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Abstract: Nowadays, reducing the energy and fuel consumption of road vehicles is a key 

issue. Different strategies have been proposed. One of them is to promote Eco-driving 

behaviour among drivers. Most Eco-driving tips take into account only the road stretch 

where the vehicle is located. However, larger improvements could be achieved if information 

from subsequent stretches is used. The main objective of this work is to develop a system to 

warn the driver in real time of the optimal speed that should be maintained on every road 

segment in order to optimize the energy used and the fuel consumed while observing a time 

schedule. The system takes into account the road vertical profile, the fixed and variable speed 

limits and the traffic information retrieved using V2V and V2I communications. The system 

has been tested on real road sections with satisfactory results in fuel savings. 

Keywords: fuel consumption; quasi-static simulation; minimization; dynamic programming 

(DP); energy reduction; congestion; vehicle communications 

 

1. Introduction 

The current trend towards increased mobility in the most advanced societies runs counter to the 

criteria for controlling the greenhouse effect, local pollution and the exploitation of fuel resources. 

Increases in mobility and population becoming motorized represent also an increase in the demand for 

primary energy, and if fossil energy is used, it will mean a major increase in local emissions (nitrogen 

oxides NOx, carbon monoxide CO, unburnt hydrocarbons HC and particles matter PM) and in the 
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corresponding greenhouse gases emissions, so fuel consumption is an important issue in present-day 

society and there is intensive research into this issue. Reduction of fossil fuel consumption contributes 

to decreasing transportation costs and exhaust gas contaminants. In vehicles, energy and fuel 

consumption minimization is a complex problem because the power-train has different topologies and it 

is made up of several devices with many specific design features. In addition to power-train, the vehicle 

aerodynamics, other resistances and the influence of road vertical profile on fuel consumption must also 

be considered. To perform the energy minimization, general optimization techniques can be studied to 

analyse their computational load, the kind of minimum obtained and their feasibility to produce a 

response that represents the vehicle’s behaviour. Furthermore, driver manoeuvres can directly affect 

energy requirements. For this reason, informing the driver about the optimal speed to travel on a given 

road could reduce the fuel mass required to finish the current trip. This speed profile can be used to either 

feed an automatic system or to give advice to the driver.  

2. Background 

Efforts to reduce fuel consumption in automobiles, such as redesigning the internal combustion 

engine, reducing the mass and aerodynamic and rolling resistances [1] and using other propulsion 

technologies [2–4] have all been made. Today, optimization is present in the redesign of vehicle control 

systems [5] and other automotive parts [6] in order to obtain lower fuel consumption rates. There are 

several techniques utilized to optimize automobile power-train systems, such as, genetic algorithms 

(GA) [7], Simulated Annealing SA [8], Sequential Quadratic Programming (SQP) [9] and Dynamic 

Programming (DP) [10–12]. Several management strategies have been implemented for power-train 

control. These methods try to reduce the required energy. For example, different approaches tried to 

optimize hybrid vehicles operation. According to [13], global optimization is used when the optimization 

process uses a Hamilton-Jacobi-Bellman approach, such as DP. The results provided by DP can be 

considered as a benchmark for optimization [14,15] because it finds the global minimum value. The 

methods based on Calculus of Variations obtain a local optimization result, for example, Pontryagin’s 

minimum principle. Other examples of optimization can be found in [16–19]. 

In addition, other strategies have also been implemented. One of them is called Eco-driving.  

Eco-Driving can be described as the driving style followed by vehicle drivers to save fuel. This way of 

driving is based mainly on advance warnings and prediction, so the optimal average speed is selected at 

every instant and aggressive accelerations and decelerations are avoided by using traffic information and 

the geometric characteristics of the road ahead [20]. Classical Eco-driving tips have been widely 

distributed by car manufacturing companies, and some on-board devices can even collect data to monitor 

and evaluate the driving style. Eco-driving provides fuel savings from 15% [21] up to  

25% [22]. In [23], the effect of driving style on fuel consumption and exhaust emissions is studied with 

the conclusion being reached that eco-driving can lead to 14% fuel savings but aggressive style increases 

consumption by 40%. Other authors present less positive figures, such as [24] with fuel savings of 3%–

4%. 

Eco-driving strategies can be learnt by drivers following certain rules. However, observance of those 

rules is quite subjective, because it is difficult to establish specific limits. Some tests have been carried out 

to determine the influence of average speed on fuel consumption and travel time. In [25], two different 
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roads were driven along using the same Eco-driving style. Three different average speeds were obtained. 

The travel duration time and fuel consumption were measured. The results show fuel reductions of around 

27.6%, 10.8% and 10.9% when the travel times were increased by 7.8%, 6.25% and 7.5% respectively. 

The proportion of fuel consumption savings and extra time were 3.52, 1.73 and 1.46. It can be observed 

from these results that fuel savings and extra time do not vary in the same way. They depend on factors 

such as travel distance, maximum allowed speed and the digital map of the road. 

There are devices that show the driver the necessary instantaneous speed to arrive just-in-time at the 

destination [26]. These devices follow a reference travel time but fuel consumption is not considered. 

The driving style classification in [27] proved that, sometimes, on a given road, the total travel emissions 

using a low speed are higher than the total emissions when a higher average speed is used. 

Other more complex systems can minimize fuel consumption without modifying the travel duration 

time [28]. In [24], fuel savings percentages of around 3%–4% are mentioned. In [29], experimental tests 

have demonstrated that a truck can reach a fuel reduction of 3.5% without modifying its travel duration 

time over a road distance of 120 km. 

In automatic train control systems, similar concepts have been applied for optimize energy. Different 

approaches have been used such as analytical solutions [30,31] and nonlinear programming [32,33]. One 

of the main limitations of Eco-driving rules is the fact that they are based on the road stretches that the 

driver sees or on their previous knowledge of the route, but a positioning on a digital map could enhance 

the possibilities of making the right decisions in advance [34]. A more accurate and complete knowledge 

of the road geometry and precise advice on what to do at every instant could improve fuel savings by 

modifying driving styles. To overcome this limitation, [35] propose an algorithm that obtains the speed 

profile that provides the minimum fuel consumption to drive along a given road including the time as an 

additional variable within the optimization process. The problem of that approach appears in the fact 

that modifications in the event of unexpected situations cannot be done in real time due to the high 

computational time. Therefore, a new algorithm, that calculates the speed profile and optimizes fuel 

consumption while respecting a time schedule, is defined in [36]. This solution is based on approximate 

action rules defined from a DP algorithm, but results show that significant differences with the optimal 

solution can appear. Finally, anticipating variable conditions would improve results significantly as 

previous works have shown. For example, [37] show simulations with the effect of providing the driver 

with real time information on traffic and road conditions using vehicle-to-vehicle (V2V) and vehicle-to-

infrastructure (V2I) communications. 

3. Main Objective and Research Method 

The main objective of this work is to develop a system to warn the driver in real time of the optimal 

speed that should be maintained on every road segment in order to optimize the energy used and the fuel 

consumed while observing a time schedule. The system takes into account: 

- Orography contained in a detailed digital map that includes the vertical profile with slope values 

- Speed limits, both fixed (signals contained in the digital map) and variable (because of weather 

conditions that can be transmitted to the vehicle in real time before the vehicle reaches that road 

section using V2V and V2I communications) 

- Information about traffic congestion that occurs periodically 
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- Deviations from the optimal profile because of unexpected congestion (that can also be 

transmitted using communications) and, in general, when the driver does not follow the system 

speed suggestions 

In this paper, given the initial hypothesis that there is a specific speed profile whose fuel consumption 

is the minimum necessary amount for reaching the destination within a previously established time, the 

solution proposed here is to create this speed profile by concatenating vehicle speed transitions as 

required. This chain-form solution is found by applying Dynamic Programming (DP) optimization. 

Taking account of the road vertical profile, allowed speed limits and timing relevance, DP chooses each 

constitutive part of the solution from a speed transitions set. Data for fuel consumption and duration time 

are associated with each speed transition. These associated data are obtained using an energy and fuel 

consumption model for longitudinal dynamic simulation. 

Figure 1 shows the whole process scheme. In the optimization process, a driving state of a vehicle is 

described using the current speed and the gear engaged, and speed transitions can bring the vehicle from 

one state to another. When the state changes have been established, a model for energy and fuel 

consumption calculation provides the spent fuel and elapsed time for each transition. The fuel 

consumption model takes into account the road slope in each state change. When a transition (also called 

“atomic case”) has been simulated, values for initial speed, initial gear, final speed, final gear, spent fuel, 

elapsed time and road slope are stored into a look-up table. From now on, this look-up table containing 

the whole set of simulated transitions and their associated data is called fuel consumption map. 

Then DP optimization technique is applied to find the optimal chain-form solution, i.e., the optimal 

speed profile. The optimal speed profile is created using an objective function to evaluate the speed 

transitions. The objective function considers spent fuel and elapsed time and contains weighting factors 

to assign different relevance to spent fuel and elapsed time. The optimal speed profile must satisfy the 

legal speed limits, with any speed transitions that exceed legal speed limits being excluded from the 

optimization process, and must consider the road vertical profile using the mathematical vehicle model. 

The weighting factor values are determined in order to meet a time schedule and to satisfy the destination 

arrival time. 

Because the computational time of the DP algorithm is quite high when considering long distances, 

we have proceeded to divide the trip into shorter sections that are chained by overlapping stretches that 

allow an optimal solution by linking one to the next. Then, the DP algorithm is executed at the beginning 

of each overlapping distance for that specific stretch instead of the whole trip. 

This strategy also allows the weighting factors to be modified if deviations between the optimal speed 

profile and the actual speed are found, in order to meet the schedule. This adjustment is made regardless 

of the vertical road profile and takes into account constant speeds between the road sections that have 

some type of restriction (fixed or variable limits, traffic congestion, etc.). A simplified DP algorithm is 

used for the whole trip, the factors that ensure reaching the destination on time are found, and are then 

applied to the next overlap in the complete DP algorithm. The simplified DP algorithm is based on the 

idea of only generating new alternatives when the speed limit changes for any reason, so the effect of 

the curve of dimensionality is not severe and execution time is reduced. Thus, during the trip, using V2V 

or V2I communications, the vehicle may receive information about any changes of speed limits or 

congestion in certain downstream road stretches, and optimal speed profile recalculation can be made in 
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real time, firstly without considering road slopes to obtain the weighting factors and, secondly 

considering that road vertical profile and every speed limit type. 

Figure 1. Scheme of the optimization process. 

 

4. Algorithm for Energy and Fuel Consumption Minimization 

The performance maps of the multiple power-train devices, the high nonlinear behaviour of these 

devices and their discontinuities are typical challenges presented in fuel consumption modelling. 

According to [38], these characteristics make the system hard to model without including 

simplifications. Ruled-based controllers, e.g., fuzzy controller, find non-global minimums and do not 

match detailed vehicle behaviour but they have an easy implementation [39]. DP warranties a global 

minimum. Also, it can handle nonlinear non-convex problems and it does not need to be tuned according 

to drive-train topology [19]. For these reasons, DP is chosen as the optimization strategy to obtain the 

speed profile that reaches the minimum fuel consumption. 
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4.1. Dynamic Programming (DP) 

DP is an optimization method that minimizes an objective function by evaluating all possible control 

sequences. Every state transition of the system involves a cost. The optimal control sequence is built by 

joining the specific state’s sequence that obtains the least total cost. The cost of each state transition is 

defined by an objective function. Although DP needs a long computational time, it finds the global 

minimum in an optimization process. 

Bellman’s Principle of Optimality [40,41] is the theoretical support for Dynamic Programming. This 

principle states that all the portions of an optimal trajectory are, by themselves, optimal trajectories [42]; 

i.e., for a given state, the optimal rule for the following transitions does not depend on the rule applied 

in the previous transitions. 

In [43], a typical optimization problem is solved by using DP. The requirement is to find the input 

sequence or optimal decision sequence that minimizes the following objective function: 
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where, x is the state variable; u is the decision variable; and k is the stage. 

This cost value depends on the initial time i, the initial state x(i) and the input variable u in the interval 

[i, N], but the cost does not depend on any previous states. For the trajectories that in instant i are in state 

x(i), the optimal cost depends only on the initial state x(i) and the initial time i: 
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Then, Bellman’s Principle of Optimality indicates that: 
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Additionally, x(i + 1) depends only on x(i) and u(i). Therefore, when we minimize with respect to 

u(i), the optimal cost in i will depend only on x(i) and i. So, using iterative application of Equation (3) 

and collecting the results from the final state back to the initial state (backward recursion), the optimal 

input sequence u can be found. The aforementioned problem can be solved using either backward or 

forward recursion. The results obtained by both methods should be the same. 

4.2. Optimization Data Set  

Our proposed approach for fuel consumption optimization is a chain-form solution generated by DP 

technique. The implemented DP algorithm concatenates speed transitions to form the optimal speed 

profile that minimizes fuel consumption. Speed transitions can describe changes on vehicle behaviour if 

the driving states are defined using the vehicle speed and the gear engaged. In this way, the speed 

transitions can represent acceleration, deceleration or a constant speed stage. The acceleration and 

deceleration curves of the vehicles can be defined in different ways [44,45]. For simplicity, constant 

acceleration, depending on the gear engaged, is considered for speed transitions of the vehicle, according 

to [39]. 

In the speed transitions, speed and distance are discretized. Speed discretization is performed 

according to the desired resolution of the optimal speed profile. The distance Dg indicates the speed 
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transition length. Dg can be made up of one or more minimum discrete steps of distance.  

In acceleration and deceleration cases, the gears have a different assigned distance Dg because high 

gears need a longer distance to change the car speed among discrete speed values than low ones. In the 

constant speed cases, the minimum discrete step for distance is assigned whichever gear is used in the 

speed transition because the speed does not change. 

The DP algorithm evaluates the speed transition to find the optimal speed profile, therefore the speed 

transition must be tagged with a quantitative feature. In this method, the speed transitions are tagged 

using their spent fuel and elapsed time. A fuel consumption model must be used to estimate these 

variables. The numerical data of initial speed, final speed, initial gear, final gear, simulated road slope, 

spent fuel and elapsed time for each speed transition are stored into a look-up table. This data set 

describing the associated features of an individual speed transition is called “atomic case”. Each atomic 

case is an entry for the look-up table. This look-up table feeds to the DP algorithm and contains the 

necessary data to perform the optimization process. 

In the DP algorithm, two sequences only can be compared if the following conditions are fulfilled: 

they have the same initial and final speed and the same initial and final gear, and they are limited by the 

same distance points. When two or more sequences of states are compared, only the sequence with the 

lowest cost is preserved. DP takes into account the road vertical profile and legal and safe speed limits 

contained in a digital map when it concatenates the necessary atomic cases to find the optimal speed 

profile. 

4.3. Fuel Consumption Model 

To generate the previous look-up table, a mathematical vehicle model is used. Depending on the 

dynamics and detail level of the simulated variables, the models can be classified into quasi-static models 

and dynamic models. Energy, consumption, performance and emissions studies can be simulated by means 

of quasi-static models [46–48]. A quasi-static fuel consumption modelling can follow either a forward-

looking or a backward-facing approach. The backward-facing approach assumes the vehicle exactly 

describes a speed profile to calculate the fuel consumption [49]. The forward-looking approach needs a 

driver model to follow the target duty cycle [50]. This driver model is usually implemented as a PID 

controller to generate acceleration and brake commands [51,52]. 

Quasi-static models have a shorter simulation time than dynamic models but their exactitude is lower. 

Simulation differences between these two kinds of models are smaller than 5% and the simulation time 

proportion is close to two orders of magnitude [53]. The quasi-static models include fuel consumption 

and power train efficiency as static maps by means of look-up tables [46,54]. 

Examples of quasi-static vehicle simulators are QSS-Toolbox [55,56] and ADVISOR [57,58].  

In contrast, PSAT [59], CARSIM [60,61] and V-ELPH [62] use dynamic models to perform  

their simulations.  

In this paper, a quasi-static vehicle model was chosen because it provides a low computational time 

and, according to [63], its accuracy varies approximately around 4% from fuel mass estimations based 

on dynamic methods. 

Our energy and fuel consumption model takes the mathematical methodology from QSS-Toolbox [55] 

but the implementation is different. QSS-Toolbox contains the equations necessary to perform a longitudinal 
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dynamics simulation [64] and calculates the fuel consumption for a determined duty cycle and provides fuel 

consumption, accelerations, car speed, aerodynamic forces, and other variables versus time. Contrary to 

QSS-Toolbox, our fuel consumption model accepts as input a speed cycle that varies in the distance domain. 

Fuel consumption expressed as a function of distance is a requirement because the optimization process takes 

into account the legal and safe speed constraints and these limits are defined in the space domain. The model 

implementation allows a flexible scheme to vary input parameters of the simulation such as initial speed, 

final speed, slope, gear and simulated distance. This flexibility is useful when spent fuel and elapsed time 

calculation is performed for each speed transition. 

Table 1 shows the main model parameters. Furthermore, the fuel consumption model contains global 

operational limits for vehicle operation, e.g., maximum engine torque and minimal speed according to 

the gear engaged. Other more specific limits can be adjusted such as the maximum engine speed and 

user-defined acceleration/deceleration ranges. Vehicle parameters can be configured,  

so atomic cases contained in the look-up table depend on the vehicle type and they are calculated once 

at the beginning of the algorithm execution. 

Table 1. Main vehicle model parameters. 

Vehicle Transmission Engine 

Mass Number of gears Fuel 
Rotating mass Gear ratios Engine displacement 
Frontal area Differential ratio Engine inertia 

Drag coefficient Gearbox efficiency Torque-speed curve 
Rolling friction coefficient - Engine speed at idle 

Wheel radius - Power required by auxiliaries 
- - Engine torque at fuel cutoff 

4.4. Objective Function 

According to DP theory, the sequences of transitions must be assessed using an objective function. 

Every speed transition has travel time and fuel consumption figures. Fuel mass and time can be used to 

compute the sequence assessment. This assessment could be defined as an operational cost such  

as [65] do. In [65], the operational costs are divided into monetary factors per fuel quantity and time 

units. A similar approach is made by [66,67] where the evaluation is realized by the arithmetic sum of 

the spent fuel and travel time. The travel time importance is modulated using weighting factors. 

Following this line, the chosen objective function (8) joins the fuel consumption and travel time into a 

single cost for every transition. Weighting factors are included in the expression to assign different 

relevance to the fuel consumption mass and the travel time: 

J = α (fuel consumption) + β (travel time) (4)

Weighting factors α and β are non-negative real values, excluding the case of both zeros and they are 

calculated during the vehicle trip as following sections explain. Fuel consumption is expressed in 

milligrams and the time in milliseconds. 
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4.5. Slope Influence over Atomic Cases Selections 

In our optimization approach, the optimal solution is a sequence of states (speed, gear) as a function 

of distance. Considering that state transitions have different costs depending on the road slope, so,  

in the look-up table, there are various entries with the same transition but different cost; each entry 

represents a different slope condition. 

When our algorithm finds a situation in which a state transition is carried out over a road section with 

several slope values, an average slope value is calculated to assign the cost for this state transition. When 

the algorithm finds that one of the slope values of a multi-slope road section cannot be run using a gear 

number, the algorithm chooses another sequence with a different gear number to be used for that 

determined slope value. This is the typical scenario in which a driver must shift to a lower gear when the 

current gear number is not able to raise the speed during a road section with positive slope. 

4.6. Overlap of DP Solutions of Road Stretches 

Depending on the variables considered in the dynamic programming and its discretization, the 

execution time of the algorithm can be very high. This is due to the exponential increase in the number 

of possible solutions created in each iteration. The basic optimization algorithm presented in [35]  

takes 49 seconds to find the speed profile of a trip of only 20 km, but this runtime increases linearly if a 

longer route is considered for fuel consumption optimization. Therefore, new ways must be found to 

achieve results that can be evaluated in real time or at least give the driver tips for optimal speed on each 

section with a low significant delay. 

In [66] simulations are performed of how long the road stretch taken into account should be in the 

dynamic programming strategy and indicated that fuel consumption savings tend to be constant with 

distances of over 2 km. 

Considering this fact, an evolution of the DP algorithm is presented, consisting in overlapping two 

partial speed profiles. If the length of these sections and the overlaps are long enough, it is found that 

the speed profile created by overlapping partial optimal speed profiles closely resembles the profile of 

the entire trip. Figure 2 explains the method used. 

With D being the length of the partial speed profiles and nD the total trip length, an optimal speed 

profile is calculated for the road stretch between 0 and 2D starting with the vehicle speed at the point of 

distance 0 and ending with a zero speed at the point of distance 2D. This profile is used as a solution for 

the stretch between 0 and D, setting the speed at point D as the initial speed for the following DP 

algorithm execution. From point D, the second partial speed profile is obtained in a new DP algorithm 

run that finishes at point 3D. In this case, a valid solution is taken between D and 2D, and so on. The 

union of all partial speed profiles calculated provides the approximate optimal speed profile for the whole 

trip. 

The final selection of D depends on two factors: (1) differences between approximate solution and 

optimal one should be small; (2) the overlapping distance should not be very long because optimal speed 

updates considering real driving conditions are performed every D stretches and those updates should 

be quite frequent. Tests have been made varying overlapping distances for a trip of 20 km, and the results 

are shown in Table 2. Therefore, we have chosen overlap stretches of 5 km, longer than the 2 km stretches 
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proposed in [66], because this value provides a short computational time and results accuracy is 

significantly improved. 

Figure 2. Overlap of the partial speed profiles. 

 

Table 2. Differences between the optimal speed profile and the approximate speed profile 

using overlaps. 

Overlap Distance (km) Fuel Consumption Difference (%) Travel Time Difference (%)

1 −3.73 8.27 
2 −0.50 0.40  
3 0 0.17 
4 0.04 −0.07 
5 0 0.01 

This process makes the DP algorithm be performed every D meters, so it is possible to adjust  

the weighting factors in each run to ensure that the destination is reached on time taking into account the 

deviations from the optimal speed profile and modifications in speed limits or the appearance of 

unforeseen traffic congestion situations. 

4.7. Weighting Factors Calculation 

Because the driver may voluntary cease to follow the optimal speed profile or a traffic jam may force 

him to do so, a new speed profile should be calculated to meet the desired travel time. The computing 

time of the new profile should be short enough for the user of the system not to perceive a prolonged 

interruption of information on the proper speed. 

The idea is to provide the algorithm with the necessary tools so that the maximum travel time is met 

after suffering the delay caused by the traffic jam. To accomplish this, the strategy used by the 

optimization system is based on the input of the average speeds of every road section, depending on the 

time of day. To recover the time lost during the trip, the average speed is modulated based on the 

remaining travel time. This speed modulation is accomplished by adjusting the weighting factor β of 

Equation (4) in each distance overlap. Specifically, the influence of α/β parameter on consumption and 

travel time is shown in [35]. It should be noted that there is an interval in which these parameters are 

influenced by the α/β ratio, but, out of this interval, the influence of this ratio is negligible. Thus, 

optimization at the beginning of each overlap distance is performed in two steps: 



Energies 2014, 7 3586 

 

 

1. DP algorithm for the entire remaining distance to the destination without considering the slopes 

and allowing only changes in the speed on those road sections where there is a speed limit change 

(fixed, variable or because of traffic). This algorithm looks for the concatenation of constant speed 

stretches that provide minimum fuel consumption but allows the vehicle to reach the destination 

on time. 

2. For the actual overlap stretch, the correspondence between the resulting speed of the previous 

step and a new value of β is found. This value is used in the DP algorithm for the stretch 

considering the vertical road profile. This second run of the DP algorithm provides the speed 

profile of which the driver is informed. 

It should be noted that the computational time of the first step is reduced because expansions of DP 

solutions are produced only on a limited number of road sections.  

4.8. Influence of Traffic Conditions 

There are systems like the one presented in [30] that take into account the speed limits and recommend 

the driver the speed in order to reach the destination on time. One characteristic that the proposed system 

includes is the recalculation process of the optimal speed profile considering the traffic conditions. Data 

from the traffic conditions are considered according to the following two situations: 

- Traffic jams that appear periodically, so they are well-known and predictable and can be 

considered as stretches with a variable speed limit. 

- Unforeseen traffic jams that are transmitted to the vehicle via V2V or V2I communications. 

In the second case, the traffic jam progression is not known a priori. For this reason, the system uses 

the Greenhields linear traffic model [68,69]. Hence, as Figure 3 shows, initial traffic conditions are 

denoted by point 1 (speed v1, density k1, intensity i1) and traffic perturbation forces to move to  

point 2 (v2, k2, i2). When the perturbation disappears, the traffic state point moves to the maximum 

intensity conditions 3 (v3, k3, i3) and then the initial conditions are recovered. 

Figure 3. Operation traffic states when a perturbation appears. 
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According to the traffic shock waves theory, the perturbation will propagate downstream at a speed 

of v2 and upstream at a speed of: 
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so traffic between both waves is characterized by condition 2. 

When the perturbation disappears, a new shock wave appears at the head of the traffic jam that 

propagates upstream at a speed of: 
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So traffic between the sections defined by the head of the jam and that wave will have the 

characteristics defined by state 3. 

Finally, when the second shock wave reaches the first one, the initial conditions 1 will be recovered 

by means of a new wave that moves downstream from the tail of the traffic jam at a speed of: 
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Hence, from the knowledge of the initial traffic conditions 1 and the properties of the perturbation 

(state 2), it is possible to evaluate the traffic jam evolution and obtain the maximum length L of the 

traffic jam and the time T that initial conditions take to be reset. 
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where Tp is the perturbation duration. 

5. Results on a Real Road Section 

The optimization algorithm was applied to a long distance trip of approximately 100 km on the route 

between Madrid and Barcelona (Spain) along the A2 highway. The road geometry was measured using 

an instrumented vehicle with an Astech G12 GPS receiver (Thales Navigation, Inc. Santa Clara, CA, 

USA) and an inertial measurement system comprising a Correvit L-CE- non-contact speed sensor (Corrsys-

Datron Sensorsysteme GmbH. Wetzlar, Germany) and an RMS FES 33 gyroscopic platform (RMS Dipl.-

Ing Schäfer GmbH & Co, KG. Hamburg, Germany) [70–73]. The slopes profile is shown in Figure 4. 

Additionally, fixed and variable speed limits have been identified (Table 3). The vehicle is a Ford Focus 

with a ZETEC 2 litre petrol engine (Ford Motor Company. Dearborn, MI, USA). 

It is considered that the trip begins at 12 h and the arrival time is expected at 13:15. The system 

defines the optimal speed profile (Figure 5) considering the speed limits and informs the driver. 

Comparing this speed profile with a constant speed one that provides the same travel time, except 

stretches with some kind of limit, fuel savings of 4.0% have been obtained, assuming that the 



Energies 2014, 7 3588 

 

 

acceleration and deceleration processes are similar in both cases. This fuel savings value is similar to 

that presented in [35], but a little bit lower because large trip distances with flat vertical profiles diminish 

the optimization effect. The system takes advantage of the knowledge of the variable speed limits in 

order to find the best strategy in which the effect of those kinds of limits is reduced, adapting the speed 

before and after them and fuel savings remains in significant values. In this sense, the system could 

recommend speeding up (as can be seen in Figure 6) or slowing down to reduce the amount of time the 

vehicle is involved in the traffic limit section when the limit is active. 

Figure 4. Road slopes profile. 

 

Figure 5. Optimal speed profile (only fixed and variable speed limits expected before the 

trip begins). 
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Table 3. Speed limits (below the generic road speed limit of 120 km/h). 

Stretch (km) Speed Limit (km/h) Limit Type Limit Schedule 

20.3–20.8 80 Fixed 0–24 h 
39.8–41.0 60 Variable 12:30–13:00 
85.1–85.9 60 Fixed 0–24 h 

Figure 6. Constant speed profile (unexpected speed restriction). 

 

Furthermore, the system can adapt in real time the information provided to the driver according to 

the new information that the vehicle receives along the trip by wireless communications between 

vehicles or with the infrastructure. The network access devices used are MTM-CM3100 (Maxfor 

Technology Inc. Seongnam, Korea), based on the TelosB platform (Memsic Inc. San Jose, CA, USA). 

This allows connectivity with any computer platform and acts as a gateway to access the vehicular 

GeoNetwork. This device works under Linux (TinyOS) operating system (an open source software). In 

order to access the wireless network to 2.4 GHz in mesh, it uses the IEEE 802.15.4 standard at physical 

and link level and a mesh routing protocol, which guarantees the desired functionality of the VANET at 

transmission rates up to 250 Kbps and in a range of 100 meters. That way, Figures 6 and 7 show how the 

system adapts the speed profile when the vehicle receives the information about a traffic perturbation 

between kilometric points 53 and 55.5 that makes vehicles move at an average speed of 20 km/h between 

12:36 and 12:54. Figure 6 presents the constant speed profiles between road sections with special speed 

limitations defined by step 1 of the method described in section 4.7. in the following three situations: 

1. The system does not obtain any information about this traffic perturbation until the vehicle reaches 

the road section of kilometric point 50 (quite near to the perturbation section), so it maintains the 

same speed profile until the perturbation forces the vehicle to miss it. 

2. The system receives the information when the vehicle is located at kilometric point 25, so the 

speed profile is adapted from that point in order to meet the established schedule. 

3. The system receives the information at the beginning of the trip, so the speed profile is adapted 

from that point in order to meet the established schedule. 
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In the first situation, the system does not adapt the speed profile until the vehicle finds the speed 

restriction so no action is taken in advance to avoid it. As can be observed in case 2, as soon as the 

system receives information on the perturbation not considered at the beginning of the trip, the constant 

speed profile is recalculated in order to reach the destination on time and take advantage of the 

information so the speed is adapted so that this perturbation will have a minor effect on consumption. 

Then, using the β weighting parameter that corresponds to the constant speed of the current road overlap 

stretch, fuel optimization considering road slopes is performed. Hence, the vehicle adapts its speed 

before the driver can perceive the traffic congestion visually. In case 3, speed restriction is known from 

the beginning so the optimal speed profile can be calculated in advance in a similar way as previously 

shown. 

Figure 7 shows the final optimal speed profile when the information is obtained in advance (at 

kilometric point 25). The fuel savings obtained between the three situations analysed reaches 3.8% 

(when comparing case 2 and case 1) and 3.9% (when comparing case 3 and case 1), but it should be 

noted that these results depend on the specific situation. This is because the anticipation of information 

delivery, traffic congestion characteristics, and the road stretch in which the perturbation happens, are 

key variables that limit or enhance the optimization possibilities. Finally, apart from energy savings, the 

distribution of information on unexpected events in advance improves the reliability of the system in 

meeting the time schedule because corrective actions can be taken before and, therefore, the adaptation 

of the speed profile provides better results. 

Figure 7. Optimal speed profile (unexpected speed restriction). 
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6. Discussion 

In this paper, the speed optimization problem has been solved using DP. This technique guarantees 

the global optimal solution even if the problem has non-convex constraints. This is the advantage over 

other approaches such as Genetic Algorithms, because these methods could have a high probability to 

get the global optimal solution [33], but it is not actually guaranteed. So there are optimization techniques 

that can work with non-differentiable equations and restrictions but they require approximations and 

some of them do not guarantee reaching global optimum but local ones. 

The main drawback for DP is the exponential growth of calculation time caused by the number of 

inputs and states (curse of dimensionality). The calculation time increases with the length of the horizon 

and this fact makes onboard real-time optimization for a complete trip unfeasible when long distances 

are considered, so a stretch overlapping method has been used in order to shorten the road stretches 

length in which DP is performed. This method allows, on the one hand, real time execution that provides 

approximate solutions but very similar to the optimal ones. On the other hand, periodic modifications of 

weighting factors are made in the event that traffic conditions change or the driver has not followed the 

optimal speed profile. This approach provides an approximate solution but the overlapping distance has 

been chosen considering that differences between the approximate solution built concatenating stretches 

and the optimal one should be small. The selected distance D seems to be appropriate because these 

differences are quite reduced. Furthermore, the warning updates are frequent enough for counteracting 

any speed deviation during the trip. 

Other methods apart from DP could be used and can be found in previous research, but the problem 

type, the complexity of the system analyzed and the accuracy required make that DP is an adequate 

approach providing a better behaviour that other mathematical tools. For example, in Lagrangian 

methods, the constraint functions could have to be approximated in order to obtain features for 

differentiation and convexity. An energy consumption optimization for road vehicles contains several 

data sets (one of the most complex ones could be the engine map) into look-up table forms and these 

data could be hard to be fitted by a function without doing approximations. The differences on the results 

when the model functions are replaced by approximations are discussed in [74]. Furthermore,  

in [75], the author comments some disadvantages when a vehicle energy optimization is done using 

nonlinear programming. 

Regarding the system operation, it should be noted that the system does not provide any warnings 

when a traffic congestion situation is detected, because the driver could not follow them and he must 

adapt his speed to the traffic conditions. But the system recalculates the speed profile for completing the 

trip in the predefined travel time when these traffic conditions disappear. In general, under  

complex scenarios, the driver is not forced to follow the system indications so it will compensate any  

deviation afterwards. 

Another relevant topic that should be highlighted is the fact that the system, apart from traffic 

conditions and legal speed limits, considers other types of speed limits, such as safe speed limits that can 

differ from legal speed limits under certain circumstances (vehicle type, adverse weather conditions, 

etc.). These safe speeds are calculated according to the method described in [76,77] and they are stored 

in the digital map. Then, if variable conditions are detected during the trip and retrieved by wireless 
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communications, speed limits can be updated and the algorithm recalculates the optimal speed profile 

according to these new limits. 

Finally, the fuel minimization system has been applied on a real highway section and fuel savings of 

up to 4% were obtained with respect to a constant speed profile with the same travel time. Our 

optimization strategy obtains fuel savings lower than those given for strategies such as [25,26] that do 

not include the travel time in the fuel minimization process, but optimal speed profiles produced by our 

DP algorithm produce slightly higher fuel savings than other similar systems [28,66] that involve travel 

time within the fuel consumption optimization process. Furthermore, the adaptation to unexpected traffic 

situations in real time, both when receiving information in advance or under sudden deviations, is 

another of the main advantages of the proposed algorithm that improves energy consumption savings. 

More specifically, and considering that these results highly depend on the characteristics of the traffic 

perturbation, fuel savings of 3.8% and 3.9% (depending of the road section where dynamic information 

is received) have been registered in relation to the situation without the wireless communication system. 

The system has been implemented considering a human driver, but results are also valid when 

autonomous driving is used. The system estimates average acceleration and deceleration processes that 

could be different from the ones performed by a human driver depending on his driving style, so final 

fuel consumption and time could slightly differ from the theoretical ones. However, this fact is not 

significant for the whole trip when considering interurban roads. Furthermore, if human behaviour 

produces large time deviations, the algorithm is able to compensate them. In the case of urban 

environments, these speed transitions have a higher relevance and traffic lights state is crucial for 

optimizing fuel consumption. It should be noted that the same architecture would be valid in this case 

because communications between vehicles and the infrastructure could provide the necessary 

information but overlapping stretches length used in the algorithm execution should be reduced. 

7. Conclusions 

An optimization system based on Dynamic Programming theory has been implemented to perform 

energy and fuel consumption minimization in vehicles with a conventional power-train. The algorithm 

concatenates speed transitions to form the optimal speed profile that produces the minimal fuel 

consumption for a determined trip. This speed profile is provided to the driver in real time thanks to an 

ad-hoc interface. This algorithm uses a quasi-static model to obtain the energy and fuel consumption 

data. The speed sequences are evaluated using an objective function that takes into account fuel 

consumption and duration time for each speed transition. Weighting factors are included in this function 

in order to give different relevance to the fuel consumption and duration time during the optimization 

process and are used to guarantee that the time schedule of the trip is met. The road vertical profile is 

considered to carry out the fuel optimization. Maximum fixed and variable speed constraints are included 

within the optimal solution search. 

This paper presents several improvements in relation to the fuel optimization algorithm based on 

Dynamic Programming implemented in [35]. Furthermore, the results are improved when comparing 

them with the approximate solution provided by the method presented in [36]. One of the most relevant 

improvements is the mechanism that guarantees, if possible, reaching the destination on time. This fact 

has been achieved taking into consideration speed limits and possible traffic jams, as well as information 
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obtained through wireless V2V and V2I communications. With these data, the system knows periodic 

traffic jams and unexpected perturbations in advance, so it can calculate the average speed on each road 

stretch between two consecutive sections with speed limits. In a subsequent step, the system optimizes 

energy consumption considering the road vertical profile. 
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