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Abstract: A new class of diffuser augmented wind turbines (DAWTs) is presented. The 

new diffuser concept exploits aero-dynamic principles for the creation of high-lift airfoil 

configurations known from the aircraft industry. Combining this with our objective of 

obtaining a compact power-efficient design has enabled creation of a family of DAWT 

designs with energy capture potentials which exceed the power efficiency based on the 

diffuser exit area by 50%. The paper presents the 1D momentum theory governing the 

DAWTs, and discusses upper limits for power extraction, similar to the Betz limit applicable 

for bare Horizontal-Axis Wind Turbines (HAWTs). Inviscid axisymmetric panel code 

calculations are then used to drive the diffuser design towards higher power coefficients. 

Axisymmetric actuator disk Navier-Stokes calculations reveal the types of stall that inhibit 

the functionality of the ideal inviscid optimum, leading the design towards the new class of 

DAWTs. DAWT performance has been differently measured over time, creating confusion. 

Proper comparison with performance of existing DAWT designs is therefore emphasized. 

This involves reference to established literature results, and recalculation of earlier DAWT 

designs in an attempt to project all results onto a common metric. 
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1. Introduction 

The quest for affordable cost-of-energy competitive renewable energy has driven the wind turbine 

industry to the mature stage of today. The past four decades have witnessed a tremendous up-scaling in 

terms of size and power. The concept winner judged from market penetration and achievable  
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cost-of-energy is the bare 3-bladed front-runner modern HAWT also known as “the Danish concept”. 

The bulk of the market volume for modern HAWTs, including both onshore and offshore WTGs, lies 

in the MW-range roughly between 1 and 8 MW. In other words: large-scale wind power is comprised 

exclusively by modern HAWTs, and there is no indication of any changes in the foreseeable future. By 

contrast, small-scale wind power with WTGs up to 50 kW is undergoing a blooming of emerging 

designs and technologies. Household rural and urban applications are more influenced by other factors 

such as noise perception, visual disturbance, community regulations, etc., than large-scale wind power. 

Physically, small-scale wind is also different, due to higher turbulence levels and higher atmospheric 

shear levels, both caused by the decreased WTG hub height. This explains the persisting interest in 

alternative WTG designs for small-scale wind power applications. Ducted wind turbines have the 

virtue of full or partial visual shielding of the rotating parts, thereby reducing perceived visual 

disturbance. Although aero-acoustic noise is primarily dependent on the rotor blade tip-speed, the duct 

will shield the propagated noise emitted by the rotating blades. Additionally, ducted turbines are 

widely acclaimed for having a more compact energy capture. This is indeed the case when normalizing 

the generated power with the rotor area. Levels for the available power coefficient, Cp, in excess of the 

Betz limit of 16/27 (in the following referred to as Betz number) for bare propeller turbines are readily 

obtained. However, this is not the case when normalizing the generated power with the diffuser frontal 

area. This has fuelled many comments from DAWT sceptics as to why not just increase the rotor blade 

length to match the diffuser exit radius, which would be a more economical way for harvesting the 

same—or even a higher—level of energy. This paper will address the validity of that argument. 

The DAWT exploits the Venturi effect, named after the Italian physicist Giovanni Venturi  

(1746–1822), which is the reduction of fluid pressure—and the associated increase of fluid  

velocity—that results when a fluid flows through a contraction. For a DAWT, the contraction is 

created by the diffuser in the throat of which is placed a rotor. The “throat” plane is the diffuser cross 

section perpendicular to the axisymmetric axis where the area inside the diffuser is smallest. Modern 

DAWT theoretical research can be traced back to the 1920s, where A. Betz studied the economic 

viability of DAWTs compared to bare HAWTs. During the 1950s English and Japanese groups 

conducted further research where the possibility for mass flow augmentation through the diffuser 

throat was confirmed and quantified, both theoretically [1,2] and experimentally [3]. The oil crisis  

in 1973 led to a renewed interest in diffuser augmented wind, and three independent groups started  

up experimental DAWT research led by Igra [4–8], Lewis [9], and Foreman at Grumman  

Aerospace [10,11], respectively. Engineering models and numerical tools at that time were not at a 

stage that allowed accurate prediction of performance and design optimization. Surface stall from the 

inner (suction) side of the diffuser was identified as a performance limiting factor, and especially the 

Grumman Aerospace group targeted their focus towards boundary layer separation control. This was 

achieved by the use of passive devises such as diffuser trailing edge flaps and boundary layer slots, 

which both inject higher-energy fluid into the adverse pressure boundary layer, with the purpose of 

stall suppression. 

During the following decades up to the present time, the DAWT concept has attracted continuous 

interest as a niche concept overshadowed by the modern HAWT designs. Based on advances in 

analytical modelling and numerical simulation results, as well as lessons learned from failed 

commercial endeavors, e.g., Vortec Energy Limited, recognition has emerged that diffuser wind loads 
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and structural cost increase prohibitively with size, so DAWTs cannot compete with modern HAWTs 

in large scale cost-of-energy. Focus has consequently shifted to the small scale. 

At present, a handful of household wind turbine manufacturers have commercialized the DAWT. 

Most of these designs are single-ducted, some are double-ducted with a slot in-between to allow outside 

flow passing through to the inner-side duct to energize the boundary-layer in the adverse pressure 

gradient wake behind the rotor. Turbulent mixing between the rotor wake and the outside flow is 

exploited by a special class of DAWTs called Mixer-Ejector Wind Turbines (MEWTs), see [12,13].  

The increase of energy capture potential by use of enhanced wake mixing is also investigated in [14].  

A thorough review of the DAWT history and power performance can be found in [15]. 

This paper is organized as follows: in Section 2 the basic 1D momentum theory governing the 

DAWTs is presented. Section 3 quantifies the validity range of the momentum theory numerically, and 

investigates if it is possible within the assumptions of potential flow theory to exceed the Betz number 

when the entire DAWT frontal area is used as reference for the power efficiency. Stall-induced 

reduction in achievable DAWT power extraction is quantified and analyzed in Section 4 using 

Reynolds-Averaged Navier-Stokes Computational Fluid Dynamics (RANS CFD) with external forcing 

from an actuator disk. Diffuser designs that intend to circumvent the stall issue are suggested, leading 

to the new class of diffusers. Following a discussion about DAWT rotor efficiency in Section 5, 

Section 6 concludes this work and outlines perspectives for the new multi-element DAWT. 

2. 1D Momentum Theory 

A control volume is defined by the center-axis, the dividing streamlines, the flow inlet, and  

the flow outlet, see Figure 1. The domain is axisymmetric in the direction perpendicular to the plane.  

The axisymmetric equivalent to a bladed rotor is the actuator disk, which is indexed “d” on the figure. 

Across the disk there is a pressure drop, pd+ − pd−. A small air gap between the diffuser airfoil 

surrounding the disk and the disk itself allows only a very small leakage, i.e., which is assumed 

negligible. This also means that the streamline bordering the wake flow and the surrounding flow 

emanates from the trailing edge (TE) of the ring-shaped diffuser airfoil. 

Figure 1. DAWT control volume. The captured mass-flow is marked by the streamline 

upstream of the diffuser airfoil. The wake is marked by the streamline downstream. Inflow is 

assumed far upstream, and outflow is assumed far downstream in the fully developed wake. 
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2.1. Derivation 

The axial momentum balance over the control volume is governed by the Navier-Stokes equations. 

Viscosity and compressibility effects are assumed negligible: ܨ = ρܣ௜௡ܷஶଶ − ρܣ௪ܷ௪ଶ ܨ :and ܷ denote area and axial flow velocity. ρ is the fluid density. The axial force is the sum of the disk force and the diffuser force ܣ .is the axial force exerted by the turbine on the flow ܨ(1)  = ௗܨ + ௦ (2)ܨ

Force indices denote “disk” and “shroud” respectively. The axial flow velocity through the disk 

cannot be assumed constant, and will increase with increasing diffuser proximity. The flow tube 

through the disk is therefore divided into n annular elements as known from common BEM theory. 

Flow tube mass conservation upstream and downstream of the disk gives: ܣ௜௡ܷஶ =෍ܣௗ(௜)ܷௗ(௜)௡
௜ୀଵ  (3)

௪ܷ௪ܣ =෍ܣௗ(௜)ܷௗ(௜)௡
௜ୀଵ  (4)

Note the implication in Equation (4) that the far wake velocity ܷ௪ is constant across all annular 

elements. The underlying assumption is that ܨௗ per disk area is constant. This excludes uneven loading 

scenarios from the analysis. As will be argued and shown numerically, the optimal power take-out 

condition which is of primary interest is associated with even loading, for which this analysis is strictly 

valid. Eliminating ܣ௜௡ and ܣ௪ from Equations (1), (3), and (4): ܨ = ρ(ܷஶ − ܷ௪)෍ܣௗ(௜)ܷௗ(௜)௡
௜ୀଵ  (5)

The even loading constraint means that although ݌ௗା and ݌ௗି will vary across the annular elements 
in accordance with the ܷௗ(௜) variation, the pressure drop, Δ݌ௗ = ௗା݌ −  ௗି will remain constant for all݌

annular elements. The force exerted by the disk on the air can then be expressed as: ܨௗ =෍൫݌ௗା(௜) − ௗ(௜)ܣௗି(௜)൯݌ = Δ݌ௗ෍ܣௗ(௜) =௡
௜ୀଵ Δ݌ௗܣௗ௡

௜ୀଵ  (6)

The axial force ܨ௦  exerted by the diffuser on the fluid is expressed using a Maclaurin series 

expansion (Taylor series centered around Δ݌ௗ equal to zero) with the pressure drop Δ݌ௗ across the disk 

as the free variable. Note that various choices as of how to express ܨ௦ exist. As will be shown in what 

follows, the chosen expression for ܨ௦ leads to a convenient definition of the involved diffuser constant ܥ௦, when truncated to 1st order accuracy:  ܨ௦ = ℳ൭෍൫݌ௗା(௜) − ௗ(௜)௡ܣௗି(௜)൯݌
௜ୀଵ ൱ = ℳ൭෍Δ݌ௗܣௗ(௜)௡

௜ୀଵ ൱ = (7a) (ௗ݌Δ)ௗℳܣ

where ℳ denotes the Maclaurin series operator. Expanding: 
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௦ܨ = ௗܣ ෍ ቀிೞ஺೏ቁ(௠)݉!ஶ
௠ୀଵ Δ݌ௗ௠ 

௦ܨ = ௗܣ ቎ ݀ ቀிೞ஺೏ቁ݀(Δ݌ௗ)ቮ଴ ∙ Δ݌ௗ + 12 ݀ଶ ቀிೞ஺೏ቁ݀(Δ݌ௗ)ଶቮ଴ ∙ Δ݌ௗଶ + 16 ݀ଷ ቀிೞ஺೏ቁ݀(Δ݌ௗ)ଷቮ଴ ∙ Δ݌ௗଷ + .ܪ ܱ. ܶ. ቏ (7b)

.ܱ.ܪ ܶ.  denotes Higher-Order-Terms. Equation (7b) in its non-truncated entirety represents no 

approximation to the axial force ܨ௦  from the shroud (or diffuser) on the passing fluid. In order to 

facilitate further analysis we truncate Equation (7b) to 1st order accuracy: 

௦ܨ ≈ ௗܣ ݀ ቀிೞ஺೏ቁ݀(Δ݌ௗ)ቮ଴ ∙ Δ݌ௗ = ௗ (8)݌௦Δܥௗܣ

௦ܥ  is thus defined as the 1st order Δ݌ௗ -derivative of ܨ௦ ⁄ௗܣ  at the unloaded condition when  Δ݌ௗ = 0 . The naming convention of ܥ௦  as the “shroud force coefficient” honors the definition 

employed by Werle & Presz [12,13], but with the clarifying notion that it represents a 1st order series 

approximation, and that uniform disk loading is assumed. Combining Equations (2), (6), and (8) we see: ܨ = ௗ݌ௗΔܣ + ௗ݌ௗΔܣ௦ܥ = ௗ(1݌ௗΔܣ + ௦) (9)ܥ

Inserting ܨ from Equation (9) into the momentum balance Equation (5): ρ(ܷஶ − ܷ௪)෍ܣௗ(௜)ܷௗ(௜)௡
௜ୀଵ = ௗ(1݌ௗΔܣ + ௦) (10)ܥ

Applying the Bernouilli principle along a streamline upstream and downstream of the disk respectively: ଵଶρܷஶଶ = ଵଶρܷௗ(௜)ଶ + ௗା(௜) (11)ଵଶρܷ௪ଶ݌ = ଵଶρܷௗ(௜)ଶ + ௗି(௜) (12)݌

Subtracting Equation (12) from Equation (11): ݌ௗା(௜) − ௗି(௜)݌ = Δ݌ௗ = ଵଶρ(ܷஶଶ − ܷ௪ଶ) (13)

Elimination of Δ݌ௗ through Equations (10) and (13) leads to: ෍஺೏(೔)஺೏ ܷௗ(௜)௡
௜ୀଵ = ଵଶ(ܷஶ + ܷ௪)(1 + ௦) (14)ܥ

The LHS of Equation (14) is the area-weighted average of the axial flow velocity through the disk, 

which will be named ഥܷௗ leading to: ഥܷௗ = ଵଶ(ܷஶ + ܷ௪)(1 + ௦) (15)ܥ

Equation (15) provides the relation between far wake velocity and area-weighted velocity through 

the disk for a DAWT at even loading conditions. If ܥ௦ is zero, the diffuser has vanished, and the usual 

expression for a bare HAWT is recovered. However, the equivalent of Equation (15) for a bare HAWT 

is valid at all disk annular elements, with no constant loading constraint, and without an area-averaged 
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LHS. This annular element independency is an important prerequisite for the derivation of the  

Blade-Element-Momentum (BEM) method widely used for design and simulation of bare HAWTs.  

It appears evident that the lack of annular element independency would make the formulation of  

a BEM-method for DAWTs more approximate. The rigid applicability of a BEM method for DAWTs 

would therefore have to be thoroughly quantified, but that exercise is outside the scope of the  

present investigation.  

Recall that ܥ௦ is the 1st order derivative term coefficient in a Maclaurin series expansion around Δ݌ௗ = 0. At this operational point no power is taken out of the flow by the disk, so ܷ௪ will equal ܷஶ: ഥܷௗ|୼௣೏ୀ଴ = ܷஶ(1 + ௦) (16)ܥ

The convenient definition of ܥ௦  is then expressed as the relative area-averaged speed-up of  

the flow through the disk at unloaded conditions minus one. Lower-case velocity quantities are  

non-dimensionalized by the free-stream velocity ܷஶ: ܥ௦ = തௗ଴ݑ −   ௦ can be quantified either numerically using CFD, or experimentally in a wind tunnel or underܥ(17) 1

full-scale on-site conditions. 

2.2. Power-Optimal Operation 

The power taken out of the flow by the actuator disk is the dot-product of exerted force times the 

passing fluid velocity integrated over all annuli. Bold types denote vector quantities. ࢊ࢔ is the unit 

normal vector to the disk: ܲ =෍(࢏)ࢊࢁ௡
௜ୀଵ ∙ (࢏)ࢊ࢔ ௗ(௜)ܣ Δ݌ௗ(௜) = Δ݌ௗ෍ܷௗ(௜)௡

௜ୀଵ  ௗ(௜)ܣ
Substituting the RHS by using Equation (13), Equation (14) leads to: ܲ = ଵସρܣௗ(ܷஶଷ + ܷஶଶ ܷ௪ − ܷஶܷ௪ଶ − ܷ௪ଷ)(1 + ௦) (18)ܥ

Similarly, the thrust force on the actuator disk is expressed as: ܨௗ = Δ݌ௗܣௗ = ଵଶρܣௗ(ܷஶଶ − ܷ௪ଶ) (19)

The corresponding power- and thrust-coefficients become: ܥ௉_ௗ௜௦௞ = ܲ ቀభమఘ஺೏௎ಮయ ቁ =⁄ ଵସ(1 + ௪ݑ − ௪ଶݑ − ௪ଷݑ )(1 + ௗ௜௦௞_்ܥ௦) (20)ܥ = ௗܨ ቀభమ஡஺೏௎ಮమ ቁ =⁄ 1 − ௪ଶݑ ௧௢௧௔௟_்ܥ(21)  = ௗܨ) + (௦ܨ ቀభమ஡஺೏௎ಮమ ቁ =ൗ (1 − ௪ଶݑ )(1 + ௦) (22)ܥ

Now, setting ݀ܥ௉_ௗ௜௦௞ ௪ݑ݀ = 0⁄  leads to the following results for power-optimal DAWT operation: ݑ௪_௢௣௧௜ = ଵଷ (23)ݑതௗ_௢௣௧௜ = ଶଷ(1 + ௉_ௗ௜௦௞_௢௣௧௜ܥ௦) (24)ܥ = ଵ଺ଶ଻(1 + ௦) (25)ܥ
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ௗ௜௦௞_௢௣௧௜_்ܥ = ଽ଼ (26)்ܥ_௧௢௧௔௟_௢௣௧௜ = ଽ଼(1 + ௦) (27)ܥ

From Equations (23)–(27) we note that the DAWT power-optimal far wake velocity and disk thrust 

coefficients of 1/3 and 8/9 are independent of the diffuser and thus identical to the HAWT power 

optimum. Thus, for both the HAWT and the DAWT, optimal power take-out occurs when 8/9 of the 

fluid mechanical energy passing the disk is converted. For the optimal HAWT, 2/3 of the free-stream 

mass flow-rate through a disk-sized area will pass the actuator disk. Betz limit can be intuitively 

understood as the product of 8/9 and 2/3. Equation (24) tells us that for a DAWT, the optimal 

massflow-rate is a factor 1 +  ௦ higher than for a HAWT and since the same mechanical energy ratioܥ

of 8/9 of what passes through the disk is converted, the corresponding optimal power coefficient is the 

factor 1 +   .௦ higher for a DAWT, as stated by Equation (25)ܥ

These results coincide with references most notably van Bussel [16,17], Jamieson [18], and not 

least Werle and Presz [12,13] from whom the use of a shroud coefficient ܥ௦ as a convenient means of 

describing the diffuser impact was adapted. These references all disregard the non-uniformity of the 

axial flow velocity ܷௗ over the disk, and do not properly explain the 1st order accuracy of the new 

variable(s) introduced in order to close the governing system of equations. 

Bussel was the first to conclude that the obtainable power augmentation, based on the disk area, 

scales linearly with the velocity speed-up through the disk at unloaded conditions, as stated by 

Equation (25), that the power-optimal far wake velocity is 1/3 irrespective of the diffuser, as confirmed 

by Equation (23), and that the optimal disk thrust coefficient also is unchanged from the HAWT at  

a value of 8/9, Equation (26). In Bussel’s momentum theory an additional station was defined at the 

diffuser exit. Instead of introducing a diffuser force coefficient, he defined a back pressure coefficient 

at the diffuser exit station, acknowledging that the pressure at the diffuser exit has still not recovered to 

ambient pressure, and that the wake will continue to expand downstream of the diffuser exit. Bussel 

made it very clear that high power efficiencies should be obtained through very low back pressures, 

such that further wake expansion downstream of the diffuser exit is maximized. In [17] Bussel’s 

review also showed that no DAWT power performance has yet exceeded the Betz number—or 

conventional HAWT performance—when relating the converted power to the wind turbine frontally 

projected area, which for a DAWT means the diffuser exit area. 

Jamieson’s investigation [18] validated these findings. His derivation considered a system defined 

as the region in which axial induction is significantly influenced between the free stream and the far 

wake. The axial force interaction between the flow and the flow-augmentation device (i.e., the diffuser) 

is not included, so momentum balance over the entire control volume is absent. Instead, Jamieson 

argues that the far wake induction must equal a constant ݇ times the change in disk induction from the 

unloaded state, expressed as ܽ௪ = ௞(ܽௗ − ܽௗ଴) . In the absence of a control volume momentum 
balance, Jamieson closes the equations by using the inviscid theory result, that ்ܥ_ௗ௜௦௞ = 0 for ܽௗ = 1. 

However, this corresponds to a non-physical condition where the far wake velocity ܽ௪ is undefined. 

This is the case for the usual open-flow derivation. For a confined flow derivation, Werle [19] showed 
that the thrust singularity at ்ܥ_ௗ௜௦௞ = 1 and ܽௗ = భమ can indeed be circumvented, and that ்ܥ_ௗ௜௦௞ then 

will equal 1 (not zero) when approaching ܽௗ = 1 in the asymptotic limit where the flow confinement 

vanishes corresponding to open flow conditions. Nevertheless, Jamieson’s results confirm Bussel´s 
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findings, and in a generic way that decouples from the flow-augmenting device and only uses the 

unloaded induction at the disk plane ܽௗ଴ = 1 −  .ௗ଴ݑ

The approach devised by Werle and Presz [12,13], and from which the current momentum theory 

investigation departs, includes the flow-augmenting unit (i.e., the diffuser) in the momentum balance, 

and closes the equations by expressing the axial diffuser force as a linear function of the pressure drop 

across the disk, as in Equation (8). The optimum power extraction results are identical to Jamieson’s, 

since ܥ௦ = ௗ଴ݑ − 1 , thus connecting Jamieson unloaded disk induction parameter and Werle and 

Presz’s shroud coefficient through the simple relation ܥ௦ = −ܽௗ଴. Both Jamieson [18] and Werle and 

Presz [13] conclude that maximizing power goes through maximization of the flow augmentation 

capability of the diffuser at the unloaded condition. Jamieson further points out what was earlier stated 

by Hansen [20], that the diffuser flow augmentation capability should be optimized for the optimal  

power-takeout condition, and consequently not necessarily be optimal in the unloaded state. 
Including the results presently obtained, there is good analytical evidence that ܥ௉_ௗ௜௦௞_௢௣௧௜  can 

exceed the Betz number significantly. But really, the task of interest is to investigate whether ܥ௉_௘௫௜௧_௢௣௧௜ based on the diffuser exit area instead of the disk area can also exceed the Betz number. 

Bussel concluded negatively based on his review of experimental and numerical results [17], but no 

theoretical limit has so far been identified. 

3. Validation 

The assumption of the optimality of a constant far wake velocity made in the derivation of the 1D 

momentum theory for diffusers exerting non-uniform flow augmentation will be validated numerically. 

The validity of the 1st order approximation for the shroud force, i.e., the linear relation between ܨ௦ 
and ∆݌ௗ in Equation (8) will also be quantified. To this end two computational codes will be used: 

- Panel code: A 2D axisymmetric potential flow panel code equipped with an actuator disk and a 

freely propagating wake. All bound and trailing vorticity is axisymmetrically formulated closely 

following the pioneering work of Lewis [21], which also includes source code. The expanding 

wake is computed iteratively by pseudo-time-stepping. The system of equations for the bound 

vorticity collocated on the panels of the diffuser is closed using the Kutta-condition. The merits 

of the panel code are execution speed and the ideal inviscid flow property, which precludes stall 

from occurring on the duct surface. This is practical from an investigative point of view, where 

surface stall initially can be regarded as an issue to be dealt with separately. The primary 

disadvantage of the panel code is the uniform collocation of circulation (vorticity) on the duct 

panels which serves to fulfil the Kutta-condition. The assumption of a uniform vorticity 

distribution over the panels is acceptable for some applications, but one must be aware that is 

represents a simplification of the real physics. 

- RANS CFD: A commercial Navier-Stokes solver by Comsol MultiPhysics® [22]. The system is 

again made 2-dimensional by use of the actuator disk approach. For details, see e.g.,  

Mikkelsen [23] or Hansen [20]. The governing equations are the viscous, incompressible 

Reynolds-Averaged Navier-Stokes equations in axisymmetric coordinates. The applied 

turbulence model is the standard κ-ε formulation, where κ is the turbulent kinetic energy, and ε is 

the dissipation rate of turbulent energy. The advantage of RANS CFD is its physical correctness. 
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The governing Navier-Stokes equations are an almost exact representation of the real physics. Still, 

notable model approximations are introduced through the use of a turbulence model (as opposed to 

resolving turbulence directly in time and space, which is computationally infeasible), the 

axisymmetric assumption, and discretization errors although small in 2D where mesh-independent 

results are easily obtainable. A discussion about the implication on modelling accuracy, power 

extraction, and possible pitfalls introduced by assuming non-swirl axisymmetry is given in a 

later chapter. The disadvantage of RANS CFD is the computational execution time. A converged 

solution for a 2D domain with 0.5 million mesh elements is obtained in approximately 1 hour on 

a high-end multi-core desktop pc. 

Unless otherwise noted, the model dimensions, domain dimension, and discretization details will be 

as described below for all computations: 

- Panel code: The rotor disk is 1.0 m in radius, and placed at the “throat” location of the diffuser 

where the flow augmentation is maximized. The disk is one-dimensional due to the 

axisymmetric property, and aligned with the radial dimension. It is divided uniformly into  

19 bound-vorticity line-segments. Trailing vorticity continues and propagates freely downstream 

from each end of each line-segment. Each of the trailing vorticity helices (which are tubes in 3D) 

are divided into 50 segments in the axial streamwise dimension. The streamwise discretization is 

non-uniform, with initial axial element length of 1.0 percent of the disk radius just behind the 

disk, and increasing gradually in length as the wake expansion settles further downstream. The 

last vorticity-tube continues infinitely downstream. The clearance distance between the disk tip 

at 1.0 m and the duct inner-most surface is 1.0 percent of the disk radius. 40 panels are used to 

represent the duct 2D geometry. 

- RANS CFD: Again, the rotor disk is 1.0 m in radius, and placed in the “throat” of the diffuser. 

Disk-duct clearance is 1.0 percent of the disk radius. From the disk and duct, the axisymmetric 

2D domain extends 50 m axially upstream, downstream, and in the radial direction. The inlet 

boundary condition is of Dirichlet type, imposing constant velocity 10 m/s. Inlet turbulence 

intensity is 5% with a small length scale of 0.01 m. The radial and outlet boundary condition is 

of Neumann type, imposing a zero pressure gradient. Axial symmetry boundary condition is 

applied on the centreline, and a no-slip Dirichlet condition on all walls. The mesh is hybrid with 

unstructured isotropic triangular elements in open regions, and structured anisotropic quadrilateral 

elements adjacent to the duct walls. The complete mesh consists of 300,000–400,000 elements 

depending on the duct configuration, with a triangular element count of around 275,000. This is 

roughly 20–25 times more elements than the 16,640 elements employed by Hansen in [20] and 

quite sufficient to establish mesh independent results, even with the more complex diffuser 

geometries. The boundary element length is in the range 0.5–1.0 mm. The first boundary element 

height is 5–10 μm with a normal direction stretch factor of 1.1–1.2. The boundary layer mesh 

contains between 20 and 35 layers in the wall-normal direction. The disk in 2D is a rectangular 

sub-domain 1.0 m wide (the radius) and 2 mm thick, onto which volume forcing is applied, 

either constant-level or linearly increasing/decreasing from centreline to tip. For all RANS 

computations, the max-norm of the relative step-changes in field variables (u, v, p) converged 

from around unity to below 1.0 × 10−5. The turbulence variables (κ, ε) reached the same level of 
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convergence, except for some simulations with disk loadings and/or diffuser geometries that 

caused massive wake separation, where convergence levelled off earlier at 1.0 × 10−3 or below. 

The 1D HAWT/DAWT momentum theory, the panel code, and the RANS CFD are applied to a series 

of test cases. These test cases, and their relevance for the present investigation, are presented here: 

- Bare HAWT: The regular horizontal-axis wind turbine with no diffuser is well known in terms 

of performance, and therefore relevant as a validation test case. The bare HAWT is also very ܥ௉_௘௫௜௧ efficient, not yet superseded by any DAWT, see [17], and will therefore be used as a 

baseline against which the other configurations (test cases) are benchmarked. 

- Hansen DAWT: This diffuser was analysed using 2D axisymmetric CFD [20], and serves a 

validation purpose. The validity of the assumption of power-optimality at constant disk loading 

used for the derivation of our 1D momentum theory is also quantified, as well as the valid range 

of the 1st order truncated expression for the duct loading, ܨ௦ , in Equation (8). Note that our 

Hansen DAWT computations are set up in accordance with [20]. Therefore, unit-length 

reference scale ܮ is applied to the diffuser length instead of the disk radius. The disk radius  

is 0.4687 and the inlet flow velocity is determined such that the Reynolds number 	ܴ݁ = ܷஶܮρ μ⁄ = 5.0 × 10଻. Also note that Hansen used the κ-ω turbulence model, whereas we 

use the κ-ε model.  

- Circular cylinder (donut) DAWT: When applying circulation to a circular cylinder, a higher  

lift-coefficient can be obtained within potential flow theory than with any other geometry. 1D 

DAWT theory suggests that the obtainable power augmentation scales directly with the velocity 

augmentation at zero power take-out, which again scales with the inner surface suction created 

by the duct airfoil and hence its lift capacity. It is therefore interesting to see if the circular 
cylinder DAWT can exceed the bare HAWT ܥ௉_௘௫௜௧ performance. This test case offers insight of 

mostly theoretical nature, since stall issues are not dealt with. 

- Vortec original multi-slotted DAWT: This is the 3rd generation DAWT from the Vortec  

project [15]. The Vortec research was initially based on the Grumman research [10,11] some 

decades earlier, and also reached the conclusion that high power-augmentation should be 

obtained through boundary-layer control of the flow over the duct suction side. The multi-slotted 

DAWT is state-of-the-art and therefore included in the series of test cases. 

- Vortec Mo multi-slotted DAWT: This is the 4th and final generation DAWT from the Vortec 

project. It combines the multi-slotted technology with a diffuser trailing-edge brim, quite similar 

to a Gurney flap known as a lift-enhancing device from regular airfoil sections. 

- Ohya Cii flanged DAWT: The flanged diffuser (a.k.a. brimmed diffuser) has been extensively 

and successfully tested by Ohya’s research group [24]. Like the Vortec final designs, it 

represents state-of-the-art DAWT technology.  

- New multi-element DAWT: The new diffuser design of the present investigation. 

The computation methods applied to each test case are listed in Table 1. Note that only RANS CFD 

is useful for the most complex cases, where complicated geometries and/or fluid stall mechanisms are 

present, which is beyond the applicability scope of the simpler methods. 
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Table 1. Overview of performance evaluation methods applied to each of the test cases. 

Test Case 1D mom. Theory Panel Code RANS CFD 
Regular HAWT X X X 
Hansen DAWT  X X X 

Circular cylinder (donut) DAWT X X - 
Vortec orig. multi-slotted DAWT - - X 
Vortec Mo multi-slotted DAWT - - X 

Ohya Cii flanged DAWT - - X 
New multi-element DAWT - - X 

3.1. Test Case: Regular HAWT 

The left plot on Figure 2 shows the power efficiency ܥ௉_ௗ௜௦௞ for a bare HAWT across the ்ܥ_ௗ௜௦௞ 

loading range. The 1D momentum theory Betz point of ܥ௉_ௗ௜௦௞ = 16 27⁄ ≈ 0.593 at ்ܥ_ௗ௜௦௞ = 8 9⁄   

is well confirmed by the panel code and RANS CFD. At lower disk loading the three methods  

match very well, and at disk loadings higher than the Betz point both simulation methods slightly  

over-predict compared to the analytical 1D momentum theory curve. At high disk loadings when the 

far wake velocity approaches zero and an unsteady turbulent wake is developed, turbulent mixing 

between the wake and the surrounding flow will increase. The mixing process will tend to energize the 
wake and slightly increase the potential for power take-out. The RANS CFD HAWT maximum ܥ௉_ௗ௜௦௞ 

on Figure 2 is 0.604. If the κ-ε turbulence model is abandoned and no turbulence model applied, the 
simulation of the HAWT would yield a maximum ܥ௉_ௗ௜௦௞ of 0.582. The reduction from 0.604 to 0.582 

can be attributed to the lack of turbulent mixing. 

Figure 2. (a) ்ܥ_ௗ௜௦௞ vs. ܥ௉_ௗ௜௦௞ for regular HAWT; (b) ்ܥ_ௗ௜௦௞ vs. ܥ௉_ௗ௜௦௞ for Hansen DAWT. 

 
(a) (b) 
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3.2. Test Case: Hansen DAWT 

An axisymmetric cross section of the Hansen DAWT is depicted on Figure 3 with the streamlines 

propagating across and outside the rotor disk from left to right. The right plot on Figure 2 shows the 
power efficiency ܥ௉_ௗ௜௦௞ for the Hansen DAWT across the ்ܥ_ௗ௜௦௞ loading range computed by different 

methods. The dotted and dash-dot 1D momentum theory lines are calculated using the derived DAWT 

momentum theory. The unloaded average flow-augmentation factor used for calculating the dash-dot 

line is computed by the RANS CFD: ݑതௗ଴ = 1.85, leading to a value for the shroud coefficient ܥௌ of 

0.85 according to Equation (17). The similar unloaded average flow-augmentation factor computed by 

the panel code is 2.13, with a corresponding shroud coefficient ܥௌ of 1.13. This augmentation factor is 

then used to calculate the dotted line. The RANS CFD computed flow-augmentation agrees well with 

the value 1.83 reported by Hansen [20]. The duct suction-side flow is non-separated, but with a thick 

turbulent boundary-layer developing between 75% and 100% chord position, which is part of the 

explanation for the ݑതௗ଴ discrepancy between the RANS CFD and the panel code. However, the main 

cause of the discrepancy is believed to be the constant circulation assumption used in panel methods in 

conjunction with the Kutta condition. It is known that the modeling precision of panel methods—despite 

their usefulness—is inferior to Navier-Stokes CFD even in the absence of viscous effects. 

Figure 3. Cross-section (x-r plane) of the Hansen DAWT. Black lines: Streamlines. 

Lighter colored lines: iso-pressure lines. Note pressure drop across the actuator disk. 

 

Still contemplating Figure 2 right plot, the RANS CFD results agree well with the Hansen 
reference. The increased discrepancy at high ்ܥ_ௗ௜௦௞  values, where our maximum ܥ௉_ௗ௜௦௞  is 0.91 

compared to Hansen’s 0.93, could be due to different turbulence models. The most striking result is the 

initial agreement between the analytically obtained momentum theory curves and the corresponding 
computational method at ்ܥ_ௗ௜௦௞ values below 0.25, and the onset of apparent 2nd order effects (which 

were disregarded in the DAWT momentum theory due to the 1st order truncation of Equation (7b)). The 
lack of higher-order effects lead to a momentum theory over-prediction of ܥ௉_ௗ௜௦௞_௢௣௧௜ by 21% and 43% 
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respectively compared to the RANS CFD and the panel method. Furthermore the seemingly universal 

optimal thrust loading of 8/9 seems to be valid only within 1st order accuracy of Equation (7b), since 

both sets of RANS CFD results indicate a power-optimal thrust loading in the range of 0.75–0.80. 
The right plot of Figure 4 shows ்ܥ_ௗ௨௖௧  across the loading range for the Hansen DAWT. 

According to the 1D momentum theory for DAWTs, ்ܥ_ௗ௜௦௞ and ்ܥ_ௗ௨௖௧ are proportional by the factor ܥ௦, see Equations (20) and (21). Viscosity impacts from drag and slight stall obscures the RANS CFD 
comparison with the analytical curve below ்ܥ_ௗ௜௦௞  values of 0.3. However for the panel code 

comparison with 1D momentum theory, higher-order effects kick in at ்ܥ_ௗ௜௦௞ values even below 0.2, 

and both RANS CFD and the panel code indicate that the duct loading will actually decrease for disk 

loadings beyond the power-optimal level. These results further imply that 1D momentum theory for 

DAWTs is indeed quite approximate. 

Figure 4. (a) ்ܥ_ௗ௜௦௞ vs. ܥ௉_ௗ௜௦௞ and ்ܥ_ௗ௨௖௧ for circular cylinder DAWT (r R⁄ = 0.15 and ݑௗ଴_௠௔௫ = 6.0 ); (b) ்ܥ_ௗ௜௦௞  vs. ்ܥ_ௗ௨௖௧  for Hansen DAWT. The two plots serve the 

purpose of quantifying the validity of the momentum theory 1st order approximation 
around the unloaded condition at ்ܥ_ௗ௜௦௞ = 0  and the approximation’s impact up to  

power-optimal loading and beyond. 

 
(a) (b) 

The rather narrow low-loading validity range of the 1st order approximation for the shroud force, 

i.e., the linear relation between ܨ௦ and ∆݌ௗ in Equation (8) is now quantified for the Hansen DAWT 

test case. It will be further quantified in the circular cylinder test case. 

In Figure 5 we address the 2nd assumption made in the derivation of the DAWT momentum theory. 

We assumed that constant disk loading from the axisymmetric centerline to the disk tip was  

power-optimal. To this end we superimpose a linear load variation to the constant load. e.g.,  

“Δ݌ௗ ramp-up 10%” in the figure legend means that the pressure difference across the disk is 10% 

higher at the tip than at the root (centreline) and so forth. Different ramp-up and ramp-down 
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combinations are made with each of the panel code and RANS CFD methods. Note that in the case of 
non-uniform disk loading, ்ܥ_ௗ௜௦௞ is calculated as the area-weighted average over the disk. Observing 

the figure, the impact from non-uniform loading on ܥ௉_ௗ௜௦௞  is seen to be negligible, although both 
methods show a small increase of ܥ௉_ௗ௜௦௞_௢௣௧௜ when Δ݌ௗ is ramped-down 10%. The increase is 1.4% 

and 0.1% respectively for the panel code and RANS CFD method. For the more accurate RANS CFD 

method it was found to be a local optimum, as 20% ramp-down lead to a slightly lower value of ܥ௉_ௗ௜௦௞_௢௣௧௜. 
Figure 5. ்ܥ_ௗ௜௦௞ vs. ܥ௉_ௗ௜௦௞  for non-uniform loading. (a) Panel code results; (b) RANS 

CFD results. 

 
(a) (b) 

3.3. Test Case: Circular Cylinder (Donut) DAWT 

The HAWT and Hansen DAWT test cases have validated the RANS CFD code, which gives results 

in close agreement with HAWT momentum theory and reference DAWT results [20]. The panel code 

also reproduces the HAWT momentum theory results, thereby validating the free-wake vortex-filament 

method. However, the colocation of constant bound vorticity over the duct panels in combination with 
the Kutta-condition as devised by Lewis [9] apparently leads to a slight under-estimation of ܥ௉_ௗ௜௦௞_௢௣௧௜ 
compared to RANS CFD, and a not-so-slight under-estimation of the optimal thrust coefficient, ்ܥ_ௗ௜௦௞_௢௣௧௜ . Still, the panel code is useful, especially when we deliberately want to exclude the 

detrimental impact from surface-stall from the investigation, at least temporarily. 
As already noted, higher-order effects lead to an error in the prediction of ܥ௉_ௗ௜௦௞_௢௣௧௜ using the 1st 

order accurate DAWT momentum theory of about 20% when using RANS CFD for the calculation of ݑതௗ଴. Despite the error level, there is little doubt that the DAWT potential for power take-out scales 

predominantly linearly with the flow augmentation capability of the diffuser. In turn, the flow 

augmentation capability is proportional to the diffuser bound circulation, which scales with the duct 
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airfoil lift capacity. Therefore, in the quest for a highly efficient DAWT, we should recognize that the 

duct airfoil—or airfoils—should represent a high-lift application. 

Turning our attention towards 2D airfoils, high-lift configurations are known e.g., from the aircraft 

industry, where airfoils are equipped with a leading edge slat and a series of trailing edge flaps that can 

be extracted during take-off and landing. The geometry of these high-lift multi-element configurations 

represents an engineering design compromise. In other words: Higher lift-coefficients may be possible, 

but probably not feasible for an airliner. Smith [25] identified the circular cylinder (with circulation) as 

the airfoil geometry with the highest possible lift coefficient, ܥ௅: ܥ௅_௖௜௥௖௟௘ = ߨ4 sin θ (28)

where θ is the angle between the zero-lift symmetry line and the radial line intersecting the separation 

(or stagnation) point. For a plate or thin airfoil, potential flow theory dictates: ܥ௅_௣௟௔௧௘ = θ (29)ߨ2

where θ is the chord angle with the free-stream velocity vector. The lift coefficient in Equations (28) 

and (29) is related to the chord length. If we choose to define the lift force on the airfoil relative to  

the frontal area perpendicular to the free-stream direction, Equation (28) remains the same whereas 

Equation (29) changes. Subscript “FA” indicates that ܥ௅ is based on the frontal area. ܥ௅_௣௟௔௧௘_ி஺ = θߨ2 sin θ⁄  (30)θ, the trailing edge angle deviation from the zero-lift line, ranges between 0 and ±ߨ 2⁄ . As θ 

increases from 0 to ߨ 2⁄  the stagnation point and the (trailing edge) separation point will gradually 

approach each other on the pressure side until they coincide for ߨ 2⁄ , and in this sense represent a 

theoretical maximum for the lift coefficient. 

In the right plot of Figure 6 it is seen that the circle has higher maximum lift capacity than the flat 

plate, peaking at 4ߨ and ߨଶ respectively. Note that based on frontal area the plate offers higher ܥ௅ 

values than the circle up to approximately 30 degrees. This means that the circle should be favoured 

over the flat airfoil only in cases where we believe that stall can be avoided up to very high angles. 

The circular marker at 23.3 degrees is a 2D viscous incompressible RANS CFD computation as 

visualized in Figure 7. The obtained ܥ௅ is 4.73 based on the circle diameter and 4.02 based on the 

longest projected distance from leading slat to circle circumference on the opposite side. The multiple 

slats serve as guide vanes that prevent flow separation and stall on the suction side. Re number is 3.0 × 10଺ based on the circle diameter. Note the agreement with potential flow theory. Although the 

circular cylinder peak ܥ௅ of 4ߨ is unobtainable even with guide vanes, the result confirms the high-lift 

capacity of a circular cylinder. According to [25], the maximum lift coefficients passively obtained, 

based on the longest projected distance of the airfoil configuration, are roughly 3. Our value of 4.02 

might be a record, although no vigorous attempt has been made by the authors to verify this claim. The ܥ௅ ⁄஽ܥ  ratio is around 20, which is unacceptably low for any aerospace application, but for a wind 

turbine the viscous diffuser drag is dwarfed anyway by the thrust force created by the pressure drop 

across the rotor disk, and therefore not critical. Summarizing, we conclude that the circular cylinder is 

an interesting candidate as a high-lift airfoil suitable for a high-efficiency DAWT. 
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Figure 6. (a) Potential flow past a circular cylinder with circulation; (b) Lift coefficients 

for varying θ for the circular cylinder and the flat plate according to Equations (28)–(30). 

 
(a) (b) 

Figure 7. Visualization of RANS CFD computation of flow past circular cylinder with 

guide vanes. Black lines: Streamlines; Lighter colored lines: iso-pressure lines. 

 

Consider again the circular cylinder but now as an axisymmetric (donut) DAWT instead of a 2D 

cylindrical section. θ்ா  marks the position of the potential flow separation point on the circle’s 

circumference measured from the horizontal line aligned with the free-stream as shown in Figure 6a. 

In the axisymmetric panel code, the location of θ்ா is easily controlled through the Kutta condition. 

Though guide vanes or similar are needed in a physical sense for obtaining the needed circulation and 

matching of the desired separation point, we simply impose θ்ா  in the panel code.  

Let ݎ be the radius of the circular donut DAWT cross-section and ܴ be the radius of the actuator  
disk inside the donut diffuser. A 2-dimensional parameter-study is made, where ݎ ܴ⁄  and ݑௗ଴_௠௔௫ are 

varied systematically. ݑௗ଴_௠௔௫  is the maximal local flow augmentation factor on the inner surface  
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of the diffuser at the actuator disk location at zero power take-out, i.e., ܷௗ଴_௠௔௫ ܷஶ⁄ . For each  

value-combination of ݎ ܴ⁄  and ݑௗ଴_௠௔௫ four quantities are calculated and listed in Table 2: 

Table 2. ܥ௉_ௗ௜௦௞_௢௣௧௜ and ܥ௉_௘௫௜௧_௢௣௧௜ predictions based on ݑതௗ଴	and momentum theory. 

 ૙ࢊഥ࢛

࢘ ⁄ࡾ  
 ࢞ࢇ࢓_૙ࢊ࢛

 ࡱࢀࣂ

࢘ ⁄ࡾ  
 ࢞ࢇ࢓_૙ࢊ࢛

2.0 3.0 4.0 5.0 6.0 2.0 3.0 4.0 5.0 6.0 

0.025 1.04 1.22 1.39 N.A. N.A. 0.025 −0.7 24.3 52.3 N.A. N.A. 

0.05 1.08 1.35 1.61 1.88 N.A. 0.05 −1.4 20.6 42.9 75.4 N.A. 

0.10 1.15 1.54 1.92 2.31 2.69 0.10 −2.5 16.0 32.9 50.5 75.1 

0.15 1.21 1.68 2.14 2.61 3.07 0.15 −3.5 12.9 27.0 40.4 54.4 

0.2 1.26 1.78 2.31 2.84 3.36 0.2 −4.5 10.4 22.7 33.9 44.9 

0.3 1.34 1.95 2.56 3.17 3.77 0.3 −6.3 6.5 16.7 25.6 33.6 

0.4 1.41 2.07 2.74 3.41 4.07 0.4 −7.8 3.5 12.4 20.0 26.7 

0.5 1.47 2.17 2.88 3.58 4.29 0.5 −9.2 1.1 9.1 15.8 21.7 

 ࢏࢚࢖࢕_࢑࢙࢏ࢊ_ࡼ࡯
࢘ ⁄ࡾ  

 ࢞ࢇ࢓_૙ࢊ࢛

 ࢏࢚࢖࢕_࢚࢏࢞ࢋ_ࡼ࡯
࢘ ⁄ࡾ  

 ࢞ࢇ࢓_૙ࢊ࢛

2.0 3.0 4.0 5.0 6.0 2.0 3.0 4.0 5.0 6.0 

0.025 0.62 0.72 0.82 N.A. N.A. 0.025 0.53 0.63 0.71 N.A. N.A. 

0.05 0.64 0.80 0.95 1.11 N.A. 0.05 0.51 0.63 0.75 1.01 N.A. 

0.10 0.68 0.91 1.14 1.37 1.59 0.10 0.45 0.61 0.76 0.91 1.06 

0.15 0.72 1.00 1.27 1.55 1.82 0.15 0.41 0.57 0.72 0.88 1.04 

0.2 0.75 1.05 1.37 1.68 1.99 0.2 0.37 0.52 0.67 0.83 0.98 

0.3 0.79 1.16 1.52 1.88 2.23 0.3 0.30 0.44 0.57 0.71 0.85 

0.4 0.84 1.23 1.62 2.02 2.41 0.4 0.25 0.37 0.49 0.61 0.72 

0.5 0.87 1.29 1.71 2.12 2.54 0.5 0.21 0.31 0.42 0.52 0.62 

തௗ଴ݑ • : The disk-average flow augmentation factor at zero power take-out. Calculated by the  

panel code. 

• θ்ா : The angular position in degrees of the flow separation point on the diffuser circle’s 

circumference, as sketched on Figure 6a. Calculated by the panel code. 
௉_ௗ௜௦௞_௢௣௧௜ܥ • : The optimal power efficiency, based on disk area, calculated by 1D DAWT 

momentum theory using Equations (17) and (25). ݑതௗ଴ provided by the panel code. 
 .௉_௘௫௜௧_௢௣௧௜: The optimal power efficiency, now based on diffuser frontal area (a.k.a. exit area)ܥ •

The clearance between disk and diffuser is 2.5% of the disk radius ܴ. 

In Table 2 focus is directed towards the ܥ௉_௘௫௜௧_௢௣௧௜  results in the lower right section. Specifically,  

we observe that ܥ௉_௘௫௜௧_௢௣௧௜ exceeds Betz number of 0.593 for many combinations of ݎ ܴ⁄  and ݑௗ଴_௠௔௫.  

In line with intuition it is seen that higher flow augmentation at the diffuser throat location (i.e., higher ݑௗ଴_௠௔௫ ) leads to higher ܥ௉ prediction according to the 1D DAWT momentum theory. In reality, when 

viscous effects and stall are included, an important limiting factor is the obtainable TE slip angle, ்ߠா.  
For each value of ݑௗ଴_௠௔௫ the most energy-efficient diffuser size ݎ ܴ⁄  combination is greyed out in the 

lower right section in the cases where Betz number is exceeded. With increasing flow augmentation, ܥ௉_௘௫௜௧_௢௣௧௜ increases from 0.63 to 1.06 and the corresponding slip angle ்ߠா increases from 20.6° to 75.1°. 

This indicates, not surprisingly, that the challenge of overcoming the issue of flow separation and stall in 

real physics will increase with increasing flow augmentation. Note that non-physical combinations where 
the specified local flow augmentation ݑௗ଴_௠௔௫ cannot be obtained are marked N.A. Concerning the relative 
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diffuser size, a ratio ݎ ܴ⁄  of around 0.10 seems optimal for obtaining a high ܥ௉_௘௫௜௧_௢௣௧௜. If focus is on 

maximizing ܥ௉_ௗ௜௦௞_௢௣௧௜ higher values of ݎ ܴ⁄  should be used. 

The previous Hansen DAWT test case showed us that 1D DAWT momentum theory, being only 1st 

order accurate in the vicinity of the unloaded state, seems to over-predict the obtainable ܥ௉ . The 

following circular cylinder (donut) DAWT configuration from Table 2 is therefore simulated under 

loaded conditions with the panel code: 

ݎ • ܴ⁄ = 0.15 

ௗ଴_௠௔௫ݑ • = 6.0 

The results are shown in Figure 4a. Again, higher-order effects not accounted for in the DAWT 
momentum theory leads to a lower ܥ௉_ௗ௜௦௞_௢௣௧௜  value of 1.22 compared to 1.82 computed by 1D 

momentum theory, which is a 49% over-prediction. The tendencies observed in the analysis of the 

Hansen DAWT in the comparison of momentum theory and panel code results are largely repeated in 

the case of the circular cylinder (donut) DAWT. But the important result from Table 2 with these panel 
code simulations still remains: ܥ௉_௘௫௜௧_௢௣௧௜ can obtain values exceeding the Betz number: The panel 

code ܥ௉_ௗ௜௦௞_௢௣௧௜ of 1.22 from Figure 4 corresponds to a value for ܥ௉_௘௫௜௧_௢௣௧௜ of 0.70. Be aware that 

the phrase “exceeding Betz” might be misleading, since Betz’ limit cannot be exceeded by the class of 

turbines for which the Betz’ limit applies, i.e., bare HAWTs. We simply investigate the findings by 

van Bussel [17] that no DAWT has yet outperformed the bare HAWT in terms of energy efficiency 

based on diffuser exit area (or frontal area in case of the donut DAWT, whichever is greater). The open 

question is, if DAWTs have not yet outperformed the bare HAWT because of a physical barrier, or if 

the DAWT designs simply have not yet reached their full potential for energy efficiency. Although 

inconclusive because of the potential flow simplification, the circular cylinder (donut) DAWT results 

seem to support the latter possibility. 

4. DAWT Power Benchmarking  

The next three test case diffusers serve the purpose of benchmarking against the bare HAWT as 

well as the new multi-element DAWT. In line with our conclusion from the previous test case, that 

flow augmentation should be maximized and that this will challenge the ability to maintain the flow 

attached on the diffuser suction side, some of these diffusers have boundary layer flow control. Others 

have high-lift devices such as the gurney flap (called “flange” in the diffuser case). Such a flange not 

only enhances lift, but will also create separation at the inner edge, thereby promoting turbulent mixing 

which to some extent will energize the low-energy wake behind the actuator disk. As to the authors’ 

knowledge these three diffusers represent current DAWT state-of-the-art. 

4.1. Test Case: Vortec Original Multi-Slotted DAWT  

The plot on p.173 in [15] for available power augmentation based on disk area peaks at  ݊஻௘௧௭_ௗ௜௦௞ = 2.40 . The exit-to-disk area ratio is 3.0, thus yielding a reported value for  ݊஻௘௧௭_௘௫௜௧ = 0.80. This agrees fairly well with our RANS CFD obtained value of 0.75, see right plot of 

Figure 10 and Table 3. The diffuser geometry is given on Figure 8, top-left. The flow solution at  

the power-optimal disk loading is shown on Figure 9 left. Despite the five passively powered  
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boundary-layer flow-injection slots, the flow separates in close vicinity of the suction side diffuser wall 

causing a loss of lift. Relative to the exit-area this DAWT is less efficient than the much simpler 

Hansen DAWT. 

Table 3. Power-optimal RANS-CFD performance result summary. 

Turbine ࢚࢏࢞ࢋ_ࢠ࢚ࢋ࡮࢔ ࢚࢏࢞ࢋ_ࢠ࢚ࢋ࡮࢔ ࢚࢏࢞ࢋ_ࡼ࡯ ࢑࢙࢏ࢊ_ࡼ࡯ ࢚ࢉ࢛ࢊ_ࢀ࡯ ࢑࢙࢏ࢊ_ࢀ࡯  
(Refs.) 

Regular HAWT 0.89 0.00 0.60 0.60 1.02 1.00 
Hansen DAWT [20] 0.77 0.47 0.91 0.49 0.83 0.86 [20] 

Vortec orig. multi-slotted DAWT [15] 1.04 2.03 1.34 0.45 0.75 0.80 [15] 
Vortec Mo multi-slotted DAWT [15] 1.04 1.57 1.29 0.58 0.98 1.00 [15] 

Ohya Cii flanged DAWT [24] 1.08 1.36 1.09 0.53 0.89 1.07 [24] 
New multi-element DAWT 0.95 1.85 1.64 0.88 1.49 - 

Figure 8. Outline of the 4 high-efficiency diffusers, scaled to fit the same size rotor disk. 

 

Figure 9. (a) Vortec original multi-slotted DAWT; (b) Vortec Mo multi-slotted DAWT. 

Power-optimal loading configurations are shown. 

(a) (b) 
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4.2. Test Case: Vortec Mo Multi-Slotted DAWT 

The plot on p. 255 in [15] only shows shaft power augmentation based on disk area. Contrary to 

Vortec’s original multi-slotted DAWT available power augmentation is not reported. The plot shows  

a peak reduction in shaft power augmentation of 7% for the Vortec’s Mo DAWT compared to  

their original DAWT. Assuming constant rotor efficiency for the two DAWTs, the assumed available 
power augmentation based on disk area becomes ݊஻௘௧௭_ௗ௜௦௞ = 2.23. The exit-to-disk area ratio for  

the Mo multi-slotted DAWT is 2.23, thus yielding a reported value for ݊஻௘௧௭_௘௫௜௧ = 1.00. This agrees 

very well with our RANS CFD obtained value of 0.98, see right plot of Figure 10 and Table 3. The 

diffuser geometry is given on Figure 8, top-right. The flow solution at the power-optimal disk loading 

is shown on Figure 9 right. Compared to the original multi-slotted DAWT the aft part of the diffuser 

has been truncated and a flange attached to the diffuser trailing edge. The result is a very similar 

turning of the flow, but with less structure and frontal area. Relative to exit area this is the most  

power-efficient DAWT yet analyzed, but still not better than the bare HAWT (Table 3). 

Figure 10. (a) Ct vs. Cp for benchmark DAWTs and new DAWT; (b) Ct vs. nBetz (based 

on projected diffuser area) for benchmark DAWTs and our new DAWT. 

 
(a) (b) 

4.3. Test Case: Ohya Cii Flanged DAWT  

Peak shaft power coefficient based on exit area for the Cii type diffuser was measured 

experimentally to 0.54 in [24]. Assuming a rotor efficiency of 85% leads to an estimated available 
power coefficient based on exit area of ݊஻௘௧௭_௘௫௜௧ = 1.07. Our RANS CFD calculation of the same 

turbine predicts a somewhat lower value of 0.89. The diffuser geometry is given on Figure 8,  

bottom-left. The flow solution at the power-optimal disk loading is shown on Figure 11a. Compared to 

the Mo multi-slotted DAWT this flanged DAWT is similar but lacks the boundary-layer control 
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provided by the suction slots. This should have a detrimental impact on area-specific power  

(as predicted by the RANS CFD), but since the flow behind the broad Cii-flange will cause large-scale 

turbulence, it is possible that large turbulent eddies will enhance mixing by causing wake-meandering 

which by nature cannot be captured by our 2D axisymmetric RANS CFD code. 

Figure 11. (a) Ohya Cii flanged DAWT; (b) New multi-element DAWT. Power-optimal 

loading configurations are shown. 

(a) (b) 

4.4. Test Case: New Multi-Element DAWT 

The last test case is our new multi-element DAWT. The RANS CFD calculation predicts a record 
exit-area-specific power-efficiency of ݊஻௘௧௭_௘௫௜௧ = 1.49. The diffuser geometry is given on Figure 8, 

bottom-right (patent pending, March 2014). The flow solution at the power-optimal disk loading is 

shown on Figure 11 right. The cross-section consists of three layers of multi-slotted guide vanes. Each 

guide vane is a variant of the Göttingen Goe417a airfoil, see e.g., [26], which was designed as a  

high-lift airfoil for low Re numbers of roughly 100,000 based on chord length. Furthermore it has the 

virtue of being one-sided which offers a structural advantage, at least when considering small diffuser 

structures. Similar designs with traditional airfoils for higher Re numbers, like the NACA-63618, were 

also made, and they would show better performance at higher Re numbers as expected. Initial  

cross-sectional designs were inspired by the Figure 7 configuration. In plain words, we know that lift is 

created as the flow turns, and scrutinizing the streamlines of Figure 7, it is seen that despite the  

high-lift capacity of that configuration, the flow on the pressure side actually turns “the wrong way”, 

thereby counter-acting optimal lift. Replacing the circle by auxiliary layers of multi-slotted vanes 

circumvented this deficiency, and boosted the power efficiency. If only the inner-most layer of vanes 

adjacent to the disk tip was kept, a slight power-drop was observed compared to the concept with one 

layer and a circle, e.g., as in Figure 7. During design iterations it became clear that multiple layers of 

vanes create a speedup amplification effect from the outermost layer to the next layer and so forth. The 

gradual increase in flow-velocity over the guide vane layers is seen on Figure 11 right, as well as the 

configuration’s ability to turn the flow and maintain it attached. 



Energies 2014, 7 3277 

 

 

None of the test cases include nacelle center-bodies. If the diffuser has high-lift capability, the 

center-body must have likewise; otherwise surface flow separation might occur. In the case of the new 

multi-element DAWT, a multi-slotted center-body is advised, see Figure 12. 

Figure 12. Cross-section (x-r plane) of the new DAWT. Black lines: Streamlines;  

Colored lines: iso-pressure lines. A nacelle center-body and an axisymmetric tail-section 

for passive yaw stability have been added to the design. The center-body causes a few 
percent performance losses, but the tail-section compensates for it. ݊஻௘௧௭_௘௫௜௧ = 1.50 for  

this configuration. 

 

The new multi-element DAWT flow showed in the left plot of Figure 11 also shows that suction 

surface stall has been effectively suppressed by the multi-slotting, and is therefore not a power-limiting 

factor. Instead, the boundary layers over the vanes propagate downstream of the trailing edges and 

form streaks of diffuser element wakes. If the wake velocity deficit and/or the pressure recovery in 

these wakes are sufficiently high, then wake flow reversal will occur during the wake expansion  

(i.e., the pressure recovery) and cause a different type of stall out of contact with any wall. Smith [25] 

described the phenomenon known from multi-element airfoil design for aircrafts, and named it  

“off-the-surface pressure recovery”. In Table 4 it is named “diffuser wake stall” as opposed to the 

normally occurring “diffuser surface stall”. Recognizing this stall mechanism for the new multi-element 

diffuser motivates us to categorize the lift-driven horizontal-axis turbines according to which types of 

stall impose an upper limit for energy extraction. The overview is presented in Table 4. 
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Table 4. Categorization of lift-driven horizontal-axis turbines, and the types of stall (or 

blockage), which impose an upper limit for energy extraction. 

Turbine 
Rotor surface  

stall 
Rotor wake 

stall/blockage 
Diffuser surface 

stall 
Diffuser wake 

stall 
HAWT No Yes (Betz) - - 

Regular DAWT No Yes Yes No 
New multi-element DAWT No Yes No Yes 

5. Discussion 

It should be emphasized that the power taken out of the flow by the actuator disk for all three 

methods (1D momentum theory, panel code, and RANS CFD) is the so-called “available power”, 

which for the bare HAWT peaks at the Betz number of 16/27. Since power is converted through the 

operation of a spinning rotor with a discrete number of wind turbine blades, the available power 

represents an ideal optimum. Aerodynamic loss has the following sources: (1) Cross-sectional viscous 

and pressure drag along the span of the blade; (2) induced drag from the blade-tip trailing vorticity;  

(3) induced drag from the blade-root trailing vorticity; and (4) reduced power potential due to axial 

wake swirl created by the rotor. These losses typically reduce the available power by approximately 

15%. The remaining mechanical power that enters the drivetrain is termed “shaft power”. It is relevant 

to contemplate whether the obtainable rotor efficiency, defined as the ratio between shaft and available 

power, is different between HAWTs and DAWTs. 

(1) Cross-sectional viscous and pressure drag along the span of the blade. The 2D lift and drag 

polar characteristics of the cross-sectional airfoils along the blade is unaffected by the presence 

of a diffuser. 

(2) Induced drag from the blade-tip trailing vorticity. The helical vortex emanating from the 

rotating blade tip is created by the downwash fluid motion from the pressure side to the suction 

side at the very tip. This downwash will in theory vanish when the tip is non-tapered such that 

the bound vorticity remains constant, and the tip is truncated arbitrarily close to the inside 

diffuser wall eliminating tip clearance and downwash. In reality, a certain tip clearance is 

necessary, but a certain reduction in induced drag should be anticipated, leading to reduced  

tip-loss for the DAWT compared to the HAWT. 

(3) Induced drag from the blade-root trailing vorticity. At least qualitatively, the flow 

augmentation created by the diffuser does not impact the shedding of helical root vortices. It is 

unclear if the pressure recovery of the vortex cores as they propagate downstream will 

accentuate the risk of inner wake recirculation, see next point. If so, the design of the blade root 

for DAWTs should aim at avoiding the operational shedding of concentrated root vortices. 

(4) Reduced power potential due to axial wake swirl created by the rotor. When the HAWT and  

the DAWT operate at comparable tip speed ratios, the wake losses that affect the inner part of 

the rotor where the swirl is highest should be quite similar. However, it is known from regular 

diffuser theory that axisymmetric expansion of an axial flow with swirl might be subject to 

inner core flow recirculation when propagating through the diffuser [27]. This rotor stall 

mechanism represents a possible pitfall in our analysis, since all methods employed in this 
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work including the RANS CFD disregard swirl. Clausen established in [28] a semi-empirical 

rule for detecting inner core recirculation in regular diffusers based partly on experiments and 

partly on the theoretical results by Batchelor for steady axisymmetric flows with swirl in [27]. 

According to this rule, the square of the radial expansion ratio times the wake speed ratio must 

not exceed a value of 2. The wake speed ratio is the ratio between the diffuser throat flow 

tangential velocity at the containing wall radius and the axial velocity. Clausen’s rule assumes 

constant cross sectional axial velocity and solid body type inlet flow rotation. None of these 

assumptions are fulfilled for a DAWT, so even though the criterion as such is easily fulfilled, 

this should be regarded as indicative only. To properly unveil the risk of swirl induced inner 

wake stall, full 3D actuator disk RANS CFD simulations with both axial and tangential forcing 

applied by the disk must be studied for a specific diffuser and rotor design. This is proposed as 

a further extending study to the present work. 

6. Conclusions and Perspectives  

The validity range of 1D momentum theory for DAWTs has been investigated, as well as the power 

performance limits, leading to a novel type of multi-element DAWT. 

Conclusions: 

- 1D momentum theory for DAWTs based on the unloaded flow augmentation ݑതௗ଴ over-predicts ܥ௉_ௗ௜௦௞_௢௣௧௜ by at least 20%. The duct loading agrees with the momentum theory predicted disk 

loading proportionality only up to disk loading coefficients, ்ܥ_ௗ௜௦௞, of around 0.25. 

- Therefore, DAWT design efforts should focus on loaded performance optimization instead of 

unloaded flow augmentation optimization. 

- Current DAWT designs have not yet reached their full potential for energy efficiency. 
  ௉_௘௫௜௧ of the new multi-element DAWTs exceeds the Betz number by 50%, when employingܥ -

a multi-layer duct-design with passive boundary-layer stall control. This is 50% higher than 

present state-of-the-art for any HAWT or DAWT. 

The new multi-element DAWT might pave the road for improved future utilization of small-scale 

renewable energy. 

Perspectives: 

- Financial value: The 50+ percent increased efficiency makes the DAWT technology become 

more Cost-of-Energy (CoE) attractive in two ways: 

○ It increases the CoE competitiveness of DAWTs for small-scale wind. 

○ The break-even size where HAWTs and DAWTs are equally competitive is pushed further 

up, possibly into the mid-scale wind utility range. 

- Non-financial value: Besides energy augmentation, the diffuser helps shield the aero-acoustic 

noise propagation, and provides visual encapsulation of the rotating rotor. These are important 

considerations for small-scale wind in urban and sub-urban areas. Design of a low tip-speed-ratio 

rotor for the new multi-element DAWT will lead to a very silent application. 
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