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Abstract: The main contribution of this paper is the development of 	 	fault tolerant 

control for a wind energy conversion system (WECS) based on the stochastic piecewise 

affine (PWA) model. In this paper the normal and fault stochastic PWA models for WECS 

including multiple working points at different wind speeds are established. A reliable 

piecewise linear quadratic regulator state feedback is designed for the fault tolerant 

actuator and sensor. A sufficient condition for the existence of the passive fault tolerant 

controller is derived based on some linear matrix inequalities (LMIs). It is shown that the 

 fault tolerant controller of WECS can control the wind turbine exposed to multiple 

simultaneous sensor faults or actuator faults; that is, the reliability of wind turbines can  

be improved. 

Keywords: 	 	fault tolerant control; piecewise affine; wind energy conversion system; 	  robust control 

 

1. Introduction 

A wind energy conversion system is a mechanical electronic hydraulic integrated system which 

consists of rotor, drive train, gear box, generator and other mechanical equipment. WECS driven by 

stochastic wind power signal indicate nonlinear switching system properties. Control systems play a 

vital role in satisfying harvested power and load alleviation objectives in wind turbines. The 

performance of the designed controller can be easily interrupted by possible faults and failures in 

OPEN ACCESS



Energies 2014, 7 1751 

 

 

different parts of the system. Therefore, designing a fault-tolerant controller is very beneficial in wind 

turbine operations. 

So far, the design of fault-tolerant control for wind turbine systems is still lacking in studies. In [1], 

Sloth et al. presented active and passive fault tolerant controllers for wind turbines. The linear 

parameter varying control design method is applied which leads to LMI-based optimization in case of 

active fault tolerant and BLMI in case of passive fault-tolerant problems. In [2], the authors gave the 

model-based fault detection and control loop reconfiguration for doubly fed induction generators. In [3], 

generator-converter fault-tolerant control for direct driven wind turbines was investigated. In [4],  

a fault-tolerant switched reluctance motor was designed for the blade pitch control system.  

The above mentioned methods are all restricted to the nonlinear characteristics of wind turbines.  

In order to overcome the nonlinear characteristics of wind turbines, 	 	fault tolerant strategy for 

WECS is proposed in this paper based on a stochastic PWA model framework.  

Piecewise linear systems provide a powerful tool of analysis and design for nonlinear control 

systems. The piecewise linear system framework can be used to analyze smooth nonlinear systems 

with arbitrary accuracy. Many other classes of nonlinear systems can also be approximated by 

piecewise linear systems [5]. 

A number of results have been obtained in controller design of such piecewise continuous time 

linear systems during the last few years [6–9]. In the case of discrete time, the authors of [10] 

presented an approach for stabilization of piecewise linear systems based on a global quadratic 

Lyapunov function. In [5,11], the authors gave a number of results on stability analysis, controller 

design, 	  analysis, and 	 	controller design for the piecewise linear systems based on a piecewise 

Lyapunov function. In [5], for 	  control synthesis, the affine term was treated as a disturbance. In a 

recent paper [12], a new method was presented to synthesize the 	 	controller for the piecewise 

discrete time linear systems. However, studies solving the fault tolerant control problem of the WECS 

within the stochastic PWA framework are lacking. In this paper, the stochastic PWA normal, sensor 

fault and actuator fault models for WECS including multiple work regions are established. A reliable 

piecewise linear quadratic regulator state feedback is designed such that it can make the actuator and 

sensor faults tolerant. A sufficient condition for the existence of the passive fault tolerant controller is 

derived based on some LMIs. The paper is organized as follows: in Section 2, a dynamic model of 

WECS and the control strategy are briefly described. In Section 3, the normal and fault stochastic 

PWA models for WECS including multiple working points at different wind speeds are 

established.		 	fault tolerant control for WECS with actuator and sensor faults is also presented. In 

Section 4, some simulation results are presented. Section 5 gives our conclusions. 

2. Literature Review 

2.1. Model Structure of WECS 

The structure of a WECS is described as Figure 1, in which the WECS inputs are wind speed	 ( ), 
pitch angle reference	 ( ) and generator torque reference	 ( ) , respectively. The outputs of the 

system are generator power ( ) and high-speed shaft speed	 ( ). 
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Figure 1. The structure of WECS. 

 

2.2. Wind Model 

The equation of wind ( ) is: ( ) = ( ) + ( ) (1) 

where ( ) is the low-frequency component (describing long term, low-frequency variations), i.e., 

average wind speed; and ( ) is the turbulence component (corresponding to fast, high-frequency 

variations). 

2.3. Aerodynamics Model 

The available power in the wind  can be expressed as: = 12  (2)

where 	is the rotor swept area;	  is the rotor effective wind speed;  is the air density, which is 

assumed to be constant. 

From the available power in the wind, the power captured by the rotor	  is: = ( , ) (3)

where 	 ( , ) is the power coefficient, which depends on the tip-speed ratio  and the pitch angle	 . 

The tip-speed ratio	  is defined as the ratio between the tip speed of the blades and the rotor 

effective wind speed:  =  (4)

where  is the low-speed shaft speed; and  is the blade length. 

2.4. Drive Train Model 

The drive train model includes a low-speed shaft, a high-speed shaft, a gear box and flexible device. 

The drive train dynamics function is given: = − + −	= − + −  (5) 
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where 	and 	are the moments of inertia of the low-speed shaft and the high-speed shaft;  is the 

torsion stiffness of the drive train; 	is the torsion damping coefficient of the drive train; 	is the 

gear ratio; 	is the twist of the flexible drive train with	 = − . 

2.5. Pitch System Model 

The pitch system can be modeled by a second-order transfer function [13]: == − − 2 +  (6) 

2.6. Generator and Converter Model 

The generator and converter dynamics can be modeled by a first-order transfer function: 	 = − 1 + 1
 (7) 

where	 	is the time constant.  

The real-time power is described by: =  (8) 

Then, the dynamics of the WECS can be obtained by combining Equations (5)–(7): 

=
− + −− + −
− − 2− 1

+
0						00						00						0			00					 1  (9) 

2.7. Control Strategy 

The basic control strategy is described as Figure 2. The control requirements for the power and the 

speed are different in different wind regions. If	 < , the system stops.  

Figure 2. The control strategy for wind turbine. 
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If	 ∈ [ 	, ], the system needs to maximize the wind harvested power. If	 > 	, the 

system needs to limit power to the rated and maintain the stability of the system. 

Figure 3 shows the tendency between the control variables and the controlled variables of the 

WECS in different workspaces, and the following gives the explanations of each workspace: 

A-B: For wind speed under	 , the system stops. 

B-C: During the partial load region, the generator control is the only active control and aims at 

maximizing the energy captured from the wind and/or at limiting the rotational speed at rated. This is 

possible by continuously accelerating or decelerating the generator speed in such a way that the 

optimum tip speed ratio is tracked. 
C-D: During the full load region, the control objective is to keep the real-time power  to the rated 

value  and limit the high-speed shaft speed	 	remaining between	 	 	at the same 

time. The main purpose of pitch control is to limit wind capture that is to limit power and avoid the 

mechanical load increasing. 

D-E: When the wind speed is close to	 	, changing the value of the pitch angle to minimize 

the wind energy. The system needs to be disconnected from the grid and brake to stop. 

Figure 3. The tendency of the	 , 	and 	following the wind speed. 
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In this paper, we use Maximum Power Point Tracking (MPPT) algorithm to obtain the optimal 
generator speed 	and the optimal generator power	 . The so-called MPPT is a very reliable 

and robust control method, which covers an entire class of extremum search algorithms to maintain the 
optimal operating point when the curve 	 ( , )	 is unknown under a certain wind speed. It can 

calculate the optimal generator speed 	and the optimal generator power	 . The control loop 

we presented should track the optimal set points of MPPT’s outputs. 

3. The Proposed Method 

3.1. Fault Modelling of WECS within Stochastic PWA Model Framework 

In summary, WECS is mainly based on four regions for modeling and control. According to the 

different wind speeds, models and control strategies need to switch. This section introduces the basic 

principles of PWA, and then gives the idea of WECS modeling. 
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3.1.1. Stochastic PWA Model Form 

A linear stochastic discrete-time PWA system is defined by the state-space equation: = + + += + + , ∈ , ∈ ̅  (10)

where ∈ ℝ  is the state; ∈ ℝ 	is the control input; ∈ ℝ 	is a disturbance signal and	 ∈ ℝ  

is a performance output. The set ⊆ ℝ of every possible vector [ ] 	 is ℝ  or a 

polyhedron containing the origin;  is a polyhedral partition of 	and ∈ ℝ  are constant 

vectors. Each 	is regarded as a cell. For simplicity, assume that the cells are polyhedral defined by 

matrices	 ,  , 	and 	as follows: 

{[   ]   such that    and  }T T T x x u u
i i i i ix u F x f F u fχ = ≥ ≥  (11) 

and: 

{  such that  }x x
i i ix F x fχ = ≥  (12) 

{  such that  ,   with  x ,[   ] }T T T
j j iS i x u x uχ χ= ∃ ∈ ∈ 	 (13) 

where	  is the set of all indices  such that	 	is a cell containing a vector [ ] 	with ∈ ̅  is 

satisfied. Denote = 1,… , , which is the set of indices of the cells ; Denote = 1,… , , which 
is the set of indices of the cells ̅ . It is important to see that: 

1

t

j
j

S I
=

=  (14) 

Furthermore, if cells 	 	have the structure pointed out in Equation (11), then the sets 	are disjoint. 

If cells 	  have a more complicate structure (for instance when mixed state-input constraints are used 
to define each cell 	 ), then the set  could be overlapping. 

3.1.2. Stochastic PWA Model for WECS 

The linearized drive train dynamics function is described as follows: = 13 + + − + + 1 + 13 ( ) ( )
= − 1 − + +  (15)

where	 、  and 
( )	are the linearized parameters in different working points;	 	 is the viscous 

friction of the high speed shaft. 

Then a linearized overall state space model describing the dynamics of the WECS can be given: 
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=
				0						0						 0 00 						0							 						 0 00					 				 				0				0			0			0				 				0 	 				0			

+ 0000 ( ) + 00								00				0								00 	0  (16) 

where		 = − , = − , = −2 , = − , = − + 	, = 	, 	 = − + 	, = 	, = , = ( )	. 
Although wind can provide the energy that drives the wind turbine, due to its intermittent nature, it 

also acts as a disturbance. Hence, the effective wind (Equation (1)) can also be considered as a 

superposition of the mean wind speed	 , which could be either constant or time varying as a result of 

a sophisticated forecasting method, and a stochastic component 	 . From [14,15], the stochastic part 

 can be considered as the point wind after a second-order filter, which models the effect of the  
disc-shaped area swept by the rotor blades. In the frequency domain the power density spectrum 	of 

 can be written as	 ( , ) = ( ) ( , ), where ( ) is the spectrum of the point wind and ( , )	denotes the filter, which depends on the mean wind speed. This nonlinear expression can be 

then approximated by a linear second-order transfer function driven by a white noise process:  == − + +   (17) 

where	 = ,	 ∈ (0,1); and , , 	 are parameters depending on the mean wind speed. 

Combining with Equation (17), model (16) can be translated into the following form: 

=
11
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Figure 4. Wind speed vs. the corresponding working point. 
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Choose 3 working points for the parameters of WECS described as Figure 4. The values of 	 	 ,  and 
( )	 in different working points can be obtained according to different wind speeds by 

an effective wind estimator [16], where the realization method is described in [17–20]. The parameters 

are shown in Tables 1 and 2. 

Table 1. Model parameters. 

Parameter Value Unit Parameter Value Unit 

 90,000 kg ⋅ m  ,  225 kW 
 10 kg ⋅ m  ,  4.29 rad/s 
 8 × 10  Nm/rad ,  105.534 rad/s 
 8 × 10  kg ⋅ m /(rad ⋅ s) ,  3.5 rad/s 
 24.6 - ,  86.1 rad/s ℛ 14.5 m  0 deg 
 0.15 s  25 deg 

 0.1 s  10 deg/s 

Table 2. Parameters of linearized model in different working points. 

Wind Speed/ms−1 
Parameters 

a84 a88 e81 a1 a2 a3 
V = 7.5 0.409 0.50 1.90 0.3125 2.92 0.9375 
V = 10 0.479 0.53 2.31 0.33 3.65 2.3 
V = 16 0.833 0.53 2.50 0.625 5 5 

3.1.3. WECS Actuator Fault and Sensor Fault Model 

In this section, we consider both actuator and sensor faults. Let  denote the ’ ℎ actuator or sensor, 

and  denote the failed ’ ℎ actuator or sensor. We model a loss of gain in an actuator or sensor as: = 1 − ，0 ≤ ≤ (19)

where 	is the percentage of failure in the ’th actuator or sensor,  is the maximum loss in the ’th 

actuator or sensor. = 0	 represents the case without faults in the ’th actuator or sensor, 0 < < 1 

corresponds to the partial loss of the ’th actuator or sensor fault, and = 1	corresponds to the all loss 

of the ’th actuator or sensor fault. Define 	  with = , , … , . Then 	 = , where = ( − ). The faults considered are shown in Table 3: 

Table 3. The faults considered. 

Fault Type Fault Description 

actuator gain Factor  
sensor gain Factor  

where  and  are both diagonal matrix of two elements. 

The PWA model of the system with the loss of gain 	 	in actuators can be described by: = + + += + + , ∈ , ∈ ̅  (20) 
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and the PWA model of the system with the loss of gain	 	in sensors can be described by: = + + += 	 + + , ∈ , ∈ ̅  (21) 

3.2. 	 ∞	Fault Tolerant Control for WECS 

3.2.1. Fault Tolerant Control for Actuator Fault 

Consider the PWA actuator faults system (20), define the input signal 	as follows: =  (22)

Thus, system (20) can be rewritten as: = + += + + , ∈ , ∈ ̅  (23) 

where:  = [ ] , = [ ] (24)

The ∞  framework considered here is based on a finite horizon definition of the  gain and, 

consequently, the proposed extension of the disturbance input is sensible [21–24]. 

Clearly, it is possible to apply the control approach proposed in [5] directly to the extended system 

(Equation (23)). This can be conservative because  is not an unknown disturbance but a known term. 

Unfortunately, in general,	  is known only when the control signal  has already been calculated. 

Under the standard assumption: = ,∀ ∈ , ∀ ∈  (25)

an alternative control strategy can be proposed. More precisely, the control is assumed to have the 

following structure: = , ∈ ̅  (26) 

In this way, the controller can also consider the displacement term = , where	 = [0 ]. 
By applying the control law (26) to the PWA system (23), we can obtain the closed loop PWA 

actuator fault system: = += + , ∈ , ∈ ̅  (27) 

where: = + , = += + , = +  (28)

From the above, we can have the following main results:  
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Lemma 1. Consider system (27) with zero initial condition 	 = 0 , if there exists a function ( , ) =  for [ 		 ] ∈  with = > 0, satisfying the dissipativity inequality: 

( ) ( ) ( )110r
k k kk k kuw , k ,V x V x ,u W z ,w++∀ ∈ ∀ ≥ − <，  (29)

with supply rate: 

( ) ( )2 22 0W z,w w z ,γ γ∞ = − >  (30)

that is: ∀ , ( , ) − ( , ) < ( ‖ ‖ − ‖ ‖ ) , (31) 

then, the	 ∞ performance condition: ‖ ‖ < ‖ ‖  (32)

is satisfied.  

Furthermore, if the following matrix inequalities:  ∀ ∈ , , ∀ ∈ , ∀ ℎ ( , ) ∈ , , < 0 (33) 

are satisfied, where: 

, 2

T T T w T w
ij i ij j ij ij ij j ij i j

l ij wT wT wT w wT w
j ij j i ij j i j j j

A PA P C C C D A PB
M

D C B PA B PB D D Iγ
 − + +

=  + + −  
 (34)

then, condition (31) is fulfilled. Thus, system (27) is PWQ stable. 

Proof. By recalling that 0 0x = , from Equation (31) it follows that, 0N∀ ≥ : 

( , ) < ( ‖ ‖ − ‖ ‖ ) (35)

Since	 ( , ) > 0, then condition: ‖ ‖ < ‖ ‖  (36)

is met. 

Moreover, if [ ] ∈  and [ ] ∈ , then: ∀ , [ ] , [ ] < 0 (37) 

Obviously, if condition (33) holds, inequality (37) is satisfied and 	 > 0. For T T
ij l ij i ij ijA P A P C C− + , 

we can state that: ∀ ∈ , ∀ ∈ , ∀ ℎ( , ) ∈ , − < 0	 (38)

This implies that system (27) is PWQ stable. 

Now we focus on the possibility of finding a state-feedback control law of the type (26) for  

system (23). The main result is summarized in the following theorem. 
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Theorem 1. For PWA system (20), there exists a state feedback control law of type (26), which can 

guarantee PWQ Lyapunov stability and fulfil the dissipativity constraint: ∀ ∈ ℝ , ∀ ≥ 0, ( ) − ( , ) < ( , ) (39)

with supply rate: 		 ( , ) = ( [ ] − ‖ ‖ ) = ( ‖( ‖ + ‖ ‖ ) − ‖ ‖ ), > 0, ∈ (40)

If there exist matrices = > 0  with ∈  and matrices 	 , , 	  with 	 ∈ , such that  ∀ ∈ , ∀ ∈ , ∀  with ( , ) ∈ : 

( ) ( ) 0

20
0

20

2 2 20 ( ) ( )

T TTQ G G A G B Y C G D Yi j i j i j i j i jj

wA G B Y Q B B K Di j i j l ii j

wC G D Y I D D K Di j i j ii j

w T w TB B K D D D K D Ii ii j i j

a

a a

a γ

 
− − + + 

 
 + − +
  <
 

+ − + 
 
 + + −
 

Γ

Γ Γ

Γ





 

 (41) 

holds, then the feedback gains matrices 	with ∈  are given by:  = . (42)

Proof: Using Schur’s lemma, then Equation (33) can be rewritten as follows: 

( ) ( )
1 2

1 1

1

1 2

2 2 2

0

0 0
0

0 ( ) ( )

T T

i i i i i

w
i i l i i j

w
i i i i j

w T w T
i i j i

a j j

a j a

j

ja i

P A B C D

A B P B B K D

C D I D D K D

B B K D D D K D

K K

K

I

K

γ

−

Γ

Γ

 − + +
 
 + + < 

+ − + 
 + − 

Γ

Γ +




 

 (43) 

where 1 1
ij i i a ij i ij jA A B ,C C DK K= + Γ = + . 

Now, let 	 =  and	 	 = 	, we can obtain inequality (41) by multiplying (43) from the left 

by diag 	 	 	 	and the right by diag( 	 	 	 ): 
Let: 

0 0 0

0 0 0

0 0 0

0 0 0

T
jG

I
H

I

I

 
 
 =
 
 
  

 (44)

then: 
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( ) ( )

( ) ( )
( )

1 2

2

2 2

1 1

1

1

1 1

1

2

1 2

0

0* *
0

0 ( ) ( )

0

0

T T

i i i i i

w
Ti i l i i j

w
i i i i j

w T w T
i i j i i j

T TT T T
j i j j i i j i i

w
i i j l i i

a j j

a j a

j

a

a j j

a j ja

i

P A B C D

A B P B B K DH H
C D I D D K D

B B K D D D

K K

K

K

K

K D I

G PG G A B G C D

A B G P B B K D

C D

K

K

γ

−

−

 − + +
 
 + − +
 

+ − + 
 + + − 

− + +

+ − +

Γ

Γ Γ

Γ

Γ
=

+

Γ

Γ




 



( )

( ) ( )

2

2 2

1

2

2

2

2 2 2

0

0 ( ) ( )

0

0

0

0 ( ) ( )

w
i j i i j

w T w T
i i j i i j

T TT
j i j i j i j i j i j

w
i j i j l i i j

w
i j i j i i j

w T w T
i i j i i

j

a

a

a a

a j

G I D D K D

B B K D D D K D I

G PG AG B Y C G DY

AG B Y Q B B K D

C G DY I D D K D

B B K D D D K D I

K

γ

γ

 
 
 
 
 − + 
 + + − 
 − + +
 
 + − += 

+ − +
 + + −

Γ

Γ

Γ 

Γ

Γ



 




 

0<



 (45) 

Since 0 < + − ≤ 1 , Equation (45) implies: 

( ) ( ) 0

20
0

20

2 2 20 ( ) ( )

T TTQ G G A G B Y C G D Yi j i j i j i j i jj

wA G B Y Q B B K Di j i j l ii j

wC G D Y I D D K Di j i j ii j

w T w TB B K D D

a

a a

a D K D Ii ii j i j γ

 
− − + + 

 
 + − +
  < 

+ − + 
 
 + +

Γ

Γ Γ

Γ −  





 

 
(46) 

It is obvious to get	 > 0, ∀ ∈ ,	then the control matrixes 1 can be reconstructed as = . 

3.2.2. Fault Tolerant Control for Sensor Fault 

Theorem 2. For PWA system (21), there exists a state feedback control law of type (26), which can 

guarantee PWQ Lyapunov stability and fulfil the dissipativity constraint: ∀ ∈ ℝ , ∀ ≥ 0, ( ) − ( , ) < ( , ) (47)

with	supply	rate:	 		 ( , ) = ( [ ] − ‖ ‖ ) = ( ‖( ‖ + ‖ ‖ ) − ‖ ‖ ), > 0, ∈  (48)

If there exist matrices = > 0 with ∈  and matrices	 , , 	with	 ∈ , such that ∀ ∈, ∀ ∈ , ∀  with ( , ) ∈ : 

2

2

2 2 2

( ) ( ) 0

0
0

0

0 ( ) ( )

T T T
i j j i j i j i s j i j

w
i j i j l i i j

w
i s j i j i i j

w T w T
i i j i i j

Q G G AG BY C G DY

AG B Y Q B B K D

C G DY I D D K D

B B K D D D K D Iγ

 − − + Γ +
 + − +  < Γ + − +
 

+ + −  




 
 

(49) 

holds, then the feedback gains matrices 1	with ∈  are given by:  
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=  (50)

Proof: Similar to the proof of Theorem 1, Equation (33) can be rewritten as follows: 

( ) ( )1 1

1 2

2

2

1

1

2 2

0

0 0
0

0

T T

i i i i i

w
i i l i i j

w
i i i i j

w T w T
i i j i

j s

i

j

s j

j

jP A B C D

A B P B BK D

C D I D DK D

(B BK D) (D DK D)

K K

K

K

Iγ

−

 − + + 
 + − + < 

+ − + 
 + + − 

Γ

Γ




 

 (51) 

where 1 1
ij i i i si ij jjA A B ,C C DK K= +Γ= + . 

Now, let 	 =  and	 	 = 	, we can also obtain inequality (49) by multiplying (51) from the 

left by diag 	 	 	 	and the right by diag( 	 	 	 ).The rest proof process is similar to Theorem 1, 

omitted here. 

4. Simulation Results  

According to the modeling method described in part 3, we can obtain the following PWA model  

of WECS: 

If 0 < 1 ≤ 8 (Region 1), then: 

10 0 0 0 0 0 0

0 0 1 0 0 0 0

0 123.4 13.332 0 0 0 0

0.1 0 0 13.2 325.2 0 0

0 0.409 0 0.036 0.5 0 0

0 0 0 0 0 0 1 11
0 0 0 0 0 0.3125 2.92 22

TT gg

gg

rr
w

w

ββ
ββ
ωω
ωω
ω
ω

    −    
    
    − −    
   = − − 
    − −    
    
    
  − −     












0 010 0

0 00 0

0 00 123.4

0 7.5 00 0

1.9 1.90 0

0 00 0

0 0.93250 0

Tgref
e

refβ

     
     
     
     

      
 + + × +     
       

     
     
     

       

(52) 

If 8 < 1 ≤ 12 (Region 2), then: 

10 0 0 0 0 0 0

0 0 1 0 0 0 0

0 123.4 13.332 0 0 0 0

0.1 0 0 13.2 325.2 0 0

0 0.479 0 0.036 0.53 0 0

0 0 0 0 0 0 1 11
0 0 0 0 0 0.33 3.65 22

TT gg

gg

rr
w

w

ββ
ββ
ωω
ωω
ω
ω

    −    
    
    − −    
   = − − 
    − −    
    
    
   − −     












0 010 0

0 00 0

0 00 123.4

0 10 00 0

2.31 2.310 0

0 00 0

0 2.30 0

Tgref
e

refβ

     
     
     
     

      
 + + × +     
       

     
     
     
      

(53) 

If 12 < 1 ≤ 18 (Region 3), then: 

10 0 0 0 0 0 0 1

0 0 1 0 0 0 0

0 123.4 13.332 0 0 0 0

0.1 0 0 13.2 325.2 0 0

0 0.833 0 0.036 0.53 0 0

0 0 0 0 0 0 1 11
0 0 0 0 0 0.625 5 22

TT gg

gg

rr
w

w

ββ
ββ
ωω
ωω
ω
ω

    −    
    
    − −    
   = +− − 
    − −    
    
    
   − −     












0 00 0

0 00 0

0 00 123.4

0 16 00 0

2.5 2.50 0

0 00 0

0 50 0

Tgref
e

refβ

     
     
     
     

      
  + × +     
       

     
     
     
      

(54) 

where 1 = [0	0	0	0	0	1	0]. 
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According to Theorem 1 and Theorem 2, we can successfully obtain the piecewise linear state 

feedback matrixes 1 2 3, ,K K K  of WECS system in normal, sensor failure and actuator failure cases. 

The feedback matrixes calculated in the three cases are shown as follows: 

The normal WECS: 

1

0.0859   0.0149   0.0009    0.0018    0.2721    0.0000    0.0000    0.0066   0.0247

0.0334   0.1671   0.0121     0.0080    2.4130    0.0000    0.0000   0.0130       0.0000
K

− − − − − 
=  − − − −   (55) 

2

7.6202      0.7650     0.0482    0.0031   0.1483        0.0000   0.0000   0.4561    0.8690

 81.4923   24.3547   1.6292   1.4002    396.2525   0.0000   0.0000   17.8043  0.0099
K

− − − − 
= − − − −   (56) 

3

0.3367  0.0142   0.0009    0.0024    0.2854    0.0000    0.0000   0.0055   0.0142

3.9585  0.1744   0.0186    0.0379    3.7296    0.0000    0.0000   0.0441       0.0000
K

− − − − − 
=  − − − −   (57)

Actuator within fault tolerance:  

1

0.1431   0.0248   0.0015    0.0030    0.4536    0.0000    0.0000   0.0110   0.0411

0.0556   0.2784   0.0201    0.0134    4.0216    0.0000    0.0000  0.0217       0.0000
K

− − − − − 
=  − − − − 

 (58) 

2

 12.7003      1.2750   0.0804    0.0052    24.4886    0.0000   0.0000    0.7601    1.4483

135.8205   40.5912   2.7154    2.3337   660.4208   0.0000   0.0000   29.6738   0.0166
K

− − − − 
= − − − −   (59) 

3

0.1833  0.0077   0.0005   0.0013    0.1554    0.0000    0.0000   0.0030   0.0078

2.1305  0.0967   0.0102   0.0202    2.0492    0.0000    0.0000     0.0222        0.0000
K

− − − − − 
=  − − −   (60) 

Sensor within fault tolerance: 

1

0.1110   0.0138   0.0009    0.0019    0.2541    0.0000    0.0000   0.0053   0.0247

  0.0000   0.1721    0.0124    0.0079    2.4826    0.0000    0.0000   0.0184      0.0000
K

− − − − − 
=  − − −   (61) 

2

0.1652   0.0208   0.0013    0.0030    0.3894    0.0000    0.0000   0.0086   0.0363

  0.0000   0.2548   0.0183    0.0119    3.7666    0.0000    0.0000   0.0269       0.0000
K

− − − − − 
=  − − −   (62) 

3

0.1682   0.0210   0.0013    0.0030    0.3930    0.0000    0.0000   0.0085   0.0377

0.0008   0.2175   0.0159    0.0062    2.9796    0.0000    0.0000      0.0228        0.0001
K

− − − − − 
=  − − −   (63) 

In these three cases, feedback gains 1K , 2K , 3K  correspond to Regions 1, 2, 3, respectively. The 

feedback gains 1 2 3, ,K K K  are designed according to the stochastic PWA model of WECS. When the 

model switches, corresponding the feedback gain switches. Then the piecewise linear state feedbacks 

can guarantee the WECS systems meeting PWQ Lyapunov stability. 

4.1. Validation of 	 ∞	Control for the Normal WECS 

Figure 5 demonstrates the simulation results of WECS fault free dynamic response which is 
regulated by the robust H∞  controller designed based on Theorem 1. Figure 5a is the test wind speed 

signal which is consisted of mean wind speed mv  and wind speed turbulent sv ( m sv v v= + ). 

7.5,  10,  16 ( / ),mv m s=  which is switched at time of 100 s, 200 s, 300 s, respectively. The tip speed ratio 

and the optimal generator power set point calculated by MPPT algorithm are given by Figure 5b,c, 
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respectively, which are under the control of reliable H∞  controller designed based on the stochastic 

PWA model of WECS. 

Figure 5. 	  reliable control for normal WECS based on stochastic PWA model: (a) wind 
speed  (m/s); (b) tip speed ratio; (c) optimal  setpiont (rad/s); (d) generator speed (rad/s); 

(e) generator power (KW); (f) pitch angle (°); (g) generator torque (Nm). 

 

The generator speed and generator power responses are shown in Figure 5d,e, from which we can 

conclude the real generator power tracks the optimal set point quite well and the generator speed is 
controlled with good performance. Figure 5f,g give the H∞ controller output of pitch angle β  and 
generator torque gT . Figure 5 show the H∞  controller of WECS designed based on stochastic PWA 

model combining with MPPT module works quite well. 

4.2. Validation of 	 ∞	Control for WECS with Actuators Fault 

Figure 6a–c show that with the pitch system actuator gain fault fβ  and the generator gain fault gfT  

(let gain loss factor 0.6 0

0 0.6a

 
Γ =  

 
), the MPPT module works quite well. Comparing with  

Figure 5a–c, there are little changes.  
However, comparing with Figure 5d,e, the performance of generator power gfP and generator speed 

gfω  have deteriorated, and begin to show the trend of losing stability. The control variables display 

wide range oscillations in Figure 6f,g. It is seen that the normal H∞ controller for WECS cannot deal 

with the actuators fault with gain factor loss aΓ . Comparing Figure 6d,e, Figure 7d,e demonstrate the 

response of generator speed and generator power under the control of H∞ fault tolerant controller 

designed based on Theorem1 based on the stochastic PWA actuator fault model of WECS, from which 

we can see that the performance with fault tolerant design significantly is better than the normal 

controller.  



Energies 2014, 7 1765 

 

 

Figure 6. Actuators fault of WECS without fault tolerant control: (a) wind speed (m/s); (b) 
the tip speed ratio; (c) optimal  setpiont (rad/s); (d) generator speed (rad/s); (e) generator 

power (KW); (f) the pitch angle (°); (g) the generator torque (Nm). 

 

Figure 7. 	  fault tolerant control for actuators fault of WECS: (a) wind speed (m/s); (b) 
tip speed ratio; (c) optimal  setpiont (rad/s); (d) generator speed (rad/s); (e) generator 

power (KW); (f) pitch angle (°); (g) generator torque (Nm). 

 

4.3. Validation of 	 ∞	Control for WECS with Sensors Fault 

Figures 8 and 9 demonstrate the simulation results of WECS with sensor gain factor fault (let gain 

loss factor 1.2 0

0 1.2s

 
Γ =  

 
) including generator speed sensor fault gfw and generator power sensor fault 

gfp . In Figure 8, the dynamic behaviors of WECS under the normal controller without fault tolerant 

design for two sensor fault are demonstrated. In Figure 9 the H∞ fault tolerant controller is synthesized 
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based on the stochastic PWA model of WECS with sensor fault using the Theorem 2. In Figure 8d,e, 

the performances of generator power gfP and generator speed gfW  have deteriorated and totally lose 

stability. The control variables which are shown in Figure 8e,f display wide range oscillations. While 

in Figure 9e,f, with the help of fault tolerant controller, the outputs of WECS with sensor faults can 

obtain better performance than the normal controller. But the generator power and generator speed 

cannot track the optimal set point of MPPT module’s output. This problem should be further 

investigated. 

Figure 8. Sensors fault of WECS without fault tolerant control: (a) wind speed (m/s);  
(b) tip speed ratio; (c) optimal  setpiont (rad/s); (d) generator speed (rad/s); (e) generator 

power (KW); (f) pitch angle (°); (g) generator torque (Nm). 

 

Figure 9. 	  fault tolerant control for sensors fault of WECS: (a) wind speed (m/s);  
(b) tip speed ratio; (c) optimal  set point (rad/s); (d) generator speed (rad/s); (e) generator 

power (KW); (f) pitch angle (°); (g) generator torque (Nm). 
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5. Conclusions  

From the discussion in Section 3, it is shown that the stochastic PWA model offers an ideal 

framework for capturing the stochastic property of wind speed and the nonlinear dynamics of WECS. 

The pictures that emerge from the proposed method and simulation results in Sections 3 and 4, suggest 

that the presented H∞ fault tolerant control method offers an effective tool to deal with synthesis 

problem of WECS with sensors and actuator faults. However, the control strategies presented in this 

paper are mainly investigated for the overall model of WECS which overlooks the nonlinear and  

high-order dynamic properties of generator and converter. Future research will focus on developing an 

inner loop vector controller for generator torque control to deal with the nonlinear and high-order 

generator model. So far, we only finished the simulation work for this paper. We have developed a 

laboratory setup of a 10 KW WECS simulator which would provide a benchmark for further 

experimental investigation of the WECS control algorithm we presented in the paper. 
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