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Abstract: The power converter is one of the essential elements for effective use of 

renewable power sources. This paper focuses on the development of a circuit simulation 

model for maximum power point tracking (MPPT) evaluation of solar power that involves 

using different buck-boost power converter topologies; including SEPIC, Zeta, and  

four-switch type buck-boost DC/DC converters. The circuit simulation model mainly 

includes three subsystems: a PV model; a buck-boost converter-based MPPT system; and a 

fuzzy logic MPPT controller. Dynamic analyses of the current-fed buck-boost converter 

systems are conducted and results are presented in the paper. The maximum power point 

tracking function is achieved through appropriate control of the power switches of the 

power converter. A fuzzy logic controller is developed to perform the MPPT function  

for obtaining maximum power from the PV panel. The MATLAB-based Simulink 

piecewise linear electric circuit simulation tool is used to verify the complete circuit 

simulation model. 
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1. Introduction 

Solar energy is the most abundant resource on Earth, and is expected to become one of the primary 

energy supply resources in the future [1,2]. Applications of solar energy are widespread in industrial, 

commercial, and military applications. However, effective use of solar energy depends on the 

technologies of solar power management systems. A power converter for maximal power point 

tracking (MPPT) and voltage or current regulation is inserted between the solar cell panel and the load 

to control power flow. This power converter directly affects the efficiency and performance of the 

solar power management system. 

To maximize the use of available solar power drawn from the solar panel and to widen the 

applications of solar energy, several studies have investigated the design and applications of  

buck-boost converters [3–7]. Few studies have developed buck-boost converters for portable 

applications [4,5], whereas the study in [6] proposed a buck-boost-cascaded converter for high-power 

applications such as fuel-cell electric vehicles. Furthermore, an extensive analysis and design of Li-ion 

battery charging with the use of a four-switch type synchronous buck-boost power converter was 

presented in [7]. In the current research, we conducted a comparative study for MPPT evaluation by 

using different buck-boost converter topologies through circuit simulation, including Zeta, a single-ended 

primary-inductor converter (SEPIC), and four-switch type synchronous buck-boost converters.  

The MPPT function is usually incorporated in solar power management systems to ensure that  

the maximum available power is received from the solar photovoltaic panel. Recently, the fuzzy logic 

controller has received increased attention from researchers for converter control and MPPT design [8–14]. 

Details and issues of the design of PV generators interfaced with MPP-tracking converters were 

reported in [15,16]. The results of [15,16] conclude that current-fed converters should be used for 

MPPT evaluation.  

In the current study, we focused on circuit simulation for the buck-boost converter-based MPPT 

system. The primary purpose is to establish a circuit simulation environment so that the performance 

of the buck-boost converters and MPPT systems can be evaluated quickly without the need of any 

hardware systems and instruments. Dynamic analyses of the current-fed buck-boost converters 

(including SEPIC, Zeta, and four-switch type converters) were conducted. The results indicated that 

the small signal dynamics from control to input-voltage of the buck-boost converters are highly 

dependent on the operating region of the PV system and the duty ratio command for the converter. 

Following the dynamic analyses of the buck-boost converter systems, buck-boost converter-based 

MPPT systems were developed using the fuzzy logic to perform the MPPT function. Circuit 

simulations for the complete buck-boost converter-based MPPT system were successfully verified in 

the MATLAB/Simulink PLECS environment. 

2. PV Model 

Figure 1 presents the widely used single-diode equivalent circuit model to represent the 

characteristics of the PV panel for analyzing and simulating the PV system. The circuit model 
represents the PV panel as a current source phI  in parallel with a single diode and a shunt resistor PR  
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as well as a series resistor SR . The current PVI  and voltage PVV  from the PV panel is characterized by 

the following Equations (1) and (2): 

PV S PV
PV ph D

P

V R I
I I I

R


    (1)

0
( )

exp 1PV S PV
D

q V R I
I I

nAKT

        
 (2)

where phI is the current generated by the incident light, DI  is the diode current, 0I  is the reverse 

saturation current, q  is the electron charge (1.602 × 10−19 C), K  is the Boltzmann constant  

(1.38 × 10−23 J/K), T  is the operating temperature of the cell in Kelvin (K), A  is the diode ideality 

constant, and n  is the number of diodes in series to form the single-diode model. The current source 

phI  mainly depends on the irradiation level of sun light as well as the operation temperature of the 

solar panel. 

Figure 1. Single-diode equivalent circuit model.  
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In this study, the Solarex MSX60 PV module was selected to conduct the design and circuit 

simulation. The key characteristics of the PV panel using previously published parameters [17] are 

listed in Table 1.  

Table 1. Characteristics of the Solarex MSX 60 PV panel operate at 20 °C.  

Parameter Unit Value 

Irradiation Level, G 2W/m    1000  
Temperature, T °C  20  

Open Circuit Voltage V 21.5  
Short Circuit Current A 3.788  
Voltage, Max Power V 17.4  
Current, Max Power A 3.55  

Maximum Power W 61.77  
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3. Buck-Boost Converter 

The buck-boost converter can convert the supply voltage source into higher and lower voltages at 

the load terminal. Several commonly used buck-boost converter topologies are shown in Figure 2. The 

Cuk converter in Figure 2a is an inverting type power converter (output voltage polarity is reversed), 

and the Zeta, SEPIC, and four-switch type topologies represented in Figure 2b–d are non-inverting 

buck-boost converters. The voltage at the load terminal is controlled by continuously adjusting the 

duty ratio of the power switch of the buck-boost converter. Because the voltage polarity at the load end 

is opposite to that at the source terminal of the Cuk converter, we examined only the non-inverting 

type buck-boost converter topologies (Figure 2b–d) in this study. Zeta and SEPIC converters contain 

two inductors, two capacitors, a diode, and a metal-oxide-semiconductor field-effect transistor 

(MOSFET) power switch. In addition, the four-switch type converter in Figure 2d is a synchronous 

buck-boost converter, containing an inductor, a capacitor, and four MOSFET power switches. The 
switches 1Q  and 3Q  work as one group, and 2Q  and 4Q  work as another group. When 1Q  and 3Q  are 

turned on, the switches 2Q  and 4Q  are turned off, and vice versa. In a steady-state condition, the 

output voltage of the non-inverting type buck-boost converter is: 

1O S

D
V V

D



 (3)

Thus, we can regulate the output voltage to higher or lower voltages compared with the source 

voltage by appropriately controlling the operating duty ratio for the MOSFET power switches. 

Figure 2. Buck-Boost Converters. (a) Cuk converter; (b) Zeta Converter; (c) SEPIC 

Converter; (d) Four-switch type converter. 
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(c) (d) 

To investigate the performance of the buck-boost converters, dynamic analyses of the non-inverting 

type converters (Figure 2b–d) were conducted first. The purpose of MPPT is to obtain the maximum 

power from the solar system. To maximize the efficiency of the buck-boost converter, the system is 
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designed such that the converter is operated in continuous conducting mode. Therefore, we will only 

discuss the dynamic model of the converters operated in continuous conducting mode. According 

to [16], the converter is fed by a current source. The SEPIC buck-boost converter powered by a current 
source is shown in Figure 3. The input of the system is the source current SI . The voltage at the input 

terminal, 
INS CV v , is the output of the system for dynamic analysis. The resistor Sr  represents the 

internal resistance of the power source. An input capacitor INC  is included in this study. For 

simplicity, a resistive load is considered in this study. Using the variables defined in Figure 3 and 
taking the current flowing through the inductor Li  and the voltage across the capacitor Cv  as the state 

of the converter, the averaged state-space model of the dynamics of the SEPIC converter is: 
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(4)

Figure 3. The current-fed SEPIC buck-boost converter circuit. 
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For investigating the performance of the buck-boost converter, dynamic analyses for duty-cycle 

variations were conducted. A small signal model was obtained by applying a small disturbance to the 

system and ignoring second order terms. If the duty cycle with a small disturbance is D D d   , the 

corresponding state and system output variations are L L Li i i   , C C Cv v v   , and SS SV V v   . 

Variables   and   represent the mean (or steady state) and variation of signal  . The small signal 

dynamic model driven by the small disturbance of duty cycle d , (the transfer function from control d  

to the input-voltage Sv ), is:  
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(5)

Using the MATLAB symbolic tool, the transfer equation of the system (5) can be rewritten as: 
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The gain and coefficients of the transfer Equation (6) are listed below: 
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From Equation (6), the dynamic behavior of the converter depends on the duty ratio command  

( D ) and the source resistance ( Sr ). The duty ratio command affects the pole and zero locations of  

the small signal dynamics, while the source resistance only affects the pole locations of the system.  

If the converter is powered by solar modules, the resistance may represent the dynamic resistance of the 

solar system. The Bode plots of the small signal dynamics Equation (5) of the SEPIC converter with

1 2 470 HL L   , 2 1000 FINC C   , 1 200 FC   , and 6 LR    are shown in Figure 4. Figure 4a 

contains the results of buck operations with different source resistance. The lower source resistance  

( 0.6 Sr   ) represents that the solar module is operated in the constant voltage region, while the 
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higher source resistance ( 60 Sr   ) represents that the solar module is operated in the constant 

current region. The results for boost operations are shown in Figure 4b. The results indicate that the 

source resistance has a profound effect on the dynamic characteristic of the system. 

Figure 4. Bode plots of the SEPIC converter. (a) 0.4D  ; (b) 0.6D  . 
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Using the similar techniques, a state-space representation of the dynamics of the current-fed Zeta 

converter, as shown in Figure 5, operated in continuous conducting mode can be obtained as: 
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Figure 5. The current-fed Zeta buck-boost converter circuit. 
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The small signal dynamic model driven by the small disturbance of duty cycle d  is: 
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(8)

The dynamics of Equation (8) expressed in transfer function form is: 
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The gain and coefficients of the transfer Equation (9) are listed below: 
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From Equation (9), it is clear that the source resistance will not affect the zero locations of the 

dynamic system. The Bode plots using the same parameters for the SEPIC converter are shown in 

Figure 6. The results in Figure 6 also indicate that the dynamic behavior of the converter is highly 

dependent on the magnitude of the source resistance. 
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Figure 6. Bode plots of the Zeta converter. (a) 0.4D  ; (b) 0.6D  . 
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Similarly, a state-space form of the dynamics of the current-fed four-switch type converter, as 

shown in Figure 7, operated in continuous conducting mode is given by: 
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Figure 7. The current-fed four-switch type buck-boost converter circuit. 
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The small signal dynamic model from d  to Sv  is: 
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The dynamics of system Equation (11) expressed in transfer function form is: 
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The Bode plots of the four-switch type converter are shown in Figure 8. Obviously, the results in 

Figure 8 also indicate that the dynamic behavior of the converter highly depends on the magnitude of 

the source resistance.  

Figure 8. Bode plots of the Four-Switch type converter. (a) 0.4D  ; (b) 0.6D  . 
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From the above discussion, the small signal dynamics from control to input-voltage of the  

buck-boost converters considered in this study are highly dependent on the internal resistance of the 

power source. That is, if the converter is powered by a solar system, the dynamic characteristics 

depend on the operating region of the solar system. All of the three buck-boost converters are used for 

the circuit simulation in this study. For simplicity and easy of demonstration, resistive loads are 

considered in the circuit simulations. The results are presented in the following sections.  
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It is worth noting that if the control dynamics to output-voltage of the converters are considered, 

both poles and zeros of the system depend on the source resistance and the duty ratio command. 

Moreover, the system contains right-half plane zeros. The number and locations of the right-half plane 

zeros also depend on the source resistance and the duty ratio command. The right-half plane zeros 

cause constraints on the design of control system. Control of the output-voltage of the converter is not 

in the scope of this paper. Therefore, we will not discuss the details of the dynamics of the system from 

control to output-voltage of the converter in this paper. 

4. Buck-Boost Converter-Based MPPT System 

The operating point of the PV panel varies when the load condition varies. The maximum power 

point may be achieved through appropriate load selection. In most cases, the load is not likely to be 

optimal (regarding maximum power delivered from the PV panel). Maximum power from the PV 

panel may be attained by incorporating an intelligent mechanism to alter the load resistance observed 

from the PV panel. Power converters are widely used to adjust operating conditions to attain the 

maximum power point.  

Figure 9 depicts the incorporation of a buck-boost converter into a PV system. The input voltage is 

controlled through appropriate adjustments of the duty ratio of the power switches of the converter. 

Assuming that the buck-boost converter is operating in the continuous conducting mode with 100% 

efficiency, the relationship of the voltage and current at the load terminal and those at the PV panel 

under steady-state conditions are: 

1o PV
D

V V
D
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o PV
D

I I
D


  (13)

Based on Ohm’s law, the load resistance can be expressed as: 
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Thus, the equivalent resistance observed from the PV panel, denoted as PVR , is: 
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Equation (15) implies that for a certain load resistance LR , the equivalent resistance PVR  depends 

only on the duty ratio of the buck-boost converter. Hence, we may adjust the duty ratio D to achieve 

maximum power transfer from the PV panel through an optimal mechanism. Figure 10 presents the 

power characteristics of the PV system and power received at the load terminal with different duty 

ratios for the power switches of the converter. The power developed at the load terminal is: 

2

22 2 21
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PV
o PV PV

L
L L L PV
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V V VDD
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R R D R R

 
         

 (16)

The intersection of the PV power curve (blue) and the power curve for the load (red) was the 

operating point of the PV system. The maximum power point may be achieved by applying the 
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appropriate duty ratio for the power converter. In this study, a fuzzy logic controller was designed to 

perform the MPPT function. 

Figure 9. PV system with buck-boost converter incorporated. 
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Figure 10. Power characteristics of the PV system. 
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5. Fuzzy Logic MPPT Controller 

The fuzzy logic control system is depicted in Figure 11, and the input variables of this controller are 
the slope of the power variation ( )E n  and the change of the slope ( )E n  defined as: 

( ) ( 1)
( )

( ) ( 1)PV PV

P n P n
E n

V n V n

 


 
 (17)

( ) ( ) ( 1)E n E n E n     (18)

The output variable of the fuzzy logic controller is the increment D  of the duty-ratio command 

for the power switches. Based on the characteristics of the PV model and the features of the  

buck-boost converter (Figure 10), a five-term fuzzy set, Negative Big (NB), Negative Small (NS), 

Zero (ZE), Positive Small (PS), and Positive Big (PB), were defined to describe each linguistic 

variable. The fuzzy rules for this MPPT design are listed in Table 2. Figure 12 describes  

the membership functions for the input and output variables. The Mamdani fuzzy method was used in 

this buck-boost converter-based circuit simulation, in which the maximum of the minimum 
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composition technique was used for the inference, and the center of gravity was used for the 

defuzzification process.  

Figure 11. Fuzzy logic controller for the MPPT design. 
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Table 2. Fuzzy rule table. 

Fuzzy rules 
E(n) 

NB NS ZE PS PB

∆E(n) 

NB ZE PS PS ZE NS
NS PB PS ZE ZE NS
ZE PB PS ZE NS NB
PS PS ZE ZE NS NB
PB PS ZE NS NS ZE

Figure 12. Membership functions for the input and output variables. 
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The circuit simulation model for the buck-boost converter based MPPT system and its PLECS 

circuit are illustrated in Figure 13. Three resistive loads (3  , 4.9  , and 8  ) were used to evaluate 

the performance of the fuzzy controller. 

Figure 13. Circuit simulation model for buck-boost converter based MPPT system with its 

PLECS circuit. 

 

6. Results and Discussion 

The voltage and current outputs from the PV model for the SEPIC buck-boost converter MPPT 

system loaded with different resistive loads are presented in Figures 14–16. Figure 14 shows the 

results for the 3   resistive load. Figure 14a represents the power characteristics of the PV panel and 

power curve for different duty ratios. The analytical value of the duty ratio for the maximum power 

point is 0.44 for the 3   load resistor. The voltage and current from the PV model are 17.44 V and 

3.54 A, respectively. The steady-state duty ratio from the fuzzy controller is 0.4428 (Figure 14b).  

The results perfectly matched the maximum power point, as expected.  

Figure 14. Circuit simulation results with 3   load. (a) Power characteristics; (b) Duty 

ratio command; (c) Output voltage from PV model; (d) Output current from PV model. 
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Figure 14. Cont. 

(c) (d) 

The results for 4.9   and 8   loads are shown in Figures 15 and 16. As mentioned, the maximum 

power points were obtained. Similar results were achieved for Zeta and four-switch type buck-boost 

converters. The results of the MPPT circuit simulations are summarized in Table 3. The maximum 

power points were almost perfectly reached for any combination of the power converters and loads 

discussed in this study.  

Figure 15. Circuit simulation results with 4.9   load. (a) Power characteristics; (b) Duty 

ratio command; (c) Output voltage from PV model; (d) Output current from PV model. 
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(c) (d) 
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Figure 16. Circuit simulation results with 8   load. (a) Power characteristics; (b) Duty 

ratio command; (c) Output voltage from PV model; (d) Output current from PV model. 

(a) (b) 

(c) (d) 

Table 3. Summaries of the MPPT circuit simulations results. 

Converter Zeta SEPIC Four-Switch 

Load 3   4.9   8   3   4.9  8   3   4.9   8   

PVV  (V) 17.473 17.419 17.378 17.448 17.377 17.418 17.33 17.425 17.363

PVI  (A) 3.5425 3.5462 3.5529 3.54 3.5548 3.5464 3.5632 3.545 3.5577

PVP  (W) 61.77 61.772 61.773 61.768 61.772 61.771 61.75 61.772 61.772

Duty Ratio 0.4428 0.5031 0.5638 0.4428 0.5038 0.5635 0.4473 0.5050 0.5667

The results shown in Table 3 demonstrate the success of the MPPT simulation for different load 

conditions. Another important feature of the MPPT function is that it can adapt to variations in 

irradiance. Circuit simulations for variations of the irradiation levels were also conducted in this study. 

The sequence of the irradiation level was 1.0 0.8 0.6 0.8 1.0G G G G G          in this 

simulation. A 6   load was used for this simulation to ensure that buck and boost operations were 

covered in the simulation. The duration for each irradiation level was one second. The results for using 

SEPIC for MPPT function are shown in Figures 17 and 18. Figure 17a shows the voltage and current 

from the PV model. The corresponding duty ratio commands are given in Figure 17b. Output power 

from the PV model and power generated at the load terminal are shown in Figure 18a. Results in 
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Figure 18b are the trajectories of power versus PV voltage during the irradiation variation simulation. 

The simulation results reveal that maximum power points are almost perfectly reached after  

short transient. 

Figure 17. Circuit simulation for irradiation variations using SEPIC converter. (a) Voltage 

and current from PV model; (b) Evolution of duty ratio commands. 

(a) (b) 

Figure 18. (a) Power output from PV model and power at the load terminal; (b) Power 

output from PV model versus PV voltage. 

(a) (b) 

Circuit simulations for irradiation variations using Zeta and four-switch type converters were also 

conducted. The results are presented in Figures 19 and 20. The results also show that maximum power 

points are reached.  

In summary, we have successfully developed and conducted the circuit simulation for solar power 

MPPT system using three different buck-boost converter topologies. We almost perfectly reach the 

maximum power point in all of the simulations. 
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Figure 19. Circuit simulation for irradiation variations using Zeta converter.  

(a) Voltage and current from PV model; (b) Power output from PV model and power at the  

load terminal.  

(a) (b) 

Figure 20. Circuit simulation for irradiation variations using four-switch type converter. 

(a) Voltage and current from PV model; (b) Power output from PV model and power at the 

load terminal.  

(a) (b) 

7. Conclusions 

This paper presents the development of a circuit simulation model for maximum power point 

tracking (MPPT) evaluation of solar power that involves using different buck-boost converter 

topologies including SEPIC, Zeta, and four-switch type buck-boost DC/DC converters. The circuit 

simulation model includes a PV model, a buck-boost converter-based MPPT system, and a fuzzy logic 

MPPT controller. Circuit simulations for the complete buck-boost converter-based MPPT systems 

using SEPIC, Zeta, and four-switch type converter topologies were successfully verified in the 

MATLAB/Simulink PLECS environment.  

The circuit simulation framework developed in the paper provides the possibility of investigation 

and evaluation of a solar power MPPT system without the need of any hardware system and instruments. 

It is especially useful in the early stage of the development of a solar power management system. It can 

also be used for evaluating the performance of other power converters and MPPT algorithms. 
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