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Abstract: The accurate state of charge (SOC) estimation of the LiFePO4 battery packs 

used in robot applications is required for better battery life cycle, performance, reliability, 

and economic issues. In this paper, a new SOC estimation method, “Modified ECE + EKF”, 

is proposed. The method is the combination of the modified Equivalent Coulombic 

Efficiency (ECE) method and the Extended Kalman Filter (EKF) method. It is based on the 

zero-state hysteresis battery model, and adopts the EKF method to correct the initial value 

used in the Ah counting method. Experimental results show that the proposed technique is 

superior to the traditional techniques, such as ECE + EKF and ECE + Unscented Kalman 

Filter (UKF), and the accuracy of estimation is within 1%. 

Keywords: equivalent coulombic efficiency (ECE); extended Kalman filter (EKF); 

LiFePO4; state of charge (SOC) estimation 

 

1. Introduction 

In recent years, interest has increased significantly in the use of lithium ion (Li-ion) batteries for 

some applications, such as hybrid electric vehicles (HEVs), battery electric vehicles (BEVs), plug-in 

hybrid electric vehicles (PHEVs), and robotic systems. The features of light weight, high energy 

density, high galvanic potential, and long life cycle of Li-Ion are superior to either lead-acid or  
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nickel-metal hydride batteries, as their energy and power have been remarkably extended to achieve the 

high traction power and long lifetime required in these applications. In real-world use, accurate 

information of the state of charge (SOC) of a robot’s battery packs is required for a good battery 

management system. 

SOC is generally defined as the ratio of standard remaining capacity to the nominal capacity: 

( ) ( ) ( )
0 0

t I t
SOC t SOC t dt

C

η
= −   (1)

where SOC(t) is the SOC at time instant t; SOC(t0) is the initial value; C is the nominal capacity; and 

I(t) is the current at time t. The current is positive during the discharging process and negative during 

the charging process. In general, η = 1 for discharge and η < 1 for charge under standard conditions 

with a constant C/3 rate. As the current rate is usually quite variable in real situations, ECE (introduced 

in Section 2) has been developed to measure the energy loss. 

Failure to estimate SOC accurately can easily cause over-discharging or over-charging situations, 

resulting in a decreased capability to yield power as well as decreased battery pack longevity. For this 

reason, accurate SOC estimation is considered very important for robot applications. Several methods 

of estimating the SOC have been developed, e.g., the Ah counting approach [1,2], the Equivalent 

Coulombic Efficiency (ECE) approach [1,3], Open-Circuit Voltage (OCV) measurements [4], the 

Dynamic Equivalent Circuit-based Model (DECM) [5–12], the Electrochemical Impedance 

Spectroscopy (EIS) approach [13–15], the Electromotive Force (EMF) approach [16], the Fuzzy Logic 

approach [17], the Artificial Neural Network (ANN) approach [18], the Support Vector Machine 

(SVM) method [19], and the Kalman Filtering approach [20]. Non-linear Kalman filters, such as the 

Extended Kalman filter (EKF) [21–27], the Dual Extended Kalman filter (DEKF) [4], the Unscented 

Kalman Filter (UKF) [28–31], the Adaptive Extended Kalman Filter (AKEF) [32,33], and the Adaptive 

Unscented Kalman Filter (AUKF) [34], have been developed. 

According to the choice of battery model, the SOC estimation methods can be approximately 

categorized into three major types [9]. The first type is the non-model-based coulomb counting method 

applied to many BEV/HEV BMSs and battery storage simulations. This online sampling approach is 

the straightforward application of Equation (1). The battery packs’ current is measured constantly and 

used to update the SOC. If the current is measured accurately, implementation is inexpensive and 

reliable, though the method has several drawbacks [1]. Firstly, it cannot determine the initial SOC. 

Secondly, it is difficult to measure coulombic efficiency correctly. Thirdly, the error is larger when the 

battery works at low or high temperatures. Finally, in practice, the open-loop algorithm often results in 

the accumulation of measurement errors due to uncertain disturbances. This means that regular 

recalibration is required, a difficult procedure to be implemented in the highly dynamic operations of 

the electrical system. To solve these problems, the Ah counting approach is combined with the Peukert 

equation [35] to calculate the coulombic efficiency. This quantity, however, is not only a function of 

current but is also affected by SOC and temperature. Therefore, the combination of the two approaches 

has not yielded a reliable result. 

The second category of SOC estimation methods uses black-box battery models that describe the 

nonlinear relationship between the SOC and its influencing factors. Based on principles like ANN, fuzzy 

logic optimization, and SVM, these models are often established by computational intelligence-based 
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approaches. Given an appropriate training data set, they can provide good SOC estimation through 

their abilities to approximate nonlinear function surfaces. However, there are two drawbacks. One is 

that the learning process imposes a heavy computational load, so most SOC estimation models of this 

type are used offline. The other is that good performance is achievable only if sufficient and reliable 

training data are available. Both these problems can lead to poor robustness under certain battery 

operating conditions. 

The third category is based on Kalman filtering techniques using state-space battery models and is 

favored because it is closed loop (self-corrected), online, and offers a dynamic SOC estimation error 

range. This category is most suitable for real-time battery management and electrical system control. 

In this paper, a new and highly precise SOC estimation method, called “Modified ECE + EKF” 

method, is proposed. It combines a modified ECE method, which considers self-discharge and the 

influence of temperature and SOC on the coulombic efficiency, with an EKF-based method that makes 

the approximate initial SOC value converge to its real value. In addition, a battery model suitable for 

real-time implementation is also proposed. It consists of two parts. The first is an adaptation of the 

“combined model,” describing the relationship between OCV and SOC, that performs better than any 

one of the Shepherd, Unnewehr, or Nernst models [36]. The second part is a zero-state hysteresis 

correction term. Based on a linear discrete-time model form, a least-square algorithm is used to 

estimate the parameters of the model. The proposed SOC estimation method will be demonstrated 

using two experimental tests. A comparison of algorithms among Modified ECE + EKF, ECE + EKF, 

and ECE + UKF show that the proposed SOC estimation method has better accuracy. 

The remainder of this paper is organized as follows: the measurement and modification of the ECE 

method are introduced in Section 2, and a description of the structure and parameterization of the  

zero-state hysteresis battery model is given in Section 3. Section 4 presents the EKF-based SOC 

estimation algorithm, and Section 5 discusses two experiments to validate the proposed method and 

compare the method with the ECE + EKF and ECE + UKF estimation approaches. Section 6 shows an 

application in robots to justify the accuracy and robustness of the proposed algorithm. Finally, our 

conclusions are summarized in Section 7. 

2. Equivalent Coulombic Efficiency (ECE) 

The coulombic efficiency of battery packs is defined as the ratio of the discharged capacity to the 

capacity needed to be charged to the initial state before discharge and it can be calculated as: 

0 0

d ct t

d cI dt I dtη =    (2)

where Id is the discharging current; td is the discharging time; Ic is the charging current; and tc is the 

charging time. 

The coulombic efficiency, shown in Equation (2), is the ratio of the discharging capacity to the 

charging capacity. It varies according to current rate, and hence an accurate SOC estimation depends 

on accurate calculation of both charge and discharge coulombic efficiency. 
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2.1. Calculation of the Equivalent Coulombic Efficiency 

To calculate the charge and discharge coulombic efficiency of a robot’s battery packs, the ECE 

measurement method [37] is adopted in this paper, and we use “2S8P × 4” LiFePO4 battery packs as a 

test sample to calculate the ECE, as shown in Figure 1. Here, “2S8P × 4” indicates that each pack has 

four “2S8P” battery packs in series, each with a nominal capacity of 8.4 Ah. 

Figure 1. LiFePO4 battery packs (2S8P × 4). 

 

As the coulombic efficiency is different at different currents, the C/3 rate is used as the base current 

to define the base coulombic efficiency and the ECE when batteries are charged or discharged. The 

base coulombic efficiency can be calculated by Equation (3) after completing the following procedure: 

(1) Discharge at the C/3 rate until the terminal voltage limit is reached; 

(2) Charge at the C/3 rate until SOC = 1 and the charging capacity is QCB; 

(3) Rest the battery pack for 5 min until it is in the balanced state; 

(4) Discharge at the C/3 rate until the terminal voltage limit is reached. The discharging capacity  

is QDB. 

The base coulombic efficiency of LiFePO4 battery packs can then be calculated as: 

3C DB CBQ Qη =  (3)

However, in this paper, the equivalent charge coulombic efficiency of LiFePO4 battery packs is 

calculated by Equation (4) after completing the following procedure: 

(1) Discharge at the C/3 rate until terminal voltage limit is reached; 

(2) Charge at several different currents IC (C/3, C/2, 1C, 1.5C, 2C, 2.5C) until SOC = 1. The 

charging capacity is QCC = IC · tCC, where tCC is the charging time. This step will keep the 

current constant at different values in different charge cycles. Therefore, we finally have six 

charge cycles; 

(3) Rest the battery pack for 5 minutes until it is in a balanced state; 

(4) Discharge at the C/3 rate until the terminal voltage limit is reached. The discharging capacity is 

QDC = (C/3) · tDC, where tDC is the discharging time. 

The equivalent charge coulombic efficiency of LiFePO4 battery packs can then be calculated as: 

( )
3C DC CC DC C CC

C
Q Q t I tη  = = ⋅ ⋅ 

 
  (4)
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In addition, the equivalent discharge coulombic efficiency of LiFePO4 battery packs is calculated by 

Equation (5) after completing the following procedure: 

(1) Discharge at a specific current until the terminal voltage limit is reached; 

(2) Charge at the C/3 rate until SOC = 1. The discharging capacity is QCD = (C/3) · tCD, where tCD 

is the charging time; 

(3) Rest the battery pack for 5 minutes until it is in a steady state; 

(4) Discharge at several different currents ID (C/3, C/2, 1C, 1.5C, 2C, 2.5C) until the terminal 

voltage limit is reached. The discharging capacity is QDD = ID · tDD, where tDD is the 

discharging time. This step will keep the current constant at different values in different 

discharge cycles. Therefore, we finally have six discharge cycles. 

The equivalent discharge coulombic efficiency of LiFePO4 battery packs can then be calculated as: 

( )
3D DD CD D DD CD

C
Q Q I t tη  = = ⋅ ⋅ 

 
  (5)

Figure 2 shows the calculated equivalent charge and discharge coulombic efficiency of LiFePO4 

battery packs, and the base coulombic efficiency ηC/3 = 0.9982. To calculate these results conveniently, 

a linear fitting method is used to fit the equivalent coulombic efficiency. 

Figure 2. Equivalent charge and discharge coulombic efficiency of LiFePO4 battery packs. 
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2.2. Modified ECE Method 

The charging and discharging processes for different current rates can be converted into a single 

process for constant current. Let Q0 be the initial capacity. QCN is the charging capacity at current ICN; 

where QCN = ICN · tCN; and tCN is the charging time; QDN is the discharging capacity at current IDN; 

where QDN = IDN · tDN; and tDN is the discharging time. The equivalent charging capacity QC and its 

discharging capacity QD are calculated by Equations (6) and (7), respectively: 

3 3

CN CN CN
C C C

C C

Q I t
Q η η

η η
= =  (6)
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3 3
DN DN DN

D C C
D D

Q I t
Q η η

η η
= =  (7)

In the entire operating process of the battery packs, the practical consumed capacity QT at room 

temperature under the actual discharge/charge rate is calculated by Equation (8). The baselines of each 

term in Equation (8) are all with C/3 rate: 

0 3 0 3
DN DN

T C C D CN CN C C
D

I t
Q Q Q Q Q I tη η η

η
= + − = + −     (8)

The coulombic efficiency in the low (capacity <12 Ah) and high (capacity >76 Ah) SOC ranges is 

smaller than that in the normal SOC range (SOC = 0.2–0.8). For electrical systems, the designed 

coulombic efficiency is usually between 0.94 and 0.98 in the normal SOC range [1]. In this paper, the 

coefficient KS is defined to modify the influence of the SOC on the coulombic efficiency. In the 

normal SOC range, base coulombic efficiency does not vary significantly, so the value of KS is set to 

0.98 in this paper. 

Figure 3 shows the influence of temperature on coulombic efficiency. The battery pack is charged 

and discharged at the C/3 rate under different temperatures (45, 25, 0, and −10 °C), respectively [14]. 

The test indicates that temperature influences the coulombic efficiency, and that the relationship 

between efficiency and temperature is non-linear, as shown in Table 1. In this paper, the coefficient KT 

is defined to modify the influence of temperature on coulombic efficiency. 

Figure 3. The influence of temperature on coulombic efficiency. 
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Table 1. The relationship between efficiency and temperature. 

Temperature (°C) KT 

–10 0.8154 
0 0.9134 

25 1 
45 1.0107 

Any battery will lose energy through self-discharge, a phenomenon in which internal chemical 

reactions continuously reduce the stored charge, even when the battery is disconnected. When it is 
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connected, its internal resistance also consumes energy. Both of these unavoidable losses of available 

energy must be taken into account when considering the charging-discharging process. Self-discharge 

decreases the shelf life of battery packs so that they are not fully charged on first use. The higher the 

environmental temperature is, the larger the self-discharge will be. It also affects the SOC estimation 

accuracy significantly. Self-discharge of LiFePO4 battery packs is typically less than 3% per month, so 

the effect is very small for periods of a day or so. It becomes more significant for longer periods 

between charging, and can be the source of accumulating errors unless the battery monitoring circuit is 

regularly reset or calibrated. The self-discharge coefficient KSD is therefore set to 2 × 10–8 in this paper. 

If a battery is left to relax after charging or discharging, it takes some time for the terminal voltage 

to reach the new steady state value. This is called relaxation effect, and for low discharge/charge rates 

it can be mitigated to a certain extent through battery relaxation. Although the relaxation model’s 

behavior is similar to the behavior of commercial batteries, there is considerable difficulty in its 

implementation, since the relaxation effect involves many physical and electrochemical properties of 

the battery [8]. 

To overcome these problems, a modified ECE method that considers self-discharge, influence of 

temperature and SOC on the coulombic efficiency (but not the relaxation effect) is proposed  

as follows: 

0 3 0 3
DN DN

T SD C C D SD S T CN CN C S T C
D

I t
Q Q Q Q Q Q K C t K K I t K Kη η η

η
= − + − = − Δ + −      (9)

where QSD is the self-discharge quantity of battery packs and Δt is the sample interval whose value  

is 1 second. 

The modified SOC is now defined as: 

( ) TQ
SOC t

C
=  (10)

3. Battery Modeling 

In this paper, the zero-state hysteresis [24,32,34] battery model is used as the battery packs model, 

which is often applied to the Kalman filter-based SOC estimation. Equations (11,12) represent the 

zero-state hysteresis model: 

( )1 , k
k k k k k k k

t
s f s i w s i w

C

η
+

⋅Δ = + = − + 
 

 (11)

( ) ( ),k k k k k k k ky g s i v OCV s i R h H v= + = − − +  (12)

where s is the SOC to be determined; i is the battery packs’ current and is indicated positive under 

discharge and negative under charge; y is the battery packs’ terminal voltage; Δt is the sample interval; 

and k is the time step index; R is the battery packs’ internal resistance; The parameters w and v are 

independent and zero-mean Gaussian noises for the process and measurement, and their covariance 

values are Qw and Rv, respectively; H is the hysteresis value; and h is a function of the sign of  

the current: 
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1

1,     

1,    

,

k

k k

k k

i

h i

h i

ε
ε

ε−

 >
= − < −
 ≤

 (13)

where ε is a small positive value. In Equation (13), the first case is in the discharging process, the 

second case is in the charging process, and the final situation is in the rest mode. 

The function OCV(sk), the open-circuit voltage as a function of the SOC, can be calculated as: 

( ) ( ) ( )1
0 2 3 4ln ln 1k k k k

k

K
OCV s K K s K s K s

s
= − − + + −  (14)

where K0, K1, K2, K3, and K4 are the fitting coefficients chosen to make the model fit the data well. 

They are used to describe the battery packs’ OCV. 

4. EKF Algorithm Based on the Battery Model 

For the non-linear battery packs model considered in this paper, the extended Kalman filter is 

combined with the modified ECE method to estimate the SOC of LiFePO4 battery packs. The EKF is 

widely used in estimation problems, as it often works very well although it is not necessarily optimal. 

To apply the EKF, the non-linear battery packs model in Equations (11,12) are made linear by a  

first-order Taylor-series expansion, assuming that ( ),f ⋅ ⋅  and ( ),g ⋅ ⋅  are differentiable at all operating 

points (sk, ik). The linear models are then obtained as Equations (15,16): 

( )1 ˆ ˆ,k k k k k k k ks A s f s i A s w+ = + − +  (15)

( )ˆ ˆ,k k k k k k k ky C s g s i C s v= + − +  (16)

where Ak and Ck are defined as: 

( )
ˆ

,

k k

k k
k

k s s

f s i
A

s
=

∂
=

∂  (17)

( )
ˆ

,

k k

k k
k

k s s

g s i
C

s
=

∂
=

∂  (18)

The discrete-time state function is given by applying Equations (9,10) into Equation (11): 

31

,      0

,  0

k SD k S T C k k

Ck
k SD k S T k k

D

s K i tK K C w i

s
s K i tK K C w i

η
η
η

+

− − Δ + <
=  − − Δ + >


 (19)

The combined discrete-time model based measurement function can be obtained by substituting 

Equation (14) into Equation (12): 

( ) ( )1
0 2 3 4ln ln 1k k k k k k k

k

K
y K i R K s K s K s h H v

s
= − − − + + − − +  (20)
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Based on the nonlinear discrete-time state-space battery packs model in Equations (19) and (20), the 

prediction and correction processes of the EKF combined with modified ECE method are described  

as follows: 

(1) Given an initial SOC estimate 0ŝ , initial covariance matrix Cov0 and noise parameters; 

(2) After sampling the terminal voltage yk and current ik of the battery packs for sampling time  

k = 1, 2, 3…, the calculation processes are iterated as follows: 

State (SOC) estimate update: 

1 1

31
1 1

ˆ ,      0

ˆ
ˆ ,  0

k k SD k S T C k k

Ck k
k k SD k S T k k

D

s K i tK K C w i

s
s K i tK K C w i

η
η
η

− −

−
− −

− − Δ + <
=  − − Δ + >


 (21)

Error covariance update: 

1 1 1 1 1
T

k k k k k k k k wCov Cov A Cov A Q− − − − −= = +  (22)

Kalman gain matrix calculation: 

1

1 1
ˆ ˆ ˆT T

k k k k k k k k vL Cov C C Cov C R
−

− −
 = +   (23)

where ˆ
kC is defined as: 

( ) ( ) ( )
1

2

1 1 2 3 1 4 1

ˆ

,ˆ ˆ ˆ ˆ1
k k k

k k
k k k k k k k

k s s

g s i
C K s K K s K s

s
−

− − −

=

∂
= = − + − −

∂
 (24)

SOC estimate measurement update: 

( )1 1ˆ ˆ ˆ ,k k k k k k k k ks s L y g s i− −
 = + −   (25)

Error covariance measurement update: 

( ) 1
ˆ

k k k k k kCov I L C Cov −= −  (26)

(3) The prediction and correction processes repeat for every time step until the initial SOC 

estimation has converged to its real value. 

The modified ECE + EKF algorithm realized with the prediction and correction processes is clearly 

shown in Figure 4 [2,32]. 
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Figure 4. The operation of EKF. 

Time Update (Prediction) Measurement Update (Correction)

( )

( )

1 1

31
1 1

1 1 1

1   :

ˆ ,      0

ˆ     
ˆ ,  0

2   :

     

k k SD k S T C k k

Ck k
k k SD k S T k k

D

T
k k k k k k w

Predict the SOC

s K i tK K C w i

s
s K i tK K C w i

Predict the error covariance

Cov A Cov A Q

η
η
η

− −

−
− −

− − −

− − Δ + <
=  − − Δ + >


= +

( )

( )
( )

( )

1

1 1

1 1

3
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5

ˆ    
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Cov I L C

−

− −

− −

 = + 

 = + − 

= −( ) 1k k kCov −

0 0ˆ   initial estimates for s and Cov  

5. Experimental Results 

5.1. Battery Test Bench 

Battery pack tests are performed to identify the model parameters. As shown in Figure 5, the 

experimental setup consists of a power battery production equipment set (MCF-60L2030A), a scanner 

box (ES-100A), two communication conversion boxes (CNB-1004A) and a LabVIEW-based virtual 

measurement unit.  

Figure 5. Schematic diagram of the battery pack test bench. 
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The MCF-60L2030A test equipment, supplied by Chen Tech Technology (CTT, New Taipei, 

Taiwan), provides flexibility for loading the battery, designed for 60 V maximum voltage, 20 A 

maximum charging current, and 30 A maximum discharging current. The recorded data include time, 

load current, terminal voltage, temperature, and accumulative Amp-hours (Ah), and Watt-hours (Wh). 

The sampling time and safety start/stop criteria can be defined separately. The CNB-1004A is a  

RS-232 to RS-485 conversion box. The measured voltage, current, and temperature are transmitted 

through the CNB-1004A to the LabVIEW-based virtual measurement unit. The errors of the voltage 

and current sensors are less than 0.02% and 0.03%, respectively. The ES-100A can collect the voltage 

of each cell in the battery and transmit it to the LabVIEW-based virtual measurement unit through the  

CNB-1004A, driven by the LabVIEW program. The experimental results of two case studies given 

below are used to verify the proposed method. The average temperatures of two experiments are listed 

in Table 2. 

Table 2. The average temperature of the two experiments. 

Temperature (°C) Experiment I 
Experiment II 

Discharge Charge 

The test begins 26.44 26.41 24.8 
The test ends 23.2 21.91 24.6 

5.2. Experiment I: Under Fixed Constant-Current Pulse Conditions 

We set up Experiment I to estimate the SOC of LiFePO4 battery packs when the SOC state is 

correctly initialized to 100%. The experiments include seven discharges and six charges under fixed 

constant-current pulse conditions. The current and voltage profiles for Experiment I are shown in 

Figure 6a,b, respectively. The SOC value is an Ah counting method calculated by the LabVIEW-based 

virtual measurement unit, where accurate initial SOC is given and the coulombic efficiency is 

considered, as shown in Figure 6c.  

Figure 6. Identification test in experiment I. (a) Current profile; (b) Voltage profile;  

(c) SOC profile. 
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Figure 6. Cont. 
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First, the battery pack is discharged at about 2.5C current (20 A in this case) for 6 minutes and data 

recorded at 1 second per point. The battery pack is then charged at about 2.5C current (−20 A in this 

case—in this paper, discharging current is taken as positive, charging current as negative) for 3 min 

and data recorded at 1 s per point. The cycle is repeated for 1 h. 

In this paper, discharging current is taken as positive, charging current as negative, so Experiment I 

covers both discharging and charging processes. The general descending trend of battery voltage 

indicates that the test mainly discharges the battery. 

5.3. Experiment II: Under Different Constant-current Pulse Test 

In Experiment II, we set up two different current profiles to estimate the SOC of LiFePO4 battery 

packs when the initial SOC is set to 0.5, as shown in Figure 7a,b, respectively. For each type of current 

profile, the battery pack is discharged or charged based on the constant-current pulse and rest 

sequences. The battery pack is discharged and charged from 20 A down to 2 A. The battery packs’ 

terminal voltages decreased with the discharging, and increased with the charging current profiles. The 

terminal voltage profiles for Experiment II are shown in Figure 8a,b, respectively. The SOC profiles, 

calculated by the LabVIEW-based virtual measurement unit and based on the discharging and charging 

current profiles, are shown in Figure 9a,b, respectively. 

Figure 7. Current profiles in experiment II. (a) Discharge; (b) Charge. 
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Figure 8. Voltage profiles in experiment II. (a) Discharge; (b) Charge. 
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Figure 9. SOC profiles in experiment II. (a) Discharge; (b) Charge. 
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5.4. Model Parameter Identification 

Given a set of samples, including the current, the terminal voltage and experimental SOC values of 

the battery packs, the modeling parameters of the battery packs can be determined by using the least 

square method. The output equation of the battery model is represented by a regression model, as 

expressed by: 

( ) ( )

( ) ( )

1
0 2 3 4

0 1 2 3 4

ln ln 1

1 1 ln ln 1

k k k k k k
k

k k k k k k k

T
k

K
y K K s K s K s i R h H

s

s s s s i i h K K K K K R R H

m θ

+ − + −

= − − + + − − −

   = − − − − − − ⋅   
=

 (27)

where ki
+  and ki

−  denote the discharging and charging currents, respectively. During the discharging 

process (ik > 0), ki
+  is equal to ik and ki

−  is equal to 0. During the charging process (ik < 0), ki
+  is equal to 

0 and ki
−  is equal to ik. Similarly; R+ and R– are used to represent the internal resistance value under 

discharge and charge, respectively. For N number of observations, the output terminal voltage 

sequence, Y = [y1, y2,…, yN]T, can be written as: 

=Y Mθ  (28)
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where M = [m1, m2,…, mN]T is repressor matrix. As a result, the parameters can be obtained from  

θ = (MTM)–1MTY for a nonsingular (MTM). To determine parameters, each observation in which the 

current is not zero is considered, because the zero-state hysteresis model cannot represent the slow 

variation of the time constant effect when the battery current is zero. The identified model parameters 

of the two experiments are given in Table 3. 

Table 3. Modeling result of battery parameters. 

Parameter Experiment I 
Experiment II 

Discharge Charge 
K0 29.5111 27.0101 28.3471 
K1 –0.0078 0.1242 0.0015 
K2 0.00392 0.0698 1.8381 
K3 0.0847 –0.0016 0.8825 
K4 0.0142 –0.1993 –0.3220 
R+ 0.018 0.0818 0 
R– 0.0194 0 0.0795 
H –0.1187 0.6548 –0.5651 

Four different estimation methods including the Equip method, the “ECE + EKF” method, the 

“ECE + UKF” method, and the “Modified ECE + EKF” method are used on the same battery packs for 

comparisons. The Equip method is measured by the MCF-60L2030A. The “ECE + EKF” method is 

the ECE method combined with the EKF method. The “ECE + UKF” method is the ECE method 

combined with the UKF method. The “Modified ECE + ECE” method is a modified ECE method 

combined with the EKF method. 

The initial values of the EKF algorithm used for the state, the state error covariance, the process 

noise covariance, and the measurement noise covariance for both EKF and UKF algorithms are the 

same, as shown in Table 4. 

Table 4. Initial values of SOC estimation. 

Parameter Quality Value Unit 
C nominal capacity 8.4 AH 
ηC/3 base coulombic efficiency 0.9982 - 
KS influence of the SOC on the coulombic efficiency 0.98 - 
KSD self-discharge coefficient 2 × 10–8 1/second 
Cov0 state error covariance 1 - 
Qw process noise covariance 10–9 - 
Rv measurement noise covariance 1 - 

In Experiment I, the comparison results for the terminal voltage estimation are shown in Figure 10a. 

Figure 10b, an enlargement of Part A of Figure 10a, shows that the proposed method accurately tracks 

the real terminal voltage value with an estimation error of less than ±0.1 V in comparison with the 

other algorithms. 
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Figure 10. Modeling results in Experiment I. (a) Terminal voltage; (b) The enlarged Part A 

of Figure 10a. 
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In Experiment II, the results comparing the models of the discharge and charge of the battery pack 

voltage estimation with the true voltage for the pulsed-current test using those parameters are shown in 

Figure 11a,b, respectively. From the enlarged view of Figure 11a,b, we can see that the proposed 

method produces better results than those of other two methods. The results also show that the battery 

model can represent the battery packs’ terminal voltages with respect to discharging and charging 

currents (with the exception of the relaxation effect in all methods). 

Figure 11. Modeling results in Experiment II. (a) Discharge; (b) Charge. 
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5.5. SOC Estimation Results 

The battery pack SOC is estimated from experimental data and from four estimation methods.  

In Experiment I, the estimation error starts at zero, since the model is correctly initialized in all 

estimation methods. The comparison results for the SOC estimation are shown in Figure 12a.  

In Figure 12b, the associated SOC estimation errors are shown to converge to a ±1% error band. The 

figure also shows that the SOC error of the proposed algorithm can converge closely to zero during 

discharging. We can adjust the self-discharge coefficient so that the SOC errors converge closely to 

zero in all intervals, as shown in Figure 13. In Figure 13, the divergence of SOC estimation error is 

mainly caused by the LabVIEW-based virtual measurement unit. It has 3 second delay when the state 
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makes transitions (Discharge-to-Charge or Charge-to-Discharge). The mean absolute error (MAE) of 

the SOC estimation is calculated using the following equation: 

1
,

ˆ
N

j j
j

MAE N

s s

s
N

=

−
=


 
(29)

where sMAE,N is the MAE for the SOC estimates up to and including time step N and sj is the 

experimental SOC at time step j. 

Figure 12. SOC estimation in Experiment I (a) SOC profile; (b) SOC error profile;  

(c) MAE profile. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (hr)

S
O

C

 

Equip Method

ECE + EKF Method

ECE + UKF Method

Modified ECE + EKF Method

0.5496 0.5497 0.5498 0.5499 0.55 0.5501 0.5502 0.5503 0.5504
0.406

0.4062

0.4064

0.4066

0.4068

0.407

0.4072

0.4074

0.4076

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (hr)

S
O

C
 E

rr
o
r 
(%

)

 

 
ECE + EKF Method

ECE + UKF Method

Modified ECE + EKF Method

(a) (b) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (hr)

M
e
a
n
 A

b
s
o
lu

te
 E

rr
o
r 
(%

)

 

 

ECE + EKF Method

ECE + UKF Method

Modified ECE + EKF Method

 
(c) 

Figure 13. SOC estimation error in Experiment I when the KSD, charge and KSD, discharge are 

set to 1.97 × 10–7 and 6.09 × 10–8, respectively. 
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To make them more readable, the results for the MAE of SOC are shown in Figure 12c. It is clear 

that the proposed algorithm can estimate the battery pack SOC more accurately, compared to the other 

two algorithms. The advantages of UKF over EKF are that it captures the true mean and covariance 

more accurately and no need to calculate the Jacobian. It can be shown that the UKF algorithm can 

give better performance than the EKF algorithm. 

In Experiment II, the initial SOC value is set to 0.5 in all estimation methods, so the estimation 

error starts at ±50% under charge/discharge. This explains why the SOC estimation error is not 

initially zero in the discharging/charging process of Experiment II. 

The comparison results for the SOC estimation under discharge in Experiment II are shown in 

Figure 14. The associated estimation errors under discharge are shown in Figure 15. It is obvious that 

the estimation errors of the proposed method under discharge are much smaller than those of other two 

algorithms. The SOC error of the proposed method converges to 0.16%, while those of other methods 

are greater than 1%. 

Figure 14. SOC estimation under discharge in Experiment II. 
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Figure 15. SOC estimation error under discharge in Experiment II. 
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Figure 16 shows a comparison of SOC estimations under charge; the SOC error of the proposed 

method converges to 0.24%, while those of other methods can reach 1%, as shown in Figure 17. 

Clearly, the proposed SOC estimator has better performance. Figure 18a,b shows the MAE results 

under discharge and charge in Experiment II, respectively. The figures show that the proposed method 

gives a smaller MAE than either of other two methods does. 
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Figure 16. SOC estimation under charge in Experiment II. 
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Figure 17. SOC estimation error under charge in Experiment II. 
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Figure 18. MAE error results in Experiment II. (a) Discharge; (b) Charge. 
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6. Application in Robots 

This section demonstrates that a humanoid robot, called Nino, which is being developed by our 

laboratory performs the model identification and the SOC estimation by considering the proposed 

algorithm discussed in Section 2 and Section 3. A photograph of the humanoid robot is shown in 

Figure 19. The humanoid robot has DOFs in its head and hands to achieve facial expressions and 

grasping motions. In this experiment, we test the proposed algorithm performance while the humanoid 

robot is set to wave the right and left arms and repeat to run two processes. The current and voltage 
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profiles for this experiment are shown in Figure 20a,b, respectively. The motors of the humanoid robot 

are turned on at 46 s. The regions squared in blue dotted line and green solid line in Figure 20b show 

that the humanoid robot is waving the right and left arms in round 1 and round 2, respectively. 

Figure 19. The humanoid robot, Nino. 

 

Figure 20. The humanoid robot test. (a) Current profile; (b) Voltage profile. 
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The comparison results for the terminal voltage and voltage error are shown in Figure 21a,b, 

respectively. From these figures, we can see that the proposed algorithm accurately tracks the real 

terminal voltage value with an estimation error of less than ±0.05 V except impulses in comparison 

with the other algorithms. The initial SOC state is set to 0.8. The comparison results for SOC 

estimation in this experiment are shown in Figure 22a. In Figure 22b, the associated SOC estimation 

errors in this experiment are shown to converge to a ±0.015% error band. The experimental results 

show that the SOC estimation results of the proposed algorithm are more accurate and robust than 

those of other two methods. In addition, we can see that the SOC error graph is similar in shape to the 

current graph shown in Figure 20a. In this experiment, the average temperature is 25.26 °C when the 

test begins and 25.23 °C when the test ends. 
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Figure 21. Modeling results in the humanoid robot test (a) Voltage profile; (b) Voltage 

error profile. 
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Figure 22. SOC estimation results in the humanoid robot test (a) SOC profile; (b) SOC 

error profile. 
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Table 5 summarizes the experimental results of the proposed SOC estimation method in comparison 

with other SOC estimation algorithms reported in [1,5,10,24,31,32,34,36]. The SOC estimation 

algorithms in [5,10,32] are off-line results. The SOC estimation error of the proposed method is 

comparable to [31] but smaller than the remaining methods already presented in the literature. 

Moreover, from Table 5, it can be noted that the proposed method has the smallest voltage estimation 

error. Furthermore, the proposed method also considers the hysteresis effect, temperature effect, and 

self-discharge effect. 
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Table 5. Comparison with SOC Estimation Algorithm in the literature. 

Performance Index [1] [5] [10] [24,36] [31] [32] [34] This work 

Battery Packs Yes Yes No Yes Yes Yes Yes Yes 

Battery Type Ni/MH Li-Ion LiFePO4 LiPB Lead-Acid Lead-Acid Li-Ion LiFePO4 

Nominal Capacity (Ah) 80 N.A. 1.1 7.5 45 100 100 8.4 

Nominal Voltage (V) 384 N.A. 3.6 3.8 12 8 64 26.4 

Initial SOC Value 0.69 0.9 0.5 1 0.45 0.5 0.5 0.5 

SOC Estimation Error  

(%) 
2.5 1.5 <2 6.5 <0.12 ±1 ±1.7 <0.25 

Voltage Estimation Error 

(V) 
N.A. N.A. N.A. 0.5 N.A. N.A. ±1 ±0.1 

On-line/Off-line On-line Off-line Off-line On-line On-line Off-line On-line On-line 

Hysteresis Effect Yes Yes Yes Yes No Yes Yes Yes 

Relaxation Effect No No No No Yes No No No 

Temperature Effect Yes Yes No No No No No Yes 

Self-Discharge Effect Yes No No No No No No Yes 

Algorithm 
ECE 

+ EKF 

ECE 

+ EKF 

Adaptive 

Observer 
EKF UKF AEKF AUKF 

Modified 

ECE + EKF

7. Conclusions  

In this paper, a novel combined method, denoted as “Modified ECE + EKF”, is proposed for SOC 

estimation of LiFePO4 battery packs. A modified ECE method that considers self-discharge, influence of 

temperature and SOC on the coulombic efficiency is proposed to estimate the SOC used in robot 

applications. This approach uses the EKF algorithm to correct the initial value used in the Ah counting 

method. The zero-state hysteresis correction term is used to depict the hysteresis effect of the battery. 

The experimental results show that the proposed method is superior to traditional techniques, such as 

ECE combined with EKF and ECE combined with UKF, giving a SOC estimation within 1% of its true 

value. In addition, the proposed algorithm is more accurate and robust than those of other two methods. 
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