 69 70 0.066 93 29 39 0.085 

35 34 35 0.025 71 70 71 0.052 94 34 46 0.061 

36 35 36 0.026 72 71 72 0.052 95 40 42 0.042 
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