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Abstract: An experimental study of the intrinsic instabilities of H2/CO lean (φ = 0.4 to  

φ = 1.0) premixed flames at different hydrogen fractions ranging from 0% to 100% at 

elevated pressure and room temperature was performed in a constant volume vessel using a 

Schlieren system. The unstretched laminar burning velocities were compared with data 

from the previous literature and simulated results. The results indicate that excellent 

agreements are obtained. The cellular instabilities of syngas-air flames were discussed and 

critical flame radii were measured. When hydrogen fractions are above 50%, the flame 

tends to be more stable as the equivalence ratio increases; however, the instability increases 

for flames of lower hydrogen fractions. For the premixed syngas flame with hydrogen 

fractions greater than 50%, the decline in cellular instabilities induced by the increase in 

equivalence ratio can be attributed to a reduction of diffusive-thermal instabilities rather 

than increased hydrodynamic instabilities. For premixed syngas flames with hydrogen 

fractions lower than 50%, as the equivalence ratio increases, the cellular instabilities 

become more evident because the enhanced hydrodynamic instabilities become the dominant 

effect. For premixed syngas flames, the enhancement of cellular instabilities induced by the 

increase in hydrogen fraction is the result of both increasing diffusive-thermal and 

hydrodynamic instabilities. 
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1. Introduction 

With the increased energy demands and concerns about environmental protection, the development 

and the application of high efficiency clean combustion has attracted more and more attention.  

Lean mixture combustion has a number of positive features such as providing high thermal efficiency 

and reducing emissions [1–5]. Synthesis gas (syngas) has attracted significant interest in the field of 

energy and combustion as a promising alternative and an environmentally clean fuel [6,7].  

Syngas primarily consists of H2 and CO and can be derived from numerous sources. Syngas can be 

used in many power devices, such as gas turbines for integrated gasification combined cycle systems 

(IGCC) [8]. However, designing suitable combustors is a big challenge because of the significant 

variations in the composition of syngas due to the feedstock and gasification techniques [9]. Hence,  

the study of the fundamental combustion characteristics of H2/CO premixed flames under different 

hydrogen fractions is important for further applications of syngas. 

In a premixed flame, the appearance of cellular instabilities wrinkles the flame front and accelerates 

flame propagation, flame front instabilities may also contribute to the transition from deflagration to 

detonation [10]. The intrinsic instabilities of premixed flames are caused by hydrodynamic,  

diffusive-thermal, and body-force instabilities [11]. Hydrodynamic instability, which is caused by the 

expansion across the flame sheet [12,13], is present in all flames [14–16]. Diffusive-thermal instability, 

which is caused by the preferential diffusion of mass and heat [17,18], is only present in the flames with 

Lewis number (Le) < 1 [19–22]. Body-force instability, which is caused by the effect of buoyancy [23], 

is only apparent when the laminar propagation speed of the flame is low [24]. 

Up to now, a few studies have reported the cellular instabilities from experimental investigations; 

some scholars have studied the cellular instabilities of premixed hydrogen-air flames [25–29]. The 

cellular instabilities of mixtures of premixed hydrogen-hydrocarbon-air flames have also been studied 

by many scholars [30–35]. Nevertheless, studies about cellular instabilities of premixed syngas flames 

are relatively sparse, and most of the reported articles were mainly focused on cellular instabilities 

induced by the addition of inert gas or hydrocarbon under selected hydrogen fractions [36–40]. As a 

matter of fact, syngas is a blended fuel which mainly consists of H2 and CO, so the cellular instabilities 

of syngas premixed flames are very complex due to the hydrogen fraction variation. To provide more 

information about the cellular instabilities of syngas premixed flame, this study focuses on lean and 

stoichiometric premixed H2/CO/air flames as the research object to perform a systematic study on the 

cellular instabilities of syngas premixed flames under different hydrogen fraction conditions. The 

phenomena of cellular instabilities of lean premixed syngas flames have been observed at different 

hydrogen fractions (from 0% to 100%), equivalence ratios (φ, from 0.4 to 1.0) and elevated initial 

pressure of 0.3 MPa. 

2. Experimental and Computational Specifications 

2.1. Experimental Setups and Procedure 

The experimental method used in this study is mainly composed of six parts: a closed combustion 

vessel, discharge system, ignition system, optical access system, high-speed camera and data 

acquisition and control system (Figure 1).  
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Figure 1. Schematic diagram of the experimental apparatus. 

 

The closed combustion vessel is made of stainless steel and has a cubic inner chamber with a length 

of 140 mm. The 2-quartz windows of the vessel have effective diameters of 100 mm and are 

oppositely mounted. The discharge system includes five individual passages, namely, hydrogen bottle, 

carbon monoxide bottle, air bottle, vacuum pump and environment. The ignition system consists of a 

12 V transistorized automotive ignition coil and a pair of tungsten–copper electrodes that are 

oppositely mounted on the two sides of the vessel other than the windows. The optical access system is 

Z-shaped and is mainly composed of one lamp, two flat reflectors, two slits and two concave mirrors 

with diameters of 200 mm and focal lengths of 2000 mm. The high-speed camera used is an IDT Motion 

Pro-Y4 (IDT, Newark, NJ, USA) operating at 10,000 frames per second with a resolution of  

256 pixels × 256 pixels, the individual frame exposure is 3 μs with lamp power of 200 W. The data 

acquisition and control system mainly consists of two electrical pressure transmitters, one piezoelectric 

absolute pressure transducer associated with a charge amplifier and a data acquisition system. The two 

electrical pressure transmitters employed, namely, a DPA01M-P (with a band from −100.0 to  

100.0 kPa) and DPA10M-P (with a band from −0.001 to 0.999 MPa), were produced by the Delta Group 

(Taiwan). The piezoelectric absolute pressure transducer is Kistler 6052C, and the discharge ampler is 

Kistler 5018A (Kistler, Winterthur, Switzerland). The synchronizer trigger employed is developed by 

the authors. 

Procedurally, the vessel evacuated, and the mixture is prepared by adding hydrogen, carbon 

monoxide and air according to Dalton’s law of additive pressure under the monitoring of the 

DPA01M-P and/or DPA10M-P units. The discharge process in the present investigation can be divided 

into the following stages: (i) the vessel is filled with hydrogen and carbon monoxide until the reading 

shown at the panel of the DPA01M-P has reached the desired value; (ii) the vessel is filled with air 

until the reading shown at the panel of DPA01M-P or DPA10M-P has reached the initial mixture 

pressure; (iii) once the desired mixture is prepared, 20 min is required to ensure the homogeneity and 

quiescence of the mixture. Finally, a control signal is sent to activate both the ignition system and 

high-speed camera synchronously, and the delay from the ignition to capture is set to  

4 ms. The propagation of flame within the vessel is captured by the camera, whereas the variation of 

pressure on the inner wall of the vessel is recorded by the Kistler pressure transducer. Prior to refilling 
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for the next set of experiment, the vessel is flushed twice with dry air to remove any residual products. 

Thereafter, the vessel is evacuated again. In this study, the hydrogen is pure hydrogen with a purity of 

99.995%, the carbon monoxide is pure carbon monoxide with a purity of 99.95% and the air is 

commercial grade compressed dry air with an oxygen-to-nitrogen volume ratio of 21:79. 

In the study, at least three measurements have been performed at each condition for obtaining the 

average value. The initial pressure is measured by a pressure transmitter which accuracy is 0.001 MPa; the 

variation in initial pressure is 0.3 ± 0.001 MPa, so the relative error for the initial pressure is 0.3%.  

The high-speed camera is operated at 10,000 frames per second with a resolution of  

256 pixels × 256 pixels, and the spatial resolution is 0.39 mm/pixel. The error bars in the figure 

reflects the corresponding standard deviations of laminar burning velocity and critical flame radius on 

the multi-times repeated experiments. 

2.2. Laminar Burning Velocity 

Within the closed combustion vessel, the premixed flame outwardly propagates spherically.  

The stretched flame propagation speed (Sb) can be derived from the data of flame radius versus time:  

d

db

R
S

t
  (1) 

where R is the instantaneous flame radius and t is the elapsed time from the spark ignition. The flame 

propagation is affected by the electrodes when the flame is small, such as during the initial propagation 

period, and by the wall when the flame is sufficiently large, such as when constant pressure is absent in 

the spatial environment wherein the flame propagates. Thus, only flame radii between 6 [41] and 20 mm 

(about 0.3 times the radius of the wall [42]) are employed to avoid the aforementioned effects. 

K is the temporal rate of the change of a flame surface element of area A: 

d(ln ) 1 d

d d

A A
K

t A t
   (2) 

K is defined as follows in the case of a spherically expanding laminar flame: 

 2

2

d 4π1 d 1 2 d 2

d 4π d d b

RA R
K S

A t R t R t R
     (3) 

A linear relationship exists between the laminar flame propagation speed and K [43]: 

0
b b bS S L K    (4) 

where Lb is the Markstein length of burned mixtures and can be obtained as the negative value of the 

slope of the bS K  curve. 
0
bS  is the unstretched flame propagation speed and can be considered the 

flame propagation speed without any stretch effect on the flame front; thus, 
0
bS  can be obtained as the 

intercept value at K = 0. 

During the initial propagation period, the flame can be considered to propagate under constant 
pressure. 0

uS  can be calculated from the mass conservation across the thin flame: 

0 0 ρ

ρ
b

u b
u

S S
 

  
 

 (5) 
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where ρb is the density of the burned mixture and ρu is the density of the unburned mixture calculated 

with the chemical equilibrium program GASEQ. 

2.3. Thermal Expansion Ratio and Flame Thickness 

Darrieus and Landau discovered that hydrodynamic instabilities are mainly caused by thermal 

expansion, which can be indicated by the thermal expansion ratio and flame thickness [26].  

The thermal expansion ratio (σ) is defined as the ratio of unburned gas density to that of burned gas, 

which is calculated as: 

σ ρ / ρu b  (6) 

where ρu and ρb, the unburned and burned gas densities, respectively, can be obtained via 

thermodynamic calculation. The higher the density jump is, the stronger the destabilization becomes. 

Flame thickness (δ) can be determined by the temperature profile of the flame structure [40], which is 

calculated as: 

max

δ
(d / d )

ad uT T

T x


  (7) 

where Tad is the adiabatic temperature; Tu is the unburned gas temperature; and (dT/dx)max is the 

maximum slope of the temperature profile. The (dT/dx)max is determined using the premixed flame 

code PREMIX of the CHEMKIN-PRO package and the GRI3.0 Mechanism is used [44], since these 

where in close agreement with the present experimental laminar burning velocity data. With the 

decrease in flame thickness, the hydrodynamic instability increases due to the weaker influence of 

curvature and the enhanced intensity of induced baroclinic torque [26]. 

2.4. Lewis Number 

The diffusive-thermal instability is caused by the competing effects of heat conduction and the 

reactant diffusion [45] and can always be quantitatively determined using the Lewis number (Le), 

which is defined as the ratio of the heat diffusivity to mass diffusivity of the deficient reactant to the 

abundant inert [46] and is used to describe diffusive-thermal instabilities, LeH2 and LeCO can be 

calculated as expressed by the equation: 

λ /

ρ
pC

Le
D




 (8) 

where  λ ρpC   is the thermal diffusivity; Cp is the specific heat at constant pressure; λ is the heat 

conductivity; ρ is the density of the unburned mixture; and D is the mass diffusivity. For premixed 

syngas flames, two fuels exist in the reactants, and the Lewis number can thus be evaluated using the 

method by Law et al. [30], which is expressed as: 

2 2H H CO CO( 1) ( 1)
1

q Le q Le
Le

q

  
   (9) 

where q = qH2 + qCO is the total heat release, with qi (i refers to H2 or CO) being the non-dimensional 

heat release associated with the consumption of species i, defined as qi = QYi/CpTu, where Q is the heat 
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of reaction; Yi is the supply mass fraction of species i; cp is the specific heat of the unburned gas; and 

Tu is the unburned gas temperature. LeH2 and LeCO are the Lewis numbers of H2-air mixture and CO-air 

mixture at φH2 and φCO, respectively, where φH2 = (nH2/nA)/(nF/nA)st, φCO = (nCO/nA)/(nF/nA)st are the 

H2, and CO-based equivalence ratios, respectively, nH2, nCO, nF, nA are the mole fractions of H2, CO, 

fuel and air in the reactant mixtures [33,37]. The diffusive-thermal instability is enhanced with the 

decrease of Lewis number [26]. 

3. Results and Discussion 

3.1. System Validation and Laminar Burning Velocity 

Published results of laminar burning velocities of H2/CO/air mixtures at 0.3 MPa are lacking, but 

there are lots of published experiment data of laminar burning velocity with hydrogen fractions of 10% 

and 50% at 0.1 MPa.  

To validate our experimental results, the additional laminar burning velocity of syngas/air mixtures 

at the pressure of 0.1 MPa has been measured and compared with previously published results. Figure 2 

shows the measured laminar burning velocity of H2/CO/air mixtures compared with those of previous 

studies [42,47–52]; all the data were measured with a spherically propagating flame at Pu = 0.1 MPa and 

all data are in good agreement. This proves the correctness of the data obtained in this investigation. 

Figure 2. Comparison of measured unstretched laminar burning velocities and previously 

published results for 10%H2-90%CO and 50%H2-50%CO mixtures at Pu = 0.1 MPa. 

 

Figure 3 gives the unstretched laminar burning velocity versus hydrogen fraction for mixtures with 

various equivalence ratios at Pu = 0.3 MPa. The data of Park [39] for a 50%H2/50%CO mixture at  

φ = 1.0 is also plotted in the figure and present work gives value consistent with Park’s experimental 
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results. Simulations using the GRI Mesh 3.0 mechanism are also plotted in the figure and in general 

give good predictions on the unstretched laminar burning velocities of H2/CO mixtures, although the 

predicted results are higher than the experimental results for some cases, so the mechanism is also used 

to ccalculate (dT/dx)max for getting the flame thickness. The unstretched laminar burning velocity of 

H2/CO mixtures increases with increasing hydrogen fraction and equivalence ratio. 

Figure 3. Unstretched laminar burning velocities of H2/CO mixtures at Pu = 0.3 MPa. 

  

3.2. Flame Morphology 

Figures 4 and 5 show the Schlieren images of premixed syngas-air flames with R = 20 mm with 

different hydrogen fractions and equivalence ratios, respectively. As shown in Figure 4, for the syngas 

premixed flame with φ = 0.4, the geometric centre of the flame was obviously lifted up from the initial 

position (namely, the ignition position) when the hydrogen fraction is below 50%, which means that 

the body-force instabilities are enhanced. Flames with lower hydrogen fractions show the body-force 

instabilities more evidently. With the increase of hydrogen fraction for all the equivalence ratios, more 

cells appear on the flame front. When the hydrogen fraction is higher than 50%, as shown in Figure 5, 

small cells become uniform over the entire flame front, which means the destabilisation propensity 

tends to be progressively promoted. From the observation, the cellular instability phenomena are 

obviously enhanced with the increase in hydrogen fraction for the same equivalence ratio.  

However, for the same hydrogen fraction, the effects of equivalence ratio on the variation of cellular 

instability vary. As shown in Figure 5, with hydrogen fractions above 50%, the flame tends to become 

more unstable with the decrease in equivalence ratio. This phenomenon is similar to seen for natural 

gas-hydrogen-air premixed flames reported by Huang et al. [35].  

However, with hydrogen fractions below 50%, the flame tends to be more stable with the decrease in 

equivalence ratio, as shown in Figure 4. This observation has never been reported in any previous study. 
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Figure 4. Schlieren pictures for flames with hydrogen fractions from 10% to 50% at 0.3 MPa 

at different equivalence ratios for 20 mm radius. 

 

Figure 5. Schlieren pictures for flames with hydrogen fractions from 60% to 100% at  

0.3 MPa at different equivalence ratios for 20 mm radius. 
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A detailed process of the propagation of the flames with hydrogen fraction of 30% is shown in 

Figure 6. For the premixed syngas flame with hydrogen fraction of 30% and φ = 0.4, several large 

cracks are induced by the ignition disturbances during the early propagation period, and those cracks 

continue to develop without branching as the flame further propagates. For the premixed syngas flame 

with φ = 0.6 to 1.0, the large cracks formed during the early propagation period become branched as 

the flame further propagates, and the phenomenon becomes more apparent at higher equivalence 

ratios. The flame tends to be more unstable with the increasing equivalence ratio. Instead, the cellular 

instabilities of syngas premixed flames decrease with the increase in equivalence ratio with the 

hydrogen fraction of 80%, as shown in Figure 7. To give a qualitative explanation, the parameters 

reflecting flame instability were calculated. 

Figure 6. Schlieren pictures for flames of 30%H2-70%CO at 0.3 MPa at different equivalence 

ratios for different radius. 

 

Figure 7. Schlieren pictures for flames of 80%H2-20%CO at 0.3 MPa at different equivalence 

ratios for different radius. 
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Figure 8 illustrates the variation in Lewis number with hydrogen fraction at different equivalent 

ratios at a pressure of 0.3 MPa. The Lewis number generally decreases with the increase in hydrogen 

fraction. The results indicate that the diffusive-thermal instability of lean syngas premixed flame is 

enhanced with the increase in hydrogen fraction. In addition, with the increase in equivalence ratio 

with hydrogen fractions less than 50%, the Lewis number nearly remains at the same value. For the 

premixed syngas flames with hydrogen fractions of more than 50%, the Lewis number at the same 

hydrogen fraction decreases with the decrease in equivalence ratio, which implies that the flame of low 

equivalence ratio is more unstable in terms of diffusive-thermal instability compared with the flame of 

relatively high equivalence ratio. 

Figure 8. Lewis number plotted against hydrogen fraction. 

 

Figure 9 shows the flame thickness versus the hydrogen fractions for different equivalence ratios at 

0.3 MPa. The flame thickness decrease significantly with the increase in hydrogen fraction and 

equivalence ratio. The decreased flame thickness results in an enhancement of the flame’s destabilising 

propensity because of the weakened influence of curvature on the flame front as well as the 

strengthened baroclinic torque intensity, so the hydrodynamic instability is enhanced with the increase 

in hydrogen fraction and/or equivalence ratio for decreasing flame thickness. 

Figure 9. Flame thickness plotted against hydrogen fraction. 
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Figure 10 shows the thermal expansion ratio versus the hydrogen fractions for different equivalence 

ratios at 0.3 MPa. For a specific equivalence ratio, the thermal expansion ratio decreases 

inconspicuously with the increase in hydrogen fraction. In addition, for a specific hydrogen fraction, 

the thermal expansion ratio increases with the increase in equivalence ratio. The results indicate the 

hydrodynamic instability is enhanced with the increase in equivalence ratio. Based on the above 

discussions, for a specific hydrogen fraction, the hydrodynamic instabilities of syngas premixed flames 

are enhanced with the increase in equivalence ratio for both decreasing flame thickness and increasing 

thermal expansion ratio. 

Figure 10. Thermal expansion ratio plotted against hydrogen fraction. 

 

In general, when the hydrogen fraction is less than 50%, the enhancement of the cellular 

instabilities of the syngas premixed flame with the increase in equivalence ratio can be attributed to the 

dominant effect of the hydrodynamic instabilities. Furthermore, compared with the inconspicuous 

variation in thermal expansion ratio, the variation in flame thickness induced by the hydrogen fraction 

dominantly influences the intensity of hydrodynamic instabilities. At hydrogen fractions greater than 

50%, the decline in the cellular instabilities induced by the increase of equivalence ratio can be 

attributed to the reduced diffusive-thermal instabilities rather than increasing hydrodynamic 

instabilities. With the increase in hydrogen fraction, the enhancement of the cellular instabilities of 

H2/CO/air premixed flames results from the diffusive-thermal instability as the Lewis number 

decreases and the hydrodynamic instability as the flame thickness decreases. 

3.3. Critical Flame Radius and Critical Peclet Number 

During the initial flame propagation period, the cellular instabilities are suppressed by the strong 

stretch, and the suppressions decline and even extinguish as the flame expands. The “critical flame radius” 

(which is defined as the flame radius at which cells are smaller than the branched cracks and are no longer 

suppressed) has been employed to denote the onset of cellularity. As shown in Figure 11, the point at which 

the flame speed begins to accelerate rapidly with decreasing stretch defines a critical flame radius 

because the onset of cellularity is the primary reason of the self-acceleration of the flame [53,54]. 
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Figure 11. Stretched flame speed versus stretch rate. 

 

Figure 12 shows the critical flame radius versus the hydrogen fractions at different equivalence 

ratios. The data of Park [39] for a 50%H2/50%CO mixture at φ = 0.8 and 1.0 is also plotted in the 

figure and the same trend is found. The critical flame radius evidently decreases with the increase in 

hydrogen fraction and increases with the increase in equivalence ratio at hydrogen fractions greater than 

50%. However, the critical flame radius decreases with the increase in equivalence ratio at hydrogen 

fractions lower than 50%. This phenomenon is consistent with the observation of flame front photos. 

Figure 12. Critical flame radius plotted against hydrogen fraction. 
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the hydrogen fraction. Critical Peclet number is influenced by the combined effects of critical flame 

radius and flame thickness. The critical Peclet number decreases with the increase in hydrogen fraction 

at hydrogen fractions lower than 50%. However, with the increase in hydrogen fraction at hydrogen 

fractions greater than 50%, the critical Peclet number increases with equivalence ratios of 0.8 and 1.0, 

and the critical Peclet number changes little with an equivalence ratio of 0.6. 

Figure 13. Critical Peclet number plotted against hydrogen fraction. 

 

4. Conclusions  

In the present work, the cellular instabilities of different hydrogen/carbon monoxide blends were 

studied using the outwardly propagating flame in a constant volume combustion bomb at elevated 

pressure and room temperature. The laminar burning velocities of syngas/air mixtures were measured 

and compared with previously published results and computed results and good agreements are 

obtained. The major conclusions of the study are as follows: 

(1) When hydrogen fractions are above 50%, the flame tends to be more stable as the equivalence 

ratio increases; however, the instability increases for flames of lower hydrogen fractions. 

(2) For the premixed syngas flames with hydrogen fractions lower than 50%, the effects of 

equivalence ratio on the variation in the Lewis number can be neglected. With the increase in 

equivalence ratio, the cellular instabilities become more evident because the enhanced 

hydrodynamic instabilities become the dominant effect. 

(3) For the premixed syngas flame with hydrogen fractions greater than 50%, the decline in 

cellular instabilities induced by the increase in equivalence ratio can be attributed to the 

reducing diffusive-thermal instabilities rather than the increasing hydrodynamic instabilities. 

(4) For the premixed syngas flame, the enhancement of cellular instabilities induced by the 

increase in hydrogen fraction is the result of both increasing diffusive-thermal and increasing 

hydrodynamic instabilities. 
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