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Abstract: A strategy was proposed to determine the optimal operating point for the 

proportional-integral-derivative (PID) controller of a wind turbine, and identify the stability 

regions in the parameter space. The proposed approach combined particle swarm 

optimization (PSO) and radial basis function neural network (RBFNN) algorithms. These 

intelligent algorithms are artificial learning mechanisms that can determine the optimal 

operating points, and were used to generate the function representing the most favorable 
operating p ik k−  parameters from each parameter of dk  for the stability region of the 

PID controller. A graphical method was used to determine the 2D or 3D vision boundaries 

of the PID-type controller space in closed-loop wind turbine systems. The proposed 

techniques were demonstrated using simulations of a drive train model without time delay 

and a pitch control model with time delay. Finally, the 3D stability boundaries were 

determined the proposed graphical approach with and without time delay systems. 

Keywords: wind turbine; proportional-integral-derivative (PID) control; particle swarm 

optimization (PSO); radial basis function (RBF); stability boundary; time delay 

 

1. Introduction 

In recent years, fossil fuel supplies have decreased, and average temperatures have increased. 

Because of the dramatic effects of these events, numerous renewable energy studies have been 
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conducted. Wind energy has received considerable attention, and has become increasingly widespread. 

Conventional wind turbines use wind-energy capturing systems. Pitch control, which is typically 

required to achieve a stable power output when the wind speed is above the rated wind speed, is 

achieved by adjusting the pitch angle of the wind turbine blades to limit the output power, protecting 

wind turbine gearbox and generator. Therefore, pitch control designs for variable-speed turbines are 

increasingly critical. 

The proportional-integral-derivative (PID) controller is the most common closed-loop control 

system, and using a PID is the easiest and simplest way to design the pitch control system [1,2].  

In addition to typical PID control systems, studies have proposed alternative methods for controlling 

the pitch angle. Recent studies have attempted to determine the stability region of PID control systems.  

In [3], stable synthesis of a PI-based pitch controller was proposed. A graphical approach was used to 

determine the stability region and set the parameters of the controller to achieve an arbitrary-order time 

delay system. A 3D stabilizing domain must be attained in the parameter space of a PID controller to 

execute system-stabilization analyses and computations [4–8]. Using the 3D stability region method to 

determine the operating point range of the controller parameters is simple and intuitive. Therefore, the 

controller design can be reliably modeled and readily analyzed. An alternate way to regulate the pitch 

angle in wind turbine generators is setting various operating points for the control system. A robust 

discrete-time (R–S–T) control model was developed to build an average model of the operating  

zone [9]. The robust control described in [10,11] yielded a superior output power in a wide operating 

range and under the influence of unknown disturbances. 

Intelligent algorithms have also attracted attention. In [12], a PSO-RBF method was proposed for 

optimizing PI pitch control systems in MW-class wind turbines. After using PSO to determine the 

optimal PI gains, the RBF neural network (RBFNN) can be trained to locate the optimal dataset. This 

network can determine suitable PI gains according to the reference structure and variable wind speeds. 

In [13], an nonlinear time-varying evolution PSO (NTVE-PSO) technique was used as a training phase 

in an RBFNN to optimize the parameters of time-series predictions for various electrical models. The 

algorithm reported in [14] combined a fuzzy neural network and PSO, designing a controller to adjust 

the speed of wind energy conversion systems. This design maintained the stability of the system and 

achieved the desired level performance despite uncertain parameters. In [15,16], RBFNNs were used 

to attain system control. Other studies have used genetic algorithms (GA) to study wind energy.  

A GA-based optimization technique for designing a controller procedure to use in the frequency 

converter of a variable-speed wind turbine was reported in [17,18]. The proposed algorithm combine 

PSO and RBFNN to determine control system functions. Depending on the control system, the optimal 

p ik k−  parameters in different dk  can be determined for various conditions. Finally, the 3D stability 

regions of the PID controller were plotted in the parameter space. 

The paper is organized as follows: Section 2 introduces the wind turbine and problem formulation. 

Section 3 presents the use of PSO-RBFNNs in the PID-based drive train and pitch controller of a large 

wind turbine generator. The optimal operating point values are then identified in the center of the 

stability region of the PID controller. Section 4 details the simulation results (i.e., the 3D stability 

region in the PID space for the drive train and pitch control of the wind turbine generator), and Section 5 

provides a conclusion. 
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2. System Description and Problem Formulation 

2.1. Wind Turbine System Description 

In this section, the horizontal wind turbine generator is discussed. The primary structures of a wind 

turbine are three large blades, a powerful rotor, a strong hub, and a gearbox. The wind turbine system 

must be capable of operating over a wide range of wind speeds (i.e., variable rotor-side and 

generator-side speeds). Therefore, a double-feed induction generator (DFIG) was used. Figure 1 shows 

the DFIG system. The AC-to-DC converter and DC-to-AC converter included ports for two currents: 

rotor-side and grid-side currents. The pitch-driven system was operated using hydraulic pressure, and 

although this system is typically used in large power systems, it included a time delay for the wind 

turbine generation system. 

Figure 1. The DFIG architecture for the wind turbine. 

 

2.2. Problem Formulation for Identifying the Stability Region of the PID Controller in a Wind Turbine 

Pitch Control System 

2.2.1. Case A: System Transfer Function without Time Delay 

Figure 2 shows the block-diagram of the drive train control system incorporating a PID controller, 

where, C1(s) is the PID rotor torque controller, and G1(s) is the drive train model of the wind  

turbine system. 

Figure 2. Block-diagram of the drive train control in wind turbine system. 

 

The transfer function parameters were obtained as described in [19]. The wind turbine 

(HWP330/33) was manufactured by James Howden Ltd. (Renfrew, Renfrewshire, Scotland, UK);  

it comprises three blades and a 330-kW generator. The function can be written as follows: 
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where the numerator and denominator are calculated as follows: 
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(2)

The parameters in this transfer function are listed in Table 1 [19]. The PID controller has the 

following form: 

 (3)

where pk  is the proportional gain, ik  is the integral gain, and dk  is the derivative gain. According 

to Equations (1) and (3), the open-loop transfer function is calculated as follows: 
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Thus, the denominator of the closed loop transfer function for the drive train control system is: 
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Assuming , and . Equation (5) may be expressed as follows: 
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The real and imaginary parts of the quasi-polynomial form in Equation (6) can be obtained by 

Equations (7) and (8), respectively, as follows: 
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In Equations (7) and (8), parameters  and  are as follows: 
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and: 
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Finally,  and  can be obtained as follows: 
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The transfer function in [19] may be expressed as follows: 

( )
19

1 12 5 14 4 17 3 17 2 18

2.28 10
G

9.941 10 4.971 10 1.024 10 7.534 10 5.685 10

s
s

s s s s s

×=
× + × + × + × + ×

 (13)

Table 1. Drive train parameters [19]. 

Parameters Symbols Values Unit 

Rotor/low speed shaft angular velocity Ω 3.92 rad/s 

Lumped inertia of generator and high-speed shaft gI  3.8 kg·m2 

Lumped inertia of rotor and low-speed shaft rI  190,120 kg·m2 

Low-speed shaft stiffness LSSk  12.6 × 106 Nm/rad 

High-speed shaft stiffness HSSk  301 × 103 Nm/rad 

Generator torque/speed coefficient gk  668 Nm/rad/s 

Gearbox ratio N 47.37 - 

Generator electrical time elτ  0.02 s 

2.2.2. Case B: System Transfer Function with Time Delay 

Because the generation system of the wind turbine included a time delay feature, a PID controller 

was incorporated in the pitch control system of the wind turbine. The transfer function used for the 

pitch control system of the wind turbine and the turbine parameters are discussed in [3]. The wind 

turbine modeling was carried out using FAST [20]. Three blades and a 275 kW generator were 

considered. Figure 3 shows a block diagram of the pitch angle control system, where C2(s) is the PID 

pitch angle controller and G2(s) is the model of wind turbine system. 

pk ik
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Figure 3. Block-diagram of the pitch angle controller for the wind turbine system. 

 

The transfer function of the pitch control system of the horizontal-axis wind turbine can be written 

as follows: 
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where 0.25τ = , parameters 0 1 2 0 1 2 3,  ,  ,  ,  ,  ,  a  a  a  b  b  b  b  and 4b  represent the time constant of the 

wind turbine model, and depend on the device configuration. 

The controller, which was modified from a PI to a PID [1], is presented as Equation (3). 

Thus, the open-loop transfer function of the pith control system of the wind turbine is as follows: 
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The denominator of the closed-loop transfer function of the wind turbine pitch control system can 

be generated as follows: 
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Assuming s jy=  and 0y > , Equation (16) may be divided into real and imaginary 

quasi-polynomial parts, which can be calculated using Equations (17) and (18), respectively, as follows: 
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Finally, 1 2 3 4 1 2 3,  ,  ,  ,  ,  ,  c c c c d d d  and 4d  in Equations (17) and (18) are obtained as follows: 
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and: 
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pk  and ik  can be can be solved using Equations (11) and (12). Table 2 lists the parameters of the 

wind turbine generator from [3]. 

Table 2. Wind turbine parameters [3]. 

Parameters Values Unit 

Rated power 275  kW 
Rotor diameter 27  m 
Tower height 42  m 

Operating conditions wind speed 15  m/s 
Pitch angle 0 deg 

qop [6.848 × 10−3 8.915 × 10−2]T - 
τ 0.25 s 

After using the FAST [20] aeroelastic computer-aided engineering tool to perform numerical 

linearization of the horizontal-axis wind turbine, the transfer function was as follows: 

( )
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ss s

G s e
s s s s

−− − −=
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 (21)

3. Design of PSO-RBFNN for a PID-Based Pitch Controller for Large Wind Turbine Generator 

3.1. SIWPSO Algorithm 

Recent studies of artificial intelligence (AI) have discussed particle swarm optimization (PSO),  

an AI algorithm used for iteratively determining the optimal positions and fitness values. The primary 

objective of the algorithm is to simulating the foraging behaviors of birds. For example, the algorithm 

first simulates a flock of birds randomly searching for food in space. Assuming the search region 

presents only one foraging site, none of the birds know the location of the favorable foraging position; 

thus, the birds use various biological features to exchange information. After repeated attempts, they 

locate the most favorable foraging location. Figure 4 shows a flowchart depicting the typical PSO. 
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Figure 4. Flow chart of PSO algorithm. 

 

The desired PSO parameters are m particles searching a d-dimensional space. At the tht  iteration, 

the equations are: 
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where iΧ  is the thi  particle position, and iV  is the thi  particle velocity. 

The individual optimal position iP  is given by: 

( ) ( ) ( ) ( )( )1 2, , ,i i i idP t p t p t p t=   (23)

The global optimal position gP  is then given by: 

( ) ( ) ( ) ( )( )1 2, , ,g g g gdP t p t p t p t=   (24)

The stochastic inertia weight in the PSO (SIWPSO) algorithm is an evolutionary computational 

method developed by Eberhart and Shi [21,22]. The fitness function equation for the integrated 

absolute error (IAE) is computed by integrating the absolute value of the error. After performing a 

SIWPSO run, the IAE delivers the optimal solution to the real objective function to calculate its real 

fitness. The fitness function is formulated as follows: 
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Finally, the updated velocity and position are given by: 
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where n  is the thn  dimension of the search space. The inertia weight ( )w t  is randomly selected 

according to a uniform distribution in the range of 0.5–1.0, exhibiting a mean value of 0.75. 1γ  and 

2γ  are uniform distributions in the range of 0–1. In this study, the individual coefficient 1β  and 

global coefficient 2β  in Equation (26) are set to 1.494. 

The profiles of the four PSOs were compared regarding of IAE [23]. The algorithms compared the 

following: the PSO, constriction factor approach in PSO, linearly decreasing inertia weight in PSO, 
and SIWPSO. In this study, the dimension for the p ik k−  search space was set to 2. Table 3 shows the 

detailed parameter values for various PSOs. Figure 5 shows a detailed comparison of the PSO 

algorithms based on their IAE values without a time delay, whereas Figure 6 shows the same with time 

delay. Performance comparisons of 40 iterations for each PSO method clearly demonstrated that the 

convergence rate was fastest in SIWPSO and slowest in the standard PSO algorithm. Table 4 (without 

time delay) and Table 5 (with time delay) compare the IAE performance of the four PSO methods. 

Table 3. The PSO parameters. 

Parameters PSO LDWPSO CFAPSO SIWPSO 

Dimension 2 

Number of Particles 5 

β1, β2 2, 2 2, 2 2.05, 2.05 1.494, 1.94 

Weight 0.4 0.4–0.9 0.7298 0.5–1.0 

Fitness Function IAE 

Max Iteration 50 

Figure 5. The IAE fitness value obtained by Equation (13) for each iteration of the four  

PSO methods. 
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Figure 6. Plots of the IAE fitness values in Equation (21) for each iteration of the four  

PSO methods. 

 

Table 4. The IAE values obtained by Equation (13) for each iteration of the four PSO methods. 

Methods kp ki IAE 

PSO 0.3821 1.0883 0.2572 
CFAPSO 0.3979 1.2774 0.2421 
LDWPSO 0.4996 1.38 0.2419 
SIWPSO 0.5226 1.4619 0.2415 

Table 5. The IAE values obtained by Equation (21) for each iteration of the four PSO methods. 

Methods kp ki IAE 

PSO 1.0017 −22.0900 2.1428 
CFAPSO 1.3309 −20.1238 2.1098 
LDWPSO 1.242 −20.6178 2.086 
SIWPSO 1.0242 −20.5914 2.0624 

3.2. RBFNN Algorithm 

The RBFNN introduced in [12,24] is used in self-learning systems composed of large numbers in a 

simple data set. The algorithm comprises three layers: an input layer, a hidden layer exhibiting a 

nonlinear activation function and an output layer. Figure 7 displays the architecture of a typical RBF 

network. Figure 8 displays a flowchart depicting the typical RBFNN. 

Each input node corresponds to an element of the input layer, and each hidden node consist a 

radial-activated function, that includes local perception nodes. The activation function is described  

as follows: 

 (27)
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Figure 7. Architecture of a RBF network. 

 

Figure 8. Flow chart of a RBFNN algorithm. 

 

The activation function used in this study was a Gaussian distribution. The terms jλ  and 2
jσ  are 

the mean and variance of the j  Gaussian distribution function, respectively. According to this 

nonlinear function, the amplitude of the output from each node of the hidden layer is in the 
range 0 1< ϕ < . Therefore, each hidden node corresponds to an element of the hidden layer, and each 

output node consist a linear function. Output ky  of the RBFNN is a sum of the weight values 

multiplied by the hidden node output: 

1

J

k k kj j k
j

y
=

 
= α ω ϕ + θ 

 
  (28)

where kα  is the output activation function and kθ  is the threshold value. The kα  was a linear unit 

and 0kθ = . The output layer provides a summation to each output node. Here, 1kα = . 
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The RBFNN can was trained using back-propagation (BP) as a supervised learning process.  
The output error was used to update their weight values jω , center values jλ

 
and width values jσ .  

as follows: 
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According to the chain rule, the supervised-learning BP process is as follows: 
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(30)

where μ  is the learning rate, and the error output can be written as follows: 

( ) ( ) ( )de n y n y n= −  (31)

The iteration process optimized the RBF weight, center, and width values. The RBFNN was applied 

to the PSO approach to optimize the operating point of the PID control parameters. The RBF 

parameters were adopted: hidden neurons = 7, learning rate = 0.01, training times = 5000, and number 

of training data = 21. 

In this study, the early stopping rule was used in the upper bounds to allow the RBFNN algorithms to 

converge. When the mean squared error generated by the error output began to increase, the RBFNN 

algorithm was stopped. 

3.3. Design Procedure 

The objective was to optimize the PID controller function, (i.e., to use the SIWPSO-based RBFNN 

algorithm to optimizing the PID operating point in the wind turbine generator). The optimization 

procedure for the proposed SIWPSO-based RBFNN was designed as follows. 

Step 1: Based on the transfer function of the wind turbine generation system, set the range of 
control parameter dk . 

Step 2: Set the values for dk  and for the initial SIWPSO particles in p ik k−  parameter space. 

Specify the maximal and minimal values for position and velocity. Set the maximal 

iteration value. 

Step 3: Initiate the movement of the particles, using a random position and velocity. 

Step 4: Calculate the IAE fitness value for each SIWPSO particle. 

Step 5: Select the optimal local and global values for each particle based on the minimal IAE 
fitness values, and update the optimal individual and global positions in p ik k−  

parameter space. 
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Step 6: Repeat Steps 3–4 until the maximal number of iterations in PSO is reached. 
Step 7: Modify dk  and repeat Step 6 until all dk  parameters are calculated. 

Step 8: Based on the PSO training results, optimize the operating values of the PID control 

parameters, and calculate the RBF parameters (initial weight vector, mean vector, and 

variance vector). 

Step 9: Calculate the values of the hidden and output layers. According to the error output, use 

the BP process to update the weight vector, mean vector, and variance vector. 

Step 10: Repeat Steps 8–9 until the maximum number of iterations in RBF is reached. 

4. Simulation Results 

4.1. Stability Region and Optimal p i dk k k− −  Operating Region without Time Delay System 

This section describes how the stability boundary of the PID controller was determined for Case A. 
The stability boundary at 0dk =  in plane p ik k−  was defined by Equation (13). To measure the 

response of the optimal operating point of the PID controller in the drive train system, the SIWPSO 

p ik k−  gain was tested for each dk . Regarding the system that lacked a time delay, the stability 

boundary at 0dk =  was determined as shown in Figure 9. The unit-step response is used for 

performance verification of the drive train system in Figure 10. It is obvious that the SIWPSO method 

(red line) produced the most favorable performance response. According to the result in Figure 9, 

region R1 was a stable region (shaded), but region R2 is unstable. Test #1 and Test #2 are the two test 

operating points for the drive train system. Table 6 presents the optimal operating point for the drive 

train system, SIWPSO yielded the minimal IAE, indicating that SIWPSO identified the optimal 

operating point for the system that lacked a time delay. 

Figure 9. Stability regions of PID controller for Equation (13). 
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Figure 10. Performance verification of the drive train system. 

 

A grid for  was used to locate the stability regions in 3D. Therefore, Figure 11 shows the 

possible stability regions of the PID controller for the given system. The proposed method facilitated 

intuitively calculating parameter space, stabilizing the PID controller for the drive train system. The 

3D plot is displayed in Figure 12. In Case A, the intersection of the stability boundary (transparent 

shaded), RBF training set (green circle) and optimal trajectories were determined. The red-line and 
blue-line trajectories were generated by using PSO-RBF in  space. The trajectories were 

enclosed in the determined stability boundary. 

Table 6. The IAE values for the drive train system. 

Operating points kp ki IAE 

Test #1 1 1 0.3278 
Test #2 2 2 0.3073 

SIWPSO 0.5226 1.4619 0.2415 

Figure 11. The stabilizing in the  space for Equation (13). 
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Figure 12. The 3D stability boundary in the  parameter space. 

 

4.2. Stability Region and Optimal p i dk k k− −  Operating Region with Time Delay System 

This section describes how the stability boundary of the PID controller was determined for Case B. 

The stability boundary at dk  in p ik k−  plane was defined by Equation (21). The response of the 

optimal operating point of the PID for the wind turbine generator was determined by testing the 

SIWPSO p ik k−  gain for each dk . Regarding the time delay system, Figure 13 shows how the 

stability boundary of 0dk =  was obtained. This boundary comprised three regions as follows (R1, R2 

and R3). Of these region, R1 (shaded area) was stable, but R2 and R3 were unstable according to the 

criteria established in [3]. Figure 14 shows that the unit-step response was used to verify the 

performance of the wind turbine generator system, presents the optimal operating point for the wind 

turbine generator. According to the result in Table 7, the minimal IAE value is obtained by using 

SIWPSO, indicating that SIWPSO identified the optimal operating point for the time delay system. 

Figure 13. Stability regions of PID controller for Equation (21). 
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Figure 14. The performance verification of the wind turbines generator system. 

  

Table 7. The IAE values for the wind turbine generator. 

Operating points kp ki IAE 

Test #1 1.5 −25 2.2026 
Test #2 1 −15 2.6837 

SIWPSO 1.0242 −20.5914 2.0624 

A dk  grid is used to identify the stabilizing regions in 3D. Figure 15 shows the possible PID 

stability regions for the given system. The proposed method was intuitive, and readily calculates the 

parameter space stabilizing the PID controller for the given system. Figure 16 displays the 3D plot. As 

previously described, the intersection of the stability boundary (transparent-shaded), RBF training set 

(green-circle), and optimal trajectories were also calculated. 

Figure 15. The stabilizing region in p i dk k k− −  parameter space for Equation (21). 
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Figure 16. The 3D stability boundary in p i dk k k− −  parameter space. 

 

5. Conclusions 

This study used a graphical approach to determine the boundaries of a PID controller. The proposed 

PSO-RBF algorithms were successfully used to control a wind turbine generator system. This 

technique was used to determined the system stability boundaries and optimal operating points of the 

PID controller of wind turbine generator system. The proposed method was effective in systems with 

and without time delay. Finally, the proposed graphical approach can provides 2D or 3D vision 

boundaries of the resulting PID-type controller space for close-loop wind turbine systems. 
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