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Abstract: This paper demonstrates an energy management method using traffic information 

for commuter hybrid electric vehicles. A control strategy based on stochastic dynamic 

programming (SDP) is developed, which minimizes on average the equivalent fuel 

consumption, while satisfying the battery charge-sustaining constraints and the overall 

vehicle power demand for drivability. First, according to the sample information of the 

traffic speed profiles, the regular route is divided into several segments and the statistic 

characteristics in the different segments are constructed from gathered data on the averaged 

vehicle speeds. And then, the energy management problem is formulated as a stochastic 

nonlinear and constrained optimal control problem and a modified policy iteration 

algorithm is utilized to generate a time-invariant state-dependent power split strategy. 

Finally, simulation results over some driving cycles are presented to demonstrate the 

effectiveness of the proposed energy management strategy. 

Keywords: hybrid electric vehicles (HEVs); traffic information; energy management; 

equivalent fuel consumption; stochastic dynamic programming (SDP) 

 

1. Introduction 

During the recent decade, HEVs have been a research focus in the trend to reduce fuel consumption 

and emissions. The improvement of fuel economy in HEVs strongly depends on the energy 
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management strategy employed. The primary objective of any energy management strategy is to 

satisfy the driver’s power demand by determining the power distribution between the engine and  

the electric machines, as well as the optimal gear ratio of the transmission, if any, to minimize fuel 

consumption and simultaneously satisfying other constraints such as regulation of the battery state of 

charge (SOC), emissions and drivability. In order to meet these requirements, many optimal control 

strategies for HEVs have been proposed in the past. For instance, the dynamic programming (DP) 

approach dependent on the specific driving cycle was investigated in several publications [1–5]. 

Stochastic dynamic programming (SDP), which exploits a probabilistic distribution of the power 

demand obtained from many driving cycles, is suggested in [6–9]. Moreover, the equivalent 

consumption minimization strategy (ECMS) are suggested in [9–11], Pontryagin’s minimum principle 

(PMP) is introduced as an optimal control solution in [12–14], and model predictive control (MPC) is 

presented in [15]. It should be noted that, research efforts in these publications mostly focus on 

developing the control scheme of power split optimization for fuel economy. Besides, the proposed 

control strategies depend on the reference driving cycle information, however, the inherent character of 

the driving condition excludes the availability of future information. 

In contrast to the aforementioned studies, the emphasis of this paper is on investigating the use of 

traffic information in the real-time implementation of energy management satisfying the demands of 

power splitting. In view of traffic information, a number of studies on its definition and assessment 

have been presented, for instance, in [16–18]. Indeed, as described in these publications, traffic 

information is complex and includes many characteristic parameters of the traffic situation, such as  

the roadway type, driving style of the driver, driving mode, and driving trend. While as to precise 

definition of these parameters there is no consensus, the characteristics of traffic information are 

generally extracted in terms of the intended use. The purpose of this paper is to determine an energy 

management strategy whose effectiveness is influenced by the driving conditions as little as possible, 

so as to achieve performance improvements in the fuel economy and charge sustenance of hybrid 

electric vehicles in real driving situations. To this end, the design approach in this paper is to extract 

the available statistical characteristics of traffic information on a regular route to model a stochastic 

process based on the collected data. Then, the energy management problem is formulated as a 

stochastic nonlinear and constrained optimal control problem with the battery state of charge as the 

system state, the average vehicle speeds of traffic flow as the stochastic disturbance, furthermore, a 

modified policy iteration algorithm is utilized to generate a time-invariant state-dependent power split 

strategy to guarantee the performance on the fuel economy and charge sustenance of hybrid electric 

vehicles irrespective of traffic flow conditions in real driving. 

The remainder of the paper is organized as follows: in Section 2, the research problem targeting  

the energy management under consideration of traffic information is described. In particular, for the 

problem formulation, the powertrain structure with planetary gear and the relationship of power flows 

among engine, generator, motor, and battery are presented for commuter hybrid electric vehicles. 

Moreover, in relation to the real-time implementation of energy management, the available  

traffic-environment information is discussed. In Section 3, the traffic information model based on 

sampling collected data is developed, and the optimization problem is formulated and the solution 

method is presented. In Section 4 the simulation validation results are illustrated. Finally, concluding 

remarks are made in Section 5. 
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2. Problem Description 

The issue under consideration in this paper is how a private commuter car with non-plug-in  

hybrid electrical vehicle powertrain can manage its power splitting in an urban area without express 

highways, using traffic information, and it can in the long run improve fuel economy, while satisfying 

the battery charge-sustaining constraints and the overall vehicle power demands for drivability. With this 

in mind, the powertarin architecture, each component model, and the relationship of power flows 

among its components are presented first. 

2.1. Powertrain Model 

The powertrain configuration of the Toyota hybrid system (THS) shown in Figure 1 is considered. 

As is shown, the powertrain architecture consists of a planetary gear set, three power sources including 

an internal combustion engine, a motor and a generator, and a battery pack. Three nodes of the 

planetary gear, the sun gear, the carrier gear, and the ring gear, are connected to the generator, engine 

and motor, respectively. 

Figure 1. Powertrain configuration of hybrid electric vehicle. 

 

For power split task, the power flow paths in the following basic operation modes should be one of 

primary concerns: 

(1) Motor alone propels the vehicle. The motor can be powered by either the battery or the generator 

that transforms the mechanical power generated by the engine into the electrical power. i.e., the 

driver propelling power demand Ptrac,dem, and battery discharge power Pbatt,dis can be written as: 

, ωtrac dem m m mP P T   (1) 

, / ηbatt dis m mP P  (2) 
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where Pm, Tm, ωm are the motor power, torque and speed, respectively. ηm is the motor efficiency, 

which is generally a function of the motor torque and speed. 

(2) Engine alone propels the vehicle, in which the mechanical power generated by the engine is 

transmitted to the vehicle from the carrier gear directly to the ring gear connected to the final 

drive. Meanwhile, the excess engine power can be transformed to the electrical form through 

the generator and then pumped into the battery. i.e., the driver propelling power demand Ptrac,dem, 

and battery charge power Pbatt,ch can be written as: 

, ω ωtrac dem r r r mP T T   (3) 

, η η ωbatt ch g g g g gP P T   (4) 

where Pg, Tg, ωg are the generator power, torque and speed, respectively. ηg is the generator 

efficiency, generally, which also is a function of its torque and speed. Tr, ωr are the ring gear 

torque and speed, respectively. 

(3) Engine and motor jointly propel the vehicle, i.e., the demand power of the vehicle is provided by 

both engine and motor. However, the motor may be powered by the generator, besides by the 

battery. i.e., the driver propelling power demand Ptrac,dem, and battery power Pbatt can be written as: 

, ω ω ( )ωtrac dem r r m m r m mP T T T T     (5) 

η / η η ω ω / ηbatt g g m m g g g m m mP P P T T     (6) 

(4) The vehicle experiences braking. Here we only consider when the demanded braking power is 

less than the maximum regenerative braking power that the motor can supply. Then, the motor 

is controlled to function as a generator to produce a braking power that equals the commanded 

braking power. i.e., the driver braking power demand Pbrak,dem, and battery charge power Pbatt,ch 

can be written as: 

, ωbrak dem m mP T  (7) 

, η η ωbatt ch m m m m mP P T   (8) 

Accordingly, the driver power demand Pdem and the battery power Pbatt can be represented as: 

ω ω ωdem e e g g m mP T T T    (9) 

sgn( ) sgn( )sgn( ) sgn( )
η η η ω η ωg gm m

P PP P

batt g g m m g g g m m mP P P T T
  

     (10) 

where Pbatt > 0 indicates the battery is discharging and Pbatt < 0 means charging state. Pm < 0, Pg < 0 

represent generating states and Pm > 0, Pg > 0 represent motoring states, and: 

 1, 0
sgn( )

1, 0
s

s
s

 


  

Obviously, the usage of the planetary gear set results in the redundancy of power flow paths.  

This merit, together with battery storage capacity and power sources with suitable size, can help to 

design the energy management strategy for improving the fuel economy while meeting the overall 

vehicle power demand. 
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For the planetary gear unit, as a result of the mechanical connection through gear teeth meshing,  

the speeds of the sun gear ωs, ring gear ωr, and carrier gear ωc, have the relationship: 

( )ω ω ωr s c r r s sR R R R    (11) 

where Rr, Rs are the radii (or number of teeth) of the ring gear and sun gear respectively. 

Neglecting the energy losses in steady-state operation, the torques acting on the sun gear Ts,  

ring gear Tr, and carrier gear Tc have the relationship: 

, sr
r c s c

r s r s

RR
T T T T

R R R R
 

 
 (12) 

And the dynamics with respect to the rotational speeds of generator, engine and motor can be 

described as follows, respectively: 

ωg g s gJ T T   (13) 

ωe e e cJ T T   (14) 

ω trac
m m m r

f

T
J T T

g
    

(15) 

where Jg, Je, Jm, are the inertia of the generator, the engine, and the motor, respectively. Ttrac is the 

torque on the axle of the differential gear, and gf is the final differential gear ratio. 

Moreover, assuming that the connecting shafts are rigid, the following speed relationships hold: 

ω ω , ω ω , ω ω , ω
f

c e r m s g m

tire

g
v

R
     (16) 

where v is the vehicle velocity, and Rtire is the radius of the tire. 

The dynamics of the vehicle velocity is modeled as: 

2
η 1

(μ cosθ sinθ) ρ
2

f trac br

r d

tire

T T
Mv Mg AC v

R


     (17) 

where M is the vehicle mass, and g denotes the gravity acceleration; ηf is the transmission efficiency of 

differential gear; Tbr the friction brake torque; μr coefficient of rolling resistance; ρ air density;  

A frontal area of vehicle; Cd drag coefficient; and θ road angle (grading). 

For power splitting with fuel economy, the break specific fuel consumption (BSFC (g/kWh)) should 

be an important parameter, which generally can be described by a map of the engine torque and speed. 

For example, the BSFC map of a certain gasoline engine is shown in Figure 2. The fuel consumption is 

measured by the fuel mass flow rate fm  (g/s), which is defined as follows: 

510 / 36f em BSFC P     (18) 

Similarly, electricity consumption is evaluated by the instantaneous rate of change of the battery’s 

internal energy, i.e.: 

elec oc batt oc battP V I V Q SoC    (19) 
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where Voc, Ibatt, Qbatt, SoC are battery open-circuit voltage, cuurent, maximum charge capacity, and 

state of charge, respectively. The dynamics of battery SoC can be represented by: 

2 4

2

oc oc b batt

batt b

V V R P
SoC

Q R

  
  (20) 

where Rb is battery internal resistance. Both Voc and Rb are functions on battery SoC, which can be 

obtained through curve-fitting a predefined map. 

Figure 2. BSFC map of a gasoline engine. 

 

2.2. Traffic Information 

For commuter vehicles, a certain amount of traffic-environment information can be available, such 

as traffic speed and road slope. Although a private commuter car does not have a fixed route like a 

public bus, according to the empirical evidence, a regular route can mostly be determined after a long 

run. On this regular route, information about the position for every crossing, intersection, speed bump, 

and traffic light, together with the road slope of each segment, is completely known, while, uncertainty 

and randomness still exists in the traffic flow information even if the departure time of the commuter 

car is usually during rush hour. 

For example, on the same route, the instantaneous speeds during rush hour are still different for different 

workdays in the same week, as shown in Figure 3a, and for the same workday in the different weeks, as 

shown in Figure 4a. However, the statistical characteristics of the traffic speed can be captured in a certain 

segment of the route. It can be seen from Figure 3b and Figure 4b that the distribution of the average speed 

based on the trip distance in a certain segment has similar statistical characteristics, such as the segment-1 

from 0 to 2 km, the segment-j from 6.0 to 7.2 km. Accordingly, the regular route can be divided into a 

number of segments according to the similar statistic characteristic in each segment. 

Admittedly, it is complex to extract the characteristics of traffic information, which includes many 

characteristic parameters, such as roadway type, driving mode and driving trend. However, it should 

be noted that the characteristics is generally extracted in terms of the intended use. The study purpose 
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of this paper is to determine the energy management strategy, whose effectiveness is influenced by the 

driving conditions as little as possible, so as to achieve the performance improvement on the fuel 

economy and charge sustenance of hybrid electric vehicles in real driving. To this end, the statistical 

characteristics in traffic speed profile are captured with a stochastic model, which in turn can be used 

to generate an optimal control policy to minimize, on average, automotive vehicle fuel-electricity 

consumption. The details will be described in next Section. 

Figure 3. Traffic speed information on Monday, Wednesday, Friday in one week.  

(a) The instantaneous speed vs. time and vs. distance; (b) the average speed vs. distance. 

 

(a) 

 

(b) 

Figure 4. Traffic speed information on Mondays in three weeks. (a) The instantaneous 

speed vs. time and vs. distance; (b) the average speed vs. distance. 

 

(a) 
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Figure 4. Cont. 

 

(b) 

2.3. Problem Formulation 

The energy management problem will be investigated for the hybrid electric commuter vehicle 

described above. Certainly, the objective of energy management is also normally as much as possible 

to reduce the fuel consumption while satisfying the battery charge-sustaining constraints and the 

overall vehicle power demands. 

It should be noted that the hybrid powertrain utilized here is a normal hybrid electric vehicle, not a 

plug-in type. Therefore, like in most hybrid electric vehicles (HEVs), a charge sustaining strategy is 

adopted, which implies that the electricity used during a battery discharge phase must be replenished at 

a later phase using the fuel from the engine (either directly or indirectly through a regenerative path), 

such that at the end of driving path, the battery state of charge (SoC) should remain within a prescribed 

range, rather than achieve the minimum limit value. 

Figure 5. System configuration of the HEV with energy management using traffic information. 
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Furthermore, the emphasis of this paper is on investigating the use of traffic information rather than 

the reference driving cycle to manage the distribution of the demand power so as to guarantee the 

effectiveness of energy management in real driving. Figure 5 illustrates the system configuration of 

this kind of HEV. Therefore, the following missions will be accomplished in the design of energy 

management of this paper: 

(1) The statistical characteristic of the traffic speed profile information from the collected data is 

modeled for achieving and generating scenarios in the stochastic approach for energy management. 

(2) The design objective of the energy management is achieved, i.e., the statistical characteristic, 

rather than the reference driving cycle, is utilized to design energy management strategy  

so as to guarantee the optimization for fuel-electricity consumption, the battery state-of-charge 

maintained within some specified limits, and the power demand for drivability of hybrid 

electric vehicles irrespective of real traffic flow and driving conditions. 

(3) The compromises, between the benefit of reduced trip information and computing requirement, 

and the expense of reduced performance, are considered in the design of the control policy. 

3. Energy Management Based on SDP 

By taking the statistics of traffic speed profiles in the driving route into account, a stochastic 

approach for the energy management is adopted to optimize fuel-electricity consumption in an average 

sense. The charge sustaining goal is incorporated into the control design process through the control 

strategy based on the SDP to obtain a time-invariant control policy for the SoC. 

3.1. Traffic Information Modeling 

As indicated already in the problem description, the approach in this paper is stochastic modeling of 

driving cycle by using collected speed data in urban traffic. The various steps involved in the modeling 

work will be described in more detail below. 

The construction of traffic speed statistics is based on the actual commute driving speed data 

collected along the regular route as shown in Figure 6, which is provided by JSAE-SICE benchmark 

problem 2, see [19].  

Figure 6. The actual route profile. 
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The data set included commuter driving between the user’s home and office on weekdays and city 

driving for shopping on weekends during three weeks, where the commute driving only is stop and go 

type driving, not including freeways. Here we only consider how to use the traffic information to deal 

with the energy management problem for the commute driving, moreover, the difference of the traffic 

information between the going and the returning route is taken into account, thus the 15 days commute 

driving speed data in the going route (from home to office) are sampled to model the statistics of the 

traffic speed profile, and further utilized to formulate the stochastic control problem for the energy 

management. We used the 15 days of driving data from home to office in this study to determine the 

probability distribution as follows: 

(1) To calculate the average speed according to a distance of 200 m to obtain the average speed 

profile vs. the distance for the adequate speed profile sampled, which on Monday, Wednesday 

and Friday in one week has been shown in Figure 3. 

(2) To divide the total distance into a number of segments, according to the similar statistics of the 

averaged speed vs. distance observed in a certain segment for all sampled day data. In this 

study, the total distance is 14 km and divided into eight segments, in which the distance of the 

each segment is:  

L = [0–2 km, 2–2.8 km, 2.8–4.4 km, 4.4–6 km, 6–7.2 km, 7.2–8 km, 8–11.2 km, 11.2–14 km] 

(3) To determine the probability distribution of the average speeds for each segment. Each segment 

has a different probability distribution of the average speed profile, but, it can be assumed that 

its probability distribution is invariant in the segment and fitted to the normal distribution. 

By using nearest-neighbor quantization, the averaged speeds are quantized as: 

[5,10,15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70] km/hv   

The probability distribution of the quantized speed can be estimated by the maximum likelihood 

estimation method. The corresponding mean μ and standard deviation σ are estimated according to the 

all sampled data of the 15 days in the i-th segment as: 

2

1 12

( )

ˆ ˆμ= , σ

n n

j j

j j

x x x

x
n n

 



 

 
 

(21) 

where ˆ ˆμ,  σ  are the estimate of the mean and deviation, respectively. xj is the j-th sampled data of the 

total sampled data n in the i-th segment. 

The probability distribution of the i-th segment can be estimated through the following normal 

cumulative distribution function: 

2

2

ˆ( μ)

ˆ2σ
1

ˆ ˆ( |μ,σ)=
σ̂ 2π

x
x

F x e dt




  (22) 

Figure 7 shows example of obtaining the probability distribution 1( )Prob v  in the first segment. 

Similarly, the probability distribution ( ), 1,2, ,8jProb v j   in each segment of the driving route can be 

obtained, which is shown in Figure 8. 
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Figure 7. Example of obtaining the probability distribution. 

 

Figure 8. Probability distribution in each segment of the driving route. 

 

The approach to the energy management in this paper is to model a stochastic process based on the 

traffic information model, and to formulate a stochastic optimal problem with infinite horizon, further, 

to derive an invariant state feedback optimal control policy by the policy iteration of the SDP. 

3.2. Stochastic Process Model and Optimization Problem 

Considering the objective of energy management and the feature of SDP, in the constructed 

stochastic process model, only the battery SoC is regarded as system state, the motor torque Tm and the 

generator speed ωg are control inputs, and the average vehicle speed in term of distance as stochastic 

disturbance. Meanwhile, for obtaining control laws Tm and ωg by the discrete stochastic dynamic 

programming, the battery dynamics Equation (20) is rewritten in the following discrete form: 



Energies 2014, 7 4659 

 

 

1 , ,( ,ω , , )k k g k m k k k kSoC f SoC T v SoC SoC     (23) 

where: 

2

, ,( ) ( ) 4 ( ) (ω , , )
=

2 ( )

oc k oc k b k batt g k m k k

k

batt b k k

V SoC V SoC R SoC P T v L
SoC

Q R SoC v

   
   

, ,(ω , , )batt g k m k kP T v  is described as: 

,, sgn( )sgn( )

, , , , ,η η - ωg km k PT f f fs r
batt m m k k g dem k m k k e k g k k

tire tire r s r s tire

g g gR R
P T v P T v T v

R R R R R R R

   
      

    

 (24) 

and demP  is also the average power, which can be determined by: 

3

,

1
ρ μ

2
dem k d k k rP AC v Mgv   (25) 

Consequently, for the each segment in the regular route, the control-oriented model of HEVs is 

described as a discrete stochastic process with stationary Markov chain. Where the system state is  

xk = SoCk, the control input is , ,u (ω , )k g k m kT  and the stochastic disturbance is k kw v . And 

, , , , ,k k kx S u C v D S C D    are finite sets and S = {1, 2, ···, s}. uk is constrained to take values in a 

given nonempty subset U(xk) of C, i.e., ( ),k k ku U x x S   . The random disturbances wk has identical 

statistics [20]. Furthermore, the stochastic optimization problem is formulated as follows: 

The optimal control policy in the each segment can be extracted by minimizing the cost function: 

 
1

, ,

0

lim α ,ω , ,
k

N
k

k g k m k k
N v

k

J E g SoC T v





 
  

 
  (26) 

subject to the system state Equation (23) and the constraints: 

min max min max min max

min max min max

,ω ω ω ,ω ω ω ,

, , , ,
e e e g g g

e e e m m m e erated m mrated g grated

SoC SoC SoC

T T T T T T P P P T P P

     

      
 

where α is a discount factor and 0 < α < 1. The cost functional g is defined as the sum of the fuel 

consumption and electricity consumption g = gfuel,comp + gelec,comp, which are expressed as: 

-3

, g,k k f,k ,( ,v )= / 10 /fuel comp l k k e k l kg m H L v BSFC P H L v         (27) 

3

, g,k , k ,( , , ,v )= / 3.6 10elec comp k m k elec k kg SoC T P L v       (28) 

where BSFCk is utilized in term of the following formula, which is a map fitting by the  

least-square algorithm: 

2 2 3 2 2 3

0 1 , 2 , 3 , 4 , , 5 , 6 , 7 , , 8 , , 9 ,=k e k e k e k e k e k e k e k e k e k e k e k e kBSFC b b b T b b T b T b b T b T b T               (29) 

and: 

2 2

, ,

,

( ) ( ) ( ) 4 ( ) ( , , )

2 ( )

oc k oc k oc k b k batt g k m k k

elec k

b k

V SoC V SoC V SoC R SoC P T v
P =

R SoC

 
 (30) 

It should be noted that the Equation (23) is of discrete vs. a small distance ΔL, and , ,, ,k g k m kv ω T  represent 

the average measure of the vehicle speed, generator speed and motor torque at the end of the interval ΔL. 
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3.3. Control Policy Iteration of SDP for Optimal Solution 

The SDP problem is solved through a policy iteration algorithm, which consists of a policy 

evaluation step and a policy improvement step. This algorithm is solved iteratively until the cost 

function converges. The algorithm procedure is shown in Figure 9. 

Figure 9. The procedure of the control policy iteration. 

 

This process is repeated until converges within a selected tolerance level. The control policy 

generated is time-invariant and causal and has the form of nonlinear full-state feedback laws. An 

example of the control law maps (SoC, ωg) and (SoC, Tm) are shown in Figure 10, notice that the 

accuracy is limited by the grid size on each state. 

It should be noted that the control policy obtained from the above SDP-policy iteration algorithm 

only applies to the basic operation modes of powertrain. Furthermore, note that through determining 

the generator speed ωg and the motor torque Tm, the demand torques Ter, Tgr, Tmr for the power sources 

can be obtained. Since engine can be controlled at its optimal operating area as long as it is operating, 
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which indicates the engine torque Te can be a function on the engine speed ωe through the curve-fitting 

the optimal torque operating line. Consequently, combining the determined ωg and the vehicle speed 

can derive the engine speed ωe, and then the demand torque for engine Ter is obtained. Meanwhile, 

combining the determined Tmr and the traction power demand can derive the demand torque for 

generator Tgr. 

Figure 10. Control policy in the regular route. 

 

4. Simulation Validation and Observation 

Simulation of the presented energy management strategy for the HEV is executed to verify the 

effectiveness for the fuel economy, battery charge-sustaining constraints and the power demand for 

drivability. In simulation, the HEV system with the energy management is constructed as shown in 

Figure 11, where a model resembling a real engine includes the dynamics of electric throttle, the 

process of the engine torque generation, the process of the start-up, and the limitations for the rated 

power, the maximum torque, the maximum speed, besides the dynamics of the rotational speed 



Energies 2014, 7 4662 

 

 

Equation (14) and the fuel consumption Equation (18) and the BSFC map as Figure 2. The model 

resembling real motor consists of the dynamics of the rotational speed Equation (15), the dynamical 

response of torque and the limitations for the maximum torque, the maximum speed. The model 

resembling real battery is comprised of the SoC nonlinear dynamical description Equation (20)  

with Equation (10), maps of battery open-circuit voltage and internal resistance. The vehicle model 

and the planetary gear are constructed as the description Equations (17) and (11)–(12), respectively,  

The connecting shafts are assumed to be rigid and described as the relationship Equation (16).  

This suite of subsystems created in Matlab/Simulink is shown in Figure 12. 

Figure 11. Schematic of HEV system with torque-split control in simulation. 

 

Figure 12. Schematic diagram of model resembling real powertrain in simulation. 

 

The physical parameters used of the HEV model are listed in Table 1 [19]. It should be noted that 

the motor efficiency is adopted as a constant coefficient rather than a map of the motor speed and 

torque since the used physical parameter values in simulation are from the GT-Suite HEV model 

provided by Dr. Yuji Yasui, Honda R&D Co., where the EM efficiency only is a constant. 
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Table 1. Basic parameters of the HEV powertrain used in simulation. 

Notation Meaning Value (Unit) 

M Vehicle mass 1460 (kg) 

ρ Air density 1.293 (kg/m3) 

Cd Air drag coefficient 0.33 

A Frontal area of vehicle 3.8 (m2) 

μ Coefficent of rolling resistance 0.015 

gf Final differential gear ratio 4.113 

Rtire Radius of the tire 0.2982 (m) 

Je Inertia of the engine crankshaft 0.16 (kg·m2) 

Jm Inertia of the motor 0.035 (kg·m2) 

Jg Inertia of the generator 0.0265 (kg·m2) 

ε planetary gear ratio 0.3846 

ηm Efficiency of EM as motor 0.8301 

ηg Efficiency of EM as generator 0.876 

Qmax Battery maximum charge capacity 6.5 (Ah) 

Furthermore, the driver’s throttle and brake pedal commands are interpreted as a power demand to 

be satisfied by the powertrain. The driver power demand is an input to the torque-split controller, the 

real-time implementation of the designed SDP-based energy management strategy. The torque-split 

controller is comprised of the component obtaining control policy command ωg
*
, Tm

*
 from SDP-based 

management strategy, the component transforming the control policy command ωg
*
, Tm

*
 into the 

torque demands Ter, Tgr, Tmr distributed to the power sources, and some logical strategies in terms of 

the limitations for thermal and/or mechanical conditions as well as a whole operation range of 

boundary conditions. The schematic diagram of the torque-split controller is shown in Figure 13. 

For purposes of validating the effectiveness of the proposed management strategy, the following 

three test cases are done on some driving cycles from the 15 days sample driving speed profile: 

(1) For sensory evaluation, the designed control policy shown in Figure 10, i.e., each segment in 

whole route has itself policy Ci → Li, i = 1, 2, ···, 8, is executed in the HEV powertrain control 

system as shown Figure 11, to show the performance on the fuel-electricity consumption, charge 

sustenance, and drivability. Where the policy Ci → Li, i = 1, 2, ···, 8, is called full-policy. 

(2) For comparative evaluation, a fixed single policy, such as C2 is used for the whole route,  

i.e., the whole route only adopts the policy C2 corresponding to the second segment L2, 

executed in the HEV powertrain control system, to show the comparative performance on the  

fuel-electricity between the full-policy and the fixed policy Ci, i = 1, 2, ···, 8. 

(3) Similarly, a comparative evaluation is given by the results of driving speed profile only for a 

certain segment in the whole route. The comparison is made between the single policy 

corresponding to this segment and other single policies. For example, in terms of the driving 

speed profile in the segment L3, comparison is given between the result of executing C3 and 

that of executing C7. 

First, the third Monday driving speed profile and the first Wednesday driving speed profile are chosen 

as examples for Test case 1. The simulation results are shown in Figure 14 and Figure 15, respectively. 
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Figure 13. Schematic diagram of the torque-split controller in simulation. 

 

Figure 14. Result with the full-policy for the third Monday speed profile. (a) Vehicle 

speed, SoC and fuel-electricity consumption; (b) batter powery, demand power and engine, 

generator and motor power outputs; (c) engine, generator, motor speeds and their torques; 

(d) engine operating point densities. 

 

(a) 
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Figure 14. Cont. 

 

(b) 

 

(c) 
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Figure 14. Cont. 

 

(d) 

Figure 15. Result with the full-policy for the first Wednesday speed profile. (a) Vehicle 

speed, SoC and fuel-electricity consumption; (b) Batter power, demand power and engine, 

generator and motor power outputs; (c) Engine, Generator, motor speeds and their torques; 

(d) Engine operating point densities. 

 

(a) 
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Figure 15. Cont. 

 

(b) 

 

(c) 
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Figure 15. Cont. 

 

(d) 

Then, 15 days sample driving speed profiles are chosen to perform test case 2 for comparative 

validation of the performance on fuel-electricity consumption. Table 2 shows the comparison between 

the full-policy and fixing single policy in 15 days driving speed profiles, where the result of full-policy is 

listed in the second column of Table 2, and the result of fixing single policy Ci, i = 1, 2, ···, 8 lie in the 

third column to the 10th column, respectively. 

Table 2. Comparison of fuel-electricity consumption between the full-policy and single policy. 

[km/L] Full-poli S1-poli S2-poli S3-poli S4-poli S5-poli S6-poli S7-poli S8-poli 

Mon1 30.9056 30.9056 30.8669 30.9056 30.9056 30.9056 30.9056 30.9056 30.9056 

Mon2 28.3881 28.3881 27.5434 28.3881 28.3881 28.3881 28.3881 28.3881 28.3881 

Mon3 33.7096 33.7096 33.7096 33.7096 33.7096 33.7096 33.7096 33.7096 33.7096 

Tue1 25.5455 25.5455 25.4511 25.5455 25.5455 25.5455 25.5455 25.5455 25.5455 

Tue2 19.8163 19.8163 16.2463 19.8163 19.2507 19.2163 19.8163 19.0881 19.8163 

Tue3 20.7915 16.2526 15.2868 16.2526 21.0331 14.5505 16.2526 18.6054 20.2932 

Wed1 22.1123 22.1123 19.0863 22.1123 22.1123 22.1123 22.1123 22.1123 22.1123 

Wed2 28.8094 28.8094 28.6970 28.8094 28.8094 28.8094 28.8094 28.8094 28.8094 

Wed3 26.7733 26.7733 26.7733 26.7733 26.7733 26.7827 26.7733 26.7827 26.7733 

Thur1 26.6242 26.6242 26.3172 26.6242 26.6242 26.6242 26.6242 26.6242 26.6242 

Thur2 22.3535 22.3535 19.2765 22.3535 22.3229 22.3207 22.3535 22.3124 22.3535 

Thur3 25.5654 25.5654 25.5654 25.5654 25.5654 25.5654 25.5654 25.5654 25.5654 

Fri1 30.4161 30.4161 17.5464 30.4161 30.4161 30.4161 30.4161 30.4161 30.4161 

Fri2 23.3546 23.3546 20.8797 23.3552 23.2168 23.2069 23.3552 23.1733 23.3546 

Fri3 25.5654 25.5654 25.5654 25.5654 25.5654 25.5654 25.5654 25.5654 25.5654 

Averg 26.0487 25.7462 23.9208 25.7462 26.0159 25.5892 25.7462 25.8401 26.0155 

Where the unit [km/L] represents the moving distance (km) per liter fuel consumption for Unleaded 

Petrol No. 97. From both the 15 days driving speed profiles results in Table 2 and the averaged value 

in 15 days, it can be seen that in general the performance of full-policy is better than that of fixing a 
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single policy even though there exists the case that not the longest distance [km] per liter fuel 

consumption for full-policy in individual driving speed profile exits. It follows that the proposed 

control strategy Ci → Li can guarantee better fuel economy in an average sense than the control 

strategy with a fixed single policy in the whole route. It should be noted that the so-called summing-up 

in an average sense results not from the averaged value meanings, but rather the essential characteristic 

of the stochastic optimization. On the other hand, there is no doubt that the control policy of the 

stochastic optimization problem is dependent of the adequate statistical analysis. Thus, it is presumable 

that the appearance of not always optimal results from the question of whether the collected data is 

adequate enough for statistical analysis. 

Meanwhile, for clear display, as examples, Figures 16 and 17 also give the results of utilizing  

full-policy and a fixed single one in the third Tuesday and the first Friday speed profiles, respectively. 

These compared results of the SoC, the fuel consumption and the engine operating point density 

further demonstrate the effectiveness of the proposed energy management strategy on the improvement 

of fuel economy. 

Figure 16. Comparison of the full-policy and a fixing single policy-1, single policy-5 in 

the third Tuesday speed profile. (a) Vehicle speed, SoC and fuel-electricity consumption; 

(b) engine operating point densities. 

 

(a) 
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Figure 16. Cont. 

 

(b) 

Figure 17. Comparison of the full-policy and a fixing single policy-2 in the first Friday 

speed profile. (a) Vehicle speed, SoC and fuel-electricity consumption; (b) engine 

operating point densities. 

 

(a) 
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Figure 17. Cont. 

 

(b) 

For Test case 3, the single policy-3 C3 corresponding to the third segment and the single policy-7 C7 

corresponding to the seventh segment are chosen as examples to give the comparative validations.  

The comparison results of two single policies in the corresponding segment and the opposite side 

segment are shown in Figures 18 and 19, respectively, which illustrate the effectiveness of the control 

policy in the corresponding segments. 

Figure 18. Comparison of the policy-3 and the policy-7 in the third segment driving  

data. (a) Vehicle speed, SoC and fuel-electricity consumption; (b) engine operating  

point densities. 

 

(a) 
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Figure 18. Cont. 

 

(b) 

Figure 19. Comparison of the policy-3 and the policy-7 in the seventh segment driving 

data. (a) Vehicle speed, SoC and fuel-electricity consumption; (b) engine operating  

point densities. 

 

(a) 
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Figure 19. Cont. 

 

(b) 

5. Conclusions 

Utilizing traffic information instead of some reference driving cycles, we present a power splitting 

strategy to minimize fuel-electricity consumptions for commuter hybrid electric vehicles. The traffic 

information in a certain segment of the route is modeled as a stationary Markov chain by extracting the 

statistical characteristic of driving speed profiles. Consequently, the power split problem is converted 

into a discrete stochastic optimization problem, in which considering the compromises between the 

benefit of computing requirement and the expense of reduced performance, only SoC is regarded as 

system state, and the averaged speed in term of distance is interpreted as stochastic disturbance. 

It is noted that the stochastic optimization problem is formulated in terms of segments with similar 

statistical characteristics. Therefore, by a modified policy iteration algorithm of the SDP, the optimal 

solution is the control policy in a certain segment. The control policy in the route should consist of the 

corresponding control policy applicable to each segment of the whole route. Furthermore, the designed 

control strategy applies to the basic operation modes of the HEV powertrain. Besides that, the  

torque-split controller in the real-time implementation of energy management includes some logical 

strategies in terms of the limitations for thermal and/or mechanical conditions as well as a whole 

operation range of boundary conditions. 

For the effectiveness validation, three test cases are done in a HEV simulator on the 

Matlab/Simulink platform by utilizing a 15 day sample of driving speed profiles. In general, the 

simulation results show the better performance of the proposed strategy on fuel economy, charge 

sustenance, and drivability, even though there are exceptions in individual driving speed profiles. 

On the other hand, since there is no doubt that the control policy of the stochastic optimization 

problem is dependent on the adequate statistical analysis, admittedly, it is necessary to probe further 

into the issue whether the collected data adequate enough for statistical analysis. 
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