
Energies 2014, 7, 4185-4198; doi:10.3390/en7074185 

 

energies 
ISSN 1996-1073 

www.mdpi.com/journal/energies 

Article 

Refined Diebold-Mariano Test Methods for the Evaluation of 

Wind Power Forecasting Models 

Hao Chen *, Qiulan Wan and Yurong Wang 

School of Electrical Engineering, Southeast University, No.2 Sipailou, Nanjing 210096, China;  

E-Mails: qlwan@seu.edu.cn (Q.W.); wangyurong@seu.edu.cn (Y.W.) 

* Author to whom correspondence should be addressed; E-Mail: pingfengma@126.com;  

Tel.: +86-25-8379-2260; Fax: +86-25-8379-1696. 

Received: 26 April 2014; in revised form: 17 June 2014 / Accepted: 23 June 2014 /  

Published: 1 July 2014 

 

Abstract: The scientific evaluation methodology for the forecast accuracy of wind power 

forecasting models is an important issue in the domain of wind power forecasting. 

However, traditional forecast evaluation criteria, such as Mean Squared Error (MSE) and 

Mean Absolute Error (MAE), have limitations in application to some degree. In this paper, 

a modern evaluation criterion, the Diebold-Mariano (DM) test, is introduced. The DM test 

can discriminate the significant differences of forecasting accuracy between different 

models based on the scheme of quantitative analysis. Furthermore, the augmented DM test 

with rolling windows approach is proposed to give a more strict forecasting evaluation.  

By extending the loss function to an asymmetric structure, the asymmetric DM test is 

proposed. Case study indicates that the evaluation criteria based on DM test can relieve the 

influence of random sample disturbance. Moreover, the proposed augmented DM test can 

provide more evidence when the cost of changing models is expensive, and the proposed 

asymmetric DM test can add in the asymmetric factor, and provide practical evaluation of 

wind power forecasting models. It is concluded that the two refined DM tests can provide 

reference to the comprehensive evaluation for wind power forecasting models. 

Keywords: wind power forecasting evaluation; loss function; Diebold-Mariano (DM) test; 

augmented DM test; asymmetric DM test; evaluation criteria 
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1. Introduction 

Global power systems are involving more novel sustainable clean energy sources to lead clean 

operation and sustainable living [1]. Specifically, wind energy is one of the fastest growing energy 

sources [2–4]. In China, the total installed wind power capacity is expected to be 30 GW by 2020 [5]. 

Due to the volatility and intermittency of wind, the generation of wind power in wind farms usually 

varies over a wide range, making it difficult to accurately set up a dispatch plan [6]. As a result, a 

number of methods have been introduced for wind power forecasting [7,8]. Generally, physical models [9], 

statistical models [10–15] and hybrid approaches [16] are the three main methodologies used in wind 

power forecasting. References [10,11] employ the Auto-Regressive Moving Average (ARMA) model 

to predict wind power and obtain effective forecasting results. However, the classical time series 

model might have shortcomings in the break point of the wind power time series; reference [12] used 

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models to take into account the 

volatility of wind power; reference [13] used wavelet, time series and Artificial Neural Network (ANN) 

methods for wind speed forecasting, In addition, spatial models [14], and Kalman filter techniques [15] 

are also applied in wind speed forecasting as effective statistical methods. Based on the application of 

hybrid approaches, reference [16] provided wind power forecasting by the flexible combination of 

dynamic models. 

A number of practical wind power forecasting systems serving in Chinese dispatch departments can 

provide several kinds of paralleling forecasting methods for the reference of the dispatcher. Due to  

the volatility of wind power, it is helpful to figure out an outstanding model from the competing 

forecasting models. Consequently, model evaluation of the forecasting accuracy is an interesting and 

challenging topic in this field. In practice, the traditional statistical evaluation indices, such as Mean 

Squared Error (MSE), Mean Absolute Error (MAE) and the variety of others are widely employed to 

evaluate forecasting results and make forecasting comparisons. Though these traditional statistical 

evaluation indices are simple and easily understood, they have limitations in some cases.  

On the one hand, considering the ubiquity of sample randomness, forecasting results given by different 

forecasting models can be interfered by stochastic difference. When the influence of stochastic 

difference is strong enough, the traditional indices can even give misleading comparison results in  

the most unfavorable cases [17]. On the other hand, the traditional indices cannot give quantitative 

thresholds for comparison of forecasting with different wind power forecasting models; they can only 

provide qualitative analysis. Compared to the study on forecasting methods, the study on the forecasting 

evaluation [18–20] is far from sufficiently well covered in the literature. In this paper, a modern 

evaluation criterion, the Diebold-Mariano (DM) test [21], is induced to quantitatively evaluate the 

different wind power forecasting models, and the DM test is further refined in two ways to enhance the 

efficiency of the evaluation. 

The remainder of the paper is organized as follows: Section 2 first reports the limitations of the 

traditional evaluation criteria. Then the DM test is introduced and two types of refined DM test, the 

augmented DM test and the asymmetric DM test, are proposed in this part. In the case study of Section 3, 

the DM test is first used to evaluate the forecasting performance of several wind power forecasting 

models. Furthermore, the rolling sample technology is employed in the augmented DM test to enhance 
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the results, and the asymmetric DM test is provided to give a more practical wind power forecasting 

evaluation. Section 4 provides a discussion about the DM test, and Section 5 presents the conclusions. 

2. The Evaluation Criteria for Wind Power Forecasting Models 

2.1. Traditional Evaluation Criteria and Their Limitations 

Traditionally, several statistical indices are usually used as the evaluation criteria for wind power 

forecasting models. Table 1 summarizes six indices and their specifications. 

Table 1. Traditional evaluation criteria. 

Index Abbreviator Specification 

Mean Squared Error MSE 
2

1

ˆMSE ( - )
T h

t t

t T

y y h


 

   

Root Mean Squared Error RMSE 
2

1

ˆRMSE ( - )
T h

t t

t T

y y h


 
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Mean Absolute Error MAE 
1

ˆMAE - /
T h
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y y h
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
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ˆ / /
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T h T h
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

 
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
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

 

 

Note that yt is the actual wind power data; ˆ
ty  is the forecasting value; T is the sample size; and h is 

the forecast step size. 

In practice, MSE and MAE are the most popular evaluation criteria. On behalf of the traditional 

criteria, MSE is used to analyze the limitations of traditional evaluation criteria in this paper. In the 

following part, a forecasting comparison is made between two models, say, model A and model B. 

After calculating the MSE of the forecasting result, if the MSE difference between model A and 

model B is small, it is in fact difficult to decide whether the result is due to chance or decisive. In fact, 

the answer cannot be simply concluded from the MSE value. If a small MSE difference is approved 

and the model with smaller MSE is accepted, we may then possibly reject a factually good parallel 

model because the difference may be generated stochastically. 

As a result, whether the difference of forecasting performances is significant in the statistic view 

cannot be efficiently judged by the traditional evaluation criteria. To solve this problem, a modern 

statistic evaluation method, the Diebold-Mariano (DM) test, which can offer a quantitative method to 

evaluate the forecast accuracy of wind power forecasting models, is proposed in this paper. 
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2.2. Diebold-Mariano Test 

The classical DM test was originally proposed by Diebold and Mariano [17,21]. The routine of the 

classical version of DM test is as follows: 

Let  ty  denote the actual data series. Let  ,
ˆ h

i ty  denote the i
th
 competing h-step forecasting series. 

Supposing the forecasting errors from the i
th
 competing models are ,

h

i te  (i = 1, 2, 3,…m). where m is 

the number of the forecasting models. The h-step forecasting errors ,

h

i te  is: 

, ,
ˆh h h

i t t i te y y   (i = 1, 2, 3,…m） (1) 

The accuracy of each forecast is measured by the loss function: 

, ,
ˆ( , ) ( )h h h

t i t i tL y y L e  (2) 

In this paper, h is set to be 1, and the superscript h is omitted in the following context. There are lots 

of loss functions, and the most popular and usually adopted loss functions in power systems are the 

squared-error loss function and the absolute-error loss function. 

Squared-error loss function: 

 
2

2 , 2 , ,

1

ˆ( , ) ( )
T

t i t i t i t

t

L y y L e e


   (3) 

Absolute-error loss function: 

1 , 1 , ,

1

ˆ( , ) ( )
T

t i t i t i t

t

L y y L e e


   (4) 

The squared-error loss and the absolute-error loss are both symmetric around the origin point. 

Furthermore, larger errors are penalized more severely by the squared-error loss one. 

To determine whether one forecasting model (say, the first model, model A) predicts more 

accurately than another (say, the second model, model B), we may test the equal accuracy hypothesis. 

The null hypothesis is given as: 

0 1, 2,: [ ( )] [ ( )]t tH E L e E L e   

The alternative hypothesis that one is better than the other is given as: 

1 1, 2,: [ ( )] [ ( )]t tH E L e E L e   

The Diebold-Mariano test is based on the loss differentials dt: 

1, 2,( ) ( )t t td L e L e   (5) 

Equivalently, the null hypothesis of equal predictive accuracy is shown as H0: E[dt] = 0. Then,  

let the sample mean loss differential, d , be: 

1, 2,

1 1

1 1
( ) ( )

T T

t t t

t t

d d L e L e
T T 

       (6) 

Note that the DM test statistic is: 
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(7) 

where  ˆ2π 0df  is a consistent estimator of the asymptotic variance of T d . Note that the variance is 

used in the statistic because the sample of loss differentials dt are serially correlated for h > 1. Since the 

DM statistics converge to a normal distribution, we can reject the null hypothesis at the 5% level  

if |DM| > 1.96; this condition corresponds to the zone A and zone C in Figure 1. Otherwise, if  

|DM| ≤ 1.96, we cannot reject the null hypothesis H0, and this case corresponds to zone B in Figure 1. 

Figure 1. The normal distribution. 

DM Statistic

A

B

C

 

2.3. Augmented DM Test 

With the help of the DM test, the interference by sample stochastic difference can be revealed, such 

that the better forecasting model can be figured out statistically. However, since the cost of changing 

the in-service forecasting model may be expensive in some special cases, evaluation judgments should 

be given more carefully, and it will be beneficial if more strong evidence can be found. The augmented 

DM test is proposed in this part to provide more evidence for model evaluation. The augmented DM 

test can provide more refined studies based on a sequence of DM test results by evolving a rolling 

sample approach [22]. The specification of this approach is as follows: 

Firstly, a dataset window covering part of the total sample is selected, and two forecasting result 

series can be obtained by two types of wind power forecasting models based on this subsample. Then, 

based on the calculation of the forecasting error series e1,t, e2,t, respectively, the DM test is employed to 

evaluate forecasting accuracy. 

Secondly, by adding in the next p data and removing the first p data in the above mentioned dataset, 

a new subsample can be obtained with the same length. Under this condition, the two competing wind 

power forecasting models are used again based on this new window. Once again, the DM test based on 

the new subsample is employed to provide a new evaluation. 
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Consequently, the time varying window keeps on rolling, and the new wind power forecasting 

models are re-estimated by carrying out DM tests based on new sub-samples. The retest work does not 

stop until the rolling windows cover the pre-established whole sample space. 

Finally, based on the augmented DM test method, the DM statistics based on all of the sub-samples 

are performed. If the H0 hypothesis of DM test is rejected in every sub-sample, the enhanced H0 

hypothesis of augmented DM test will be rejected, and a better model is reported. Otherwise, even if 

only one H0 hypothesis is not rejected in one subsample, then the H0 hypothesis of augmented DM test 

cannot be rejected. 

It is clear that the augmented DM test has more rigid requirements than the DM test. During the 

process of the augmented DM test, if at least one H0 hypothesis of a sub-sample DM test cannot be 

rejected, then the augmented DM test will report the failure of selecting a better model. Thus 

dispatchers may not tend to change the in-service model if model changing is expensive. On the other 

hand, if all of the H0 hypotheses of sub-sample DM tests are rejected, that is to say, the rigid 

requirements of the augmented DM test are satisfied, then the strong evidence that one forecasting 

model is better by far is confirmed, and the confidence of judging the better model is greatly increased. 

2.4. Asymmetric DM Test 

Though reference [20] recognizes that the extensive loss function could be imposed considering 

asymmetric loss, in practice, the most popular loss functions are symmetric loss function, such as 

squared-error loss function and absolute-error loss function. 

For wind power forecasting, the cost of seriously overestimating the wind power is not equal to the 

cost of seriously underestimating it. For example, in view of the stability, if the forecasting error et is 

positive and big enough, that is to say, the actual wind power is far larger than the forecast given by 

the wind power forecasting model, the cost is higher than the case when et is negative. 

Limited to symmetric structure, neither the squared-error loss, nor the absolute-error loss can be an 

adequate description of the forecasting environment. In this case, the asymmetric loss function may 

help evaluate the forecasting accuracy. As a result, to make it practical, the DM tests based on the 

asymmetric loss functions, which are named asymmetric DM tests, are proposed in this paper. 

Two types of asymmetric loss functions are employed as follows: 

Type I asymmetric loss function is: 

, , ,

1

ˆ( , ) ( )
T

h

aI t i t aI i t aI i

t

L y y L e l


   (8) 
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,

, ,

0

0

p

i t i t
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i t i t

a e if e
l

e if e

 
 
 


, p is a positive integer valued power parameter; a is the asymmetric 

index parameter. If a = 1, the type I asymmetric loss function is reduced to a symmetric loss function. 

Moreover, if a = 1 and p = 2, the loss function is reduced to a squared-error loss function. 

Type II asymmetric loss function is: 

, , ,

1

ˆ( , ) ( )
T

h

aII t i t aII i t aII i

t

L y y L e l


   (9) 
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, p1 and p2 are positive integer valued asymmetric power parameters. 

If p1 = p2 = 2, the Type II asymmetric loss function is reduced to a squared-error loss function. 

Otherwise, if p1 = p2 = 1, the loss function is reduced to an absolute-error loss function. 

The laI,i in Type I asymmetric loss functions with the asymmetric parameter a = 0.5, a = 1, a = 2, or 

a = 3, respectively, are drawn in Figure 2.  

Figure 2. laI in Type I Asymmetric Loss Function with Different Parameters (p = 2). 

 

The laII,i in Type II asymmetric loss functions with the power parameter pairs (p1, p2) = (2, 1),  

(p1, p2) = (1, 1), (p1, p2) = (0.5, 1), respectively, are shown in Figure 3. 

Figure 3. laII in Type II Asymmetric Loss Function with Different Parameters. 

 

With the help of the asymmetric loss function, the difference between the cost of overestimating 

and underestimating can be measured separately and reasonably. 
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3. Case Study and Results 

3.1. Data 

The historical wind power data from a coastal wind farm group in Jiangsu Province is used to 

examine the presented wind power forecasting models. As a province with rich coastal wind resources 

in East China, the wind power data from Jiangsu Province can be representative of a typical wind 

power pattern in China. The sample consists of 5 day wind power data recorded in spring, 2012. The wind 

power data is obtained every 10 min. With 144 datapoints each day, the 5 day overall data sample 

contains 720 datapoints. The 10 min wind power forecasting of the following 4 h is studied using three 

wind power forecasting models, and the refined DM tests are carried out for the evaluation of the 

different wind power forecasting models. 

3.2. Forecasting Models 

Three popular wind power forecasting models, the GARCH model [22,23], TAR model [24] and 

ARMA model [19], are used for evaluation. The performance of these three models are validated by 

comparison to the actual data, and then examined based on the proposed modern evaluation method. 

The software Eviews is firstly employed in parameter estimation and wind power forecasting with 

the different forecasting models. Furthermore, the software R is used to carry out the DM test and the 

refined DM tests. First of all, the exponential trend, Ttrend, is eliminated from the initial daily data 

series, and the time series after adjustment is noted as Iad. Then Iad are modelled by the above- 

mentioned three models. The three models are estimated by conditional maximum likelihood 

estimation (CMLE) [25,26]. At the same time, the Marquardt algorithm, a well-known modified 

version of the Gauss-Newton algorithm, is used to control the iteration process. 

3.3. Forecasting Performance 

After eliminating the exponential trend, the wind power forecasting formation is expressed as: 

ˆ ˆ
trend adY T I   (10) 

where, Ttrend is the exponential trend of the initial daily data series; ˆ
adI  is modelled by the GARCH, 

TAR and ARMA models, respectively. Based on the three forecasting models above, 10 min 

forecasting results of wind power for the following 4 h are obtained. Two traditional statistical indices, 

MSE and MAE, are reported in Table 2. 

Table 2. Comparison of forecasting performance. 

Models MAE MSE 

Model A:GARCH 1.916871 4.315878 

Model B:TAR 2.571685 10.08665 

Model C:ARMA 2.614892 10.02256 
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From Table 2, we can find that the forecasting results of model A looks intuitively better than the 

other two models by MAE or MSE. However, the MSE difference between model B and model C is 

difficult to distinguish. MSE is invalid to decide whether the difference is due to chance. It is necessary 

to employ the DM test to evaluate the forecast accuracy, and differentiate the forecasting performance 

of model B and model C. 

3.4. Forecasting Evaluation Based on DM Test 

In this part, the forecasting performance of the three models is compared by the DM test.  

Using the classical version of the DM test demonstrated in Section 2, the forecasting comparison of 

every two forecasting models is summarized in Table 3, respectively. The zero hypothesis,  

H0: E[L(e1,t)] = E[L(e2,t)], means that the observed differences between the performance of two 

forecasting models is not significant, while the alternative hypothesis, H1: E[L(e1,t)] ≠ E[L(e2,t)], means 

that the observed differences between the performance of two forecasting models is significant. 

Table 3. The DM test. 

 
DM test based on  

Model A and Model B 

DM test based on  

Model B and Model C 

DM test based on  

Model C and Model A 

DM-AE −1.5168 −0.0852 1.7401 

p-Value_DM-AE 0.1429 0.9328 0.0952 

DM-SE −2.3647 0.0213 2.5044 

p-Value_DM-SE 0.026861 0.9832 0.0198 

Note: DM-AE denotes the DM test statistic based on absolute-error loss; DM-SE denotes the DM test statistic 

based on squared-error loss.  

From Table 3, the conclusions of the comparison of model A and model B can be drawn: 

(1) According to the DM test based on the absolute-error loss, since the absolute value of DM-AE 

is 1.5168, that is, less than 1.96, the zero hypothesis cannot be rejected at the 5% level of 

significance, that is to say, the observed difference between the forecasting performance of 

model A and model B is not significant and might me due to stochastic interference. 

(2) According to the DM test based on the squared-error loss, since the absolute value of  

DM-SE = 2.3647 > 1.96, the zero hypothesis is rejected at the 5% level of significance, that is 

to say, the observed differences are significant and the forecasting accuracy of model A is 

better than that of model B. 

Similarly, according to the forecasting comparison of model B and model C in Table 3, both the 

DM test by absolute-error loss and the DM test by squared-error loss evaluate that the forecasting 

performance of model B and model C is not significant and might due to stochastic interference. 

Finally, the forecasting comparison of model C and model A is summarized in Table 3. In Table 3, 

the zero hypotheses of the DM test based on the two types of loss function are rejected at the 10% 

level of significance. However, at the 5% level of significance, DM-AE = 1.7401 < 1.96, the DM test 

by absolute-error loss shows that the forecasting performance of model C and model A is not 

significant and might due to stochastic interference. 
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3.5. Forecasting Evaluation Based on Augmented DM Test 

In some special cases, the cost of changing the in-service wind power forecasting model is great.  

To give a more strict evaluation, the augmented DM test is employed in the case study. Overall, the 

retest work generates 24 DM statistics based on squared-error loss for the augmented forecasting 

comparison of model C and model A. The dynamic structure details of the DM statistics are analyzed 

by the augmented DM statistics line, as illustrated in Figure 4. 

Figure 4. Statistic line of the augmented DM test between model A and model C. 

 

In Figure 4, the curve corresponds to a series of DM statistics in the sub-sample windows. It is easy 

to observe that the augmented DM statistics curve varies beyond 1.96, the threshold value. According 

to Figure 4, it is clear that the result of DM test varies stably, demonstrating significance of forecasting 

difference over the different sample space. Even in a guarded view, the forecasting performance  

of model A is better than model C. At this time, enough confidence is obtained for concluding the 

better model. 

3.6. Forecasting Evaluation Based on Asymmetric DM Test 

Considering the characteristics of wind power forecasting discussed in Section 2, the negative half 

branch of the loss function should be flatter than the positive half branch. Two types of asymmetric 

loss functions are employed in the asymmetric DM test. With a = 2, p = 2, the laI,i in Equation (8) is 

rewritten as: 

2

, ,

, 2

, ,

2 0

0

i t i t

aI i

i t i t

e if e
l

e if e

 
 



 (11) 

With the p1 = 2, p2 = 1, the laII,i in Equation (9) is rewritten as: 

2

, ,

,

, ,

0

0

i t i t

aII i

i t i t

e if e
l

e if e

 
 



 (12) 

With the two types of asymmetric DM test, the forecasting comparison of every two forecasting 

models is summarized in Table 4, respectively.  
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Note that the Type I asymmetric DM statistic is expressed as DM-aI for short. Similarly,  

the Type II asymmetric DM statistic is expressed as DM-aII for short. The zero hypothesis,  

H0: E[L(e1,t)] = E[L(e2,t)], means that the observed differences between the performance of two 

forecasting models is not significant, while the alternative hypothesis, H1: E[L(e1,t)] ≠ E[L(e2,t)], means 

that the observed differences between the performance of two forecasting models is significant. 

Table 4. Asymmetric DM test. 

 
Comparison of  

model A and model B 

Comparison of  

model B and model C 

Comparison of  

model C and model A 

DM-aI −2.2429 −0.7747 3.1649 

p-Value_ DM-aI 0.02966 0.4424 0.002721 

DM-aII −1.711 −0.3481 2.2932 

p-Value_ DM-aII 0.09367 0.7293 0.02635 

From Table 4, the following conclusions can be safely drawn: 

(1) Different loss functions will induce different DM test results. The forecasting accuracy of 

model A and model C is equally matched by DM-AE, as shown in Table 3. However, the 

forecasting accuracy of the two models is significantly different by the DM-aI test and DM-aII 

test. Consequently, a reasonable loss function will help to choose the better model. 

(2) The asymmetric loss can penalize large positive forecasting errors, et. If the positive forecasting 

errors are large enough, the zero hypothesis of the DM test based on asymmetric loss tends to 

be rejected. Model C has several large positive forecasting errors, while model A is outstanding 

in the view of large positive forecasting errors, so model C is worse than model A by the 

asymmetric DM test based on asymmetric loss. 

4. Discussion 

The scientific evaluation of the forecast accuracy of wind power forecasting models is an important 

issue in the wind power forecasting domain. Compared to the traditional evaluation indices, the DM 

test plays an important theoretical role, and it has been successfully applied in many occasions. 

However, the standard version of the DM test cannot practically answer all of the questions for the 

evaluation of wind power forecasting models. For example, as mentioned in Section 2.3, when the cost 

of changing the in-service wind power forecasting model in the dispatch system is high, a single round 

of DM tests might be arbitrary. By employing the proposed augmented DM test, the analysis will be 

much more reasonable and trustworthy. In this paper, the augmented DM test and the asymmetric DM 

test are prospectively proposed as the refined DM test. Owing to the intermittency and uncertainty of 

wind power, it is still necessary to generalize the concept of the refined DM test to more novel forms 

to provide effective evaluations. 

5. Conclusions 

In this paper, the DM test is studied to provide an evaluation framework for different wind power 

forecasting models. Furthermore, the augmented DM test and the asymmetric DM test are proposed as 
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the refined DM test to give useful information for the evaluation of wind power forecasting models in 

some practical situations. The augmented DM test by rolling windows technology is firstly proposed 

and it can provide a strict criterion to evaluate the forecasting accuracy of different models. A sound 

evaluation conclusion can be reached only when all the points in the statistic line of the augmented 

DM test are beyond the threshold value. It is useful and necessary when the cost of changing the  

in-service models is high. 

Considering the characteristics of asymmetric cost in wind power forecasting, the asymmetric DM 

tests based on two types of asymmetric loss functions are proposed. Since the asymmetric loss can 

penalize large positive forecasting errors, the asymmetric structure makes the forecasting evaluation 

more reasonable and practical. 

Based on the practical dataset, the DM test and the refined DM test are carried out to evaluate three 

different wind power forecasting models. The study results clearly demonstrate the effectiveness of the 

proposed augmented DM test and asymmetric DM test method. The present DM test for model 

selection is conducted by comparison of every two different models. Future research will include the 

study of DM test evaluation criteria that can compare more than two forecasting models at the  

same time. 
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