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Abstract: A high penetration of wind energy into the electricity market requires a parallel 

development of efficient wind power forecasting models. Different hybrid forecasting 

methods were applied to wind power prediction, using historical data and numerical 

weather predictions (NWP). A comparative study was carried out for the prediction of  

the power production of a wind farm located in complex terrain. The performances of  

Least-Squares Support Vector Machine (LS-SVM) with Wavelet Decomposition (WD) 

were evaluated at different time horizons and compared to hybrid Artificial Neural 

Network (ANN)-based methods. It is acknowledged that hybrid methods based on  

LS-SVM with WD mostly outperform other methods. A decomposition of the commonly 

known root mean square error was beneficial for a better understanding of the origin of  

the differences between prediction and measurement and to compare the accuracy of the 

different models. A sensitivity analysis was also carried out in order to underline the 

impact that each input had in the network training process for ANN. In the case of ANN 

with the WD technique, the sensitivity analysis was repeated on each component obtained 

by the decomposition. 

Keywords: wind power forecasting; Least-Squares Support Vector Machine (LS-SVM); 

Artificial Neural Network (ANN); wavelet decomposition 
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1. Introduction 

The study of the methodologies for the optimal management of renewable power systems 

constitutes an important area of research for the efficient and profitable use of these sources [1,2].  

This issue is of particular importance for wind power [3–5]. The stochastic nature of wind and of 

meteorological conditions, with the consequent discontinuity of the production of wind energy, entails 

serious problems for the use of the resulting electrical energy in distribution networks. For these 

reasons, reliable forecasting of electrical power that will be used produced by a wind energy plant is a 

key issue for an efficient and profitable wider use of this type of renewable energy. 

Generally, statistical techniques give good results for short time predictions, while meteorological 

models are more suitable for long-term forecasts, as reported in [6]. The authors of [7] compared 

Autoregressive–moving-average model (ARMA) models, which perform linear mapping between 

inputs and outputs, with Artificial Neural Network (ANN) models and Adaptive Neuro-Fuzzy 

Inference Systems (ANFIS), which perform non-linear mapping. The results underline that high 

accuracy for long time horizon in the wind power forecasting is given by non-linear models as the ANN, 

as also shown in [8–17]. A review of previous studies, which report the application of ANN to  

short-term load forecasting, is given in [18]. 

Hybridization of ANN with other methods will produce very good forecasts [19–21]. In [20] an 

hybrid approach based on ANN and fuzzy logic technique is applied for wind power forecasts. In [21], 

an enhanced hybrid forecasting method that combines the persistence method, the back propagation 

neural network, and the radial basis function (RBF) neural network, was applied for short-term wind 

power prediction. The improvement of prediction performance is noticeable particularly for hybrid 

methods based on Wavelet Decompositions (WD) [22–26]. The interest in using wavelet-based 

approaches in wind power prediction is due to the non-stationary nature of wind speed; using WD the 

observed time series can be decomposed into approximate stationary components, allowing to 

separately modeling those components. Then the aggregate forecast may be obtained as a summation 

of the different predicted components. In [22] very short-term load predictions were based on a 

wavelet based neural network trained by an extended Kalman filter. 

The authors of [6,23] showed that hybrid methods based on the wavelet decomposition technique 

and Elman ANN are characterized by narrow error distributions, in particular for short time horizons. 

In [25], a hybrid approach based on the combination of WD, ANN and evolutionary algorithm,  

was successfully proposed for hourly wind power forecasting. 

Despite the good prediction performances of ANNs, they present disadvantages such as the 

tendency to overfit, and although the training data may be very well fitted, the resulting function hasn’t 

got a general value. Moreover, the ANN needs large computational resources for training. Recently the 

support vector machines (SVM) algorithm was successfully used as a novel powerful learning tool 

machine used for forecasting in several fields [27,28]. 

The SVM model has a similar functional form to ANN but has a better generalization performance, 

and a good ability to perform accurate predictions for a more general case and ease of use in training, 

therefore SVM can also model complex problems in the presence of data sets with several variables 

and with a limited set of experimental data for training. Those characteristics are due to the 

implementation of an approach based on Structural Risk Minimization (SRM) in SVM, while ANN 



Energies 2014, 7 5253 

 

 

uses an Empirical Risk Minimization (ERM). SRM minimizes an upper bound on the expected risk, 

whereas ERM minimizes the error on training data. In [29], a SVM model hybridized with the 

empirical mode decomposition (EMD) method and auto regression (AR) was implemented for 

electrical load forecasting. 

However, the application of SVM for wind power forecasting was discussed only partially and 

needs further investigation. In [30] a SVM model showed comparable accuracy and less computational 

time compared to ANN models using back propagation algorithms. 

In [31], a comparison between SVM and a multilayer perceptron (MLP) ANN was reported; the 

results underlined that the SVM approach outperforms the MLP model. In [32], a hybrid forecasting 

approach based on an adaptive time-frequency analysis method (ensemble empirical mode decomposition) 

and the SVM was implemented for forecasting the mean monthly wind speed of three wind farms; the 

proposed methodology appears to be a promising approach to forecast highly volatile and irregular 

time series. 

A variant of the standard SVM is the Least-Squares Support Vector Machines (LS-SVM)  

algorithm [28], in which the model formulation is simplified into a linear problem. Much easier and 

computationally simpler, with the same advantages of ANN and SVM, it has higher accuracy in most 

cases than conventional statistical models. In [33], the feasibility of using the LS-SVM model to 

forecast annual electric loads was examined. In [34], it was shown that LS-SVM outperforms the 

persistence models for 1-hour ahead wind speed prediction. 

Univariate LS-SVM, hybrid models by using ARMA and LS-SVM and multivariate LS-SVM 

models were implemented in [35] to perform the short-term (hourly) forecasting using the fuzzy 

aggregation and ―defuzzification‖ procedure. 

In addition to the selection of the statistical method, another key issue to maximize the accuracy of 

wind power predictions is the selection of input parameters, since poor predictions could be obtained 

by using wrong or insignificant input variables for the learning process [36]. 

The literature doesn’t go in depth into the need of a sensitivity analysis for the numerical weather 

predictions (NWP) data that will be used to identify the ones with the highest influence on the forecast 

results. In [37] the impact of variable selection on predicting energy produced by wind farms is discussed. 

In order to evaluate the effectiveness of each variable in the model output and to identify in a 

suitable manner the training data set for the forecasting model, an effectiveness factor could be used, 

implemented in literature for different applications of wind power prediction but still based on 

statistical learning methods [38–40]. 

In this work a hybrid method which combines LS-SVM with WD was compared with an approach 

based on ANN with WD for the prediction of the wind power produced by a wind farm located in 

Southern Italy at several time horizons, from one hour to one day. In particular, both historical and 

NWP data were decomposed into different frequency components by WD. The forecasting methods 

were applied for high and low frequency components and final predicted values for different frequency 

bands are combined to obtain the final wind power prediction for each time horizon. The analysis of 

wind power forecast errors is crucial in wind integration studies [41]. 

In the present work a decomposition of the commonly known root mean square error was 

beneficially used for a better understanding of the origin of the differences between prediction and 

measurement and to compare the accuracy of the different models. 
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2. Wind Farm Characteristics and Available Time Data 

The producer of a wind farm located in the South of Italy collected the time series data used in the 

present study. The plant was equipped with three wind turbines and located in a highly complex 

terrain, in a hilly area, with a significant influx of wind due to thermal gradients (breezes), and where 

geographical effects make wind speed predictions particularly difficult. 

The collected time data included the values of produced power, wind speed, temperature and 

pressure; the data was collected for a period of 5 years with a recorded measurement every 10 min [6], 

although the present wind forecasting models only consider the power produced in 1 year and the 

average value for the three turbines was calculated for the input vector. To verify the opportunity to 

use the averaged value, the correlation between the three turbines was analyzed by the estimation of 

the Pearson’s coefficient, calculated as the ratio between the covariance of two variables and the 

product of their standard deviations. This coefficient assumes a value equal to about 0.97 for each pair 

of turbines. 

The FFT (Fast Fourier Transform) analysis reported in [6], highlighted some frequency peaks 

corresponding to time intervals equal to half-day, a day, half-year, a year. The revealed periodicity 

may exert a significant influence on the forecasting of the power produced. The predicted data for 

weather evolution which was used in this study, were obtained using a mesoscale NWP model with a 

grid resolution of 7 km; it was initialized at 00:00 (ROME GMT) each day and supplied the NWPs for 

the next 72 h at 1 h intervals with the following variables: mean wind speed, wind direction, pressure, 

temperature and relative humidity, at a height of about 75 m from ground level. 

The weather forecasting data were available for 25 sites forming a square around the three turbines. 

As shown in [6], the frequency spectrum of the analyzed data shows the typical peaks 

corresponding to a period of half-day and day. Moreover, the pressure signal spectrum shows a 

significant peak at very low frequencies. The NWP data were used for the training of the models for 

the prediction of the power production. The five sites with the best correlation coefficients  

(called A–E), averaged over the different months were selected and only NWP data coming from these 

five sites were used for further calculations (more details are given in [6]). 

3. Input Data and Performance Evaluation 

In the proposed study, different models were combined for the prediction of the power produced by 

a wind farm using actual measured data and the forecast of the weather.  

Five forecast horizons (1 h, 3 h, 6 h, 12 h, 24 h) were considered. For each hour ―i‖ considered as 

the beginning time of the forecasting, the input vector was given by: 

The average value of the power produced by the three wind turbines in the previous 60 min respect 

to the hour ―i‖. Given P(k,t) the wind power for each turbine in the instant ―t‖, recorded every  

ten min, the average value for the three turbines is: 
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The hourly average value at the hour ―i‖ is given by: 

- The hourly wind speed values predicted by the NWP for the five best-correlated sites, as 

previously described, considers the time horizon of the forecast. For example, when the 

forecast horizon is 1 h, the 5 predicted wind speeds for each site for the next hour in respect to 

the beginning of the forecast will be considered; for a prediction using a 24 h forecast horizon, 

the input vector includes the predicted values for the next 24 h for each site (120 forecasted 

wind speeds). 

- The numerical weather parameters (pressure, temperature and humidity) that are predicted 

hourly by the NWP, like the predicted wind speed. 

For the wind power parameter Pm(i) the autocorrelation (ACF) and the partial autocorrelation 

(PAC) drastically decrease as the time lag increases, Lag 2 and 3 will not be considered because the 

PAC value is very close to the bounds of the 95% Confidence Interval of the PAC, as shown in Figure 1. 

Figure 1. Autocorrelation function (a) and partial autocorrelation function (b) plots for the 

wind power Pm. 

  

(a) (b) 

For the wind velocity and the weather parameters, Pearson’s correlation permits to determine which 

of these parameters are mostly related to the wind power and which should be considered. Figure 2 

shows that the Pearson’s coefficient of the humidity for each site is lower than 0.09 that indicates no 

correlation with the wind power [42]. The wind velocity and the pressure are the variables that 

correlate the most to the wind power. A detailed sensitivity analysis on the input parameters was also 

carried out in [6] in order to find those numerical weather parameters with the best impact on the 

forecast by using the Artificial Neural Network trained with the different combinations of the weather 

parameters. In this study two input vectors were used to allow us to underline which method permits to 

better reduce the error due to low correlated input parameters, as the humidity. In the present work the 

input vector is in the general form: 

xi = [v(A,i);… v(E,i) p(A,i)… p(E,i); T(A,i)… T(E,i); H(A,i)…H(E,i); Pm(i)] (3) 
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In particular, two different input vectors were used (Table 1): the input vector I given by  

[v(A,i);… v(E,i) p(A,i)… p(E,i); T(A,i)… T(E,i); H(A,i)… H(E,i); Pm(i)] and the input vector II that does 

not take into account humidity and it is given by [v(A,i);… v(E,i) p(A,i)… p(E,i); T(A,i)…T(E,i); Pm(i)]. 

Table 2 shows, for the generic time horizon ―i‖, the Type ―I‖ input vector. 

Table 1. Numerical weather parameters included in the input vectors. 

Input Vectors 

Numerical Weather Parameters Measured Data 

Site Speed  

vA, vB, vC, vD, vE 

Pressure  

pA, pB, pC, pD, pE 

Temperature  

TA, TB, TC, TD, TE 

Humidity  

HA, HB, HC, HD, HE 

Hourly average power  

Pm 

I X X X X X 

II X X X - X 

Table 2. Input/target scheme for input vector I. 

Horizon (Hours) Input Unit of Measurement Target (kW) 

L 

vA, i+1 … vA, i+l  

vB, i+1 … vB, i+l  

vC, i+1 … vC, i+l  

vD, i+1 … vD, i+l  

vE, i+1 … vE, i+l 

m/s 

Pt + 1 + …+ Pt + l 

pA, i+1 … pA, i+l  

pB, i+1 … pB, i+l  

pC, i+1 … pC, i+l  

pD, i+1 … pD, i+l  

pE, i+1 … pE, i+l 

mmHg 

TA, i+1 … TA, i +l  

TB, i+1 … TB, i+l  

TC, i+1 … TC, i+l  

TD, i+1 … TD, i+l  

TE, i+1 … TE, i+l 

°C 

HA, i+1 … HA, i+l  

HB, i+1 … HB, i+l  

HC, i+1 … HC, i+l  

HD, i+1 … HD, i+l  

HE, i+1 … HE, i+l 

% 

Pmi kW 

Forecasting models were applied with a training period of 8 months and with a testing period of  

4 months. The target used to evaluate model prediction is given by Pt(i,l), the sum of the hourly 

average powers Pm(r) during the forecast time horizon l, defined as: 

l

1

( , ) ( )
i

t m

r i

P i l P r


 

   (4) 

To evaluate the forecasting performance, the predicted wind power values were compared with the 

measured ones. For this aim, several statistical metrics were introduced, which explained the average 

deviations between forecasted and measured data. 
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Figure 2. Pearson’s correlation coefficient for weather parameters. 

 

The accuracy of the predictions was evaluated considering the normalized mean absolute 

percentage error. Therefore the statistical metrics were considered as follows: 
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where: 

i = generic hour of the predicted data; 

l = time horizon; 

M = number of predicted data, equal to 1896; 
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 , where T(i,l) is the predicted power at hour i for the time horizon l; 
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Max P i l

 , where Pt(i,l) is defined as Equation (4). 

The RMSE (Root Mean Square Error) can be decomposed in three different terms: the bias, the 

SDbias and the DISP (dispersion): 

RMSE
2
(l) = bias

2
(l) + SDbias

2
(l) + DISP

2
(l) (9) 

where SDbias and DISP are the amplitude and the phase errors. 

The amplitude error is due to an overestimation or underestimation of the measured data even if the 

prediction correctly describes the temporal evolution of the wind power. The phase error is due to a 
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time shift of the predicted values in respect to the real data that occurs if the amplitude of the forecast 

is right, but arrives too early or too late. 

The SDbias and DISP are defined as follows: 

Standard deviation bias bias T PSD (l) σ (l) σ (l)   (10) 

Dispersion  DISP( ) 2σ ( )σ ( ) 1T P TPl l l R   (11) 

where: 

 σT(l) = standard deviation of  liTN ,  

 σP(l) = standard deviation of  liPN ,  

 
TPR  = the cross-correlation coefficient between  liTN ,  and  liPN ,  

4. The Least Squares Support Vector Machine Model 

The LS-SVM method was introduced by [28], as a modified form of SVM of [27]. Given a training 

set of N data points 
N

it ixliP 1)}(),,({  , where )(ix  is the i-th input data and ),( liPt  is the i-th output 

data defined in Equation (4). The following regression model can be constructed by using ( ( ))x i , 

nonlinear function mapping of the input space to a higher dimensional space: 

1( , ) ( ( )) , 1,...,tP i l w x i b i N    (12) 

where w is the weight vector and b1 is the bias term. 

To transform the above regression equation into a quadratic optimization problem with constraint is 

the equivalent to minimize a cost function. More details are reported in [28]. Radial Basis Function 

kernel RBF is used as the kernel function. The LS-SVM is tuned by searching the optimal 

regularization ―kernel parameters‖ as well as the model order, using a 10-fold cross-validation (CV) 

procedure [28]. 

5. The Artificial Neural Network Method 

An Elman ANN was implemented. This is a feed-forward network with a feedback connection from 

the first-layer output to the first layer input, thus enabling the detection and generation of time-varying 

patterns [7]. This characteristic is of great importance as the time-length of the prediction increases. 

The used scheme consists of three layers of neurons. The number of neurons in each layer is reported 

in Table 3. After an optimization process oriented to minimize the Mean Square Error, it was verified 

that for the hidden layer (layer 2) the best value corresponds to the mean of the neurons between  

the input and output layer [43]. In the first layer the hyperbolic tangent sigmoid transfer function 

(TANSIG) [44] was applied and in the second layer the linear transfer function (PURELIN) [45] was used. 

The ―gradient descent weight and bias‖ were used as learning function (LEARNGD) [46] to 

determine how to adjust the neuron weights to maximize performance. 

  



Energies 2014, 7 5259 

 

 

Table 3. Elman network parameters used in the training process. 

Number of layers 
Input vector I Input vector II 

3 3 

Neurons (layer 1) 

l = 1 h 21 16 

l = 3 h 31 26 

l = 6 h 61 51 

l = 12 h 121 101 

l = 24 h 241 201 

Neurons (layer 2) 

l = 1 h 11 8 

l = 3 h 16 13 

l = 6 h 31 26 

l = 12 h 61 51 

l = 24 h 121 101 

Neurons (layer 3)—output 1 1 

6. Wavelet Decomposition Technique 

The time series of wind speed, temperature and pressure data include information on daily, seasonal 

and long-term behaviors; to improve the forecasting model performance, it should be suitable to use 

the original data fitted into predetermined frequency (or time period) bands. For this purpose, the 

forecasting models can be based on the Wavelet decomposition (WD) of the input data. 

In the proposed method, a fast Discrete Wavelet Transform (DWT) algorithm developed by  

Mallat [24] and based on decomposition and reconstruction, low-pass and high-pass filters were used. 

This algorithm obtains ―approximations‖ and ―details‖ from a given signal. An approximation is a  

low-frequency representation of the original signal, whereas a detail is the difference between two 

successive approximations and depicts high-frequency components of the signal. 

In the present work, a Daubechies Wavelet of order 6th (abbreviated by Db6) is used as the mother 

wavelet. Three levels of decomposition were used. The corresponding frequency (time period) band 

for the approximation level is 0–0.0625 [1/h], and for the detail levels d1, d2, d3 the bands are 

respectively: 0.25–0.5 [1/h]; 0.125–0.25 [1/h]; 0.0625–0.125 [1/h]. 

The training of ANN and LS-SVM were done for each of the four WD components, and then an 

aggregation of the four partial forecast results was performed for the final prediction of wind power. 

Then ANN and LS-SVM with WD was performed carrying out the following sequence (Figure 3): 

- Six Daubechies Wavelet Decomposition employed to carry out the 3rd level discrete WD of the 

original hourly time series; the approximation component A3 and the three detail components 

D1, D2 and D3 were obtained. 

- Training of the forecast model (ANN or LS-SVM), one for each of the four WD components. 

- Aggregation of the four partial forecast results for final predicted wind power. 
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Figure 3. (a) Multilevel decomposition process: A and D stand for approximation and 

detail, respectively (f = A3 + D1 + D2 + D3); (b) Architecture of the forecast system. 

 

(a) 

 

(b) 

7. Results 

7.1. Forecasting Based on Artificial Neural Networks and LS-SVM 

The ANN model was first applied to the original data without Wavelet Decomposition. As 

previously seen, the forecasting model was implemented with a training period of 8 months and with a 

testing period of 4 months. In Figure 4, the NMAE (Normalized Mean Absolute Error) values for the 

two input vectors are summarized. The results show that, besides the obvious importance of wind 

speed, the NWP data that positively impact the predictions are pressure and temperature. Including 

relative humidity data in the input variables (input vector of Type I) leads to a higher NMAE value 

compared to the case of input vector Type II, which considers a prediction based only on predicted 

wind speeds, pressures and temperatures, except for the horizon of 3-h. This behavior is more evident 

in the two long time periods used for prediction (12-h, 24-h). As shown in Figure 4 and Table 4,  

LS-SVM improves the performances using both the input datasets (input Types I and II). 

Focusing on the two input types and both methods, the use of the LS-SVM method mostly permits 

to reduce the error due to the presence of the uncorrelated variable, the humidity. Furthermore the use 

of input data Type II gives better predictions also in the case of LS-SVM in terms of NMAE(l) and 

E(i,l) distribution, in particular, at long time periods of forecasting. The longer time interval prediction 

leads to larger prediction error, due to uncorrelated data; it is clear that it is preferable to eliminate the 

humidity data from the input dataset. For 24-h forecasting, and for input data of Type I, more than 63% 

predicted points show normalized errors Ei less than 10%. For input data of Type I, the same error 

level was shown by approximately 60% of the predicted points. For shorter time periods of forecasting, 

the prediction errors and its probability distribution are quite similar. 

  

ANN /LS-SVM

ANN /LS-SVM

ANN /LS-SVM

ANN /LS-SVM

Input vector

Forecasted Power 
with A3

Forecasted Power 
with  D1

A3

D1

D3

D2

Forecasted
Hourly Power 

Forecasted Power 
with  D2

Forecasted Power 
with  D3
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Figure 4. Histogram of NMAE for input vector Type I and Type II by LS-SVM and ANN. 

 

Table 4. NMAE and Error Range Probability for input vector Type I and Type II by  

LS-SVM prediction model. 

Time 

Horizon 

Normalized 

Absolute 

Average Error 

Error Range 

Probability 

[−10%; +10%] 

Error Range 

Probability 

[−20%; +20%] 

Prediction 

Length 

Normalized 

Absolute 

Average Error 

Error Range 

Probability 

[−10%; +10%] 

Input  

vector I  

LS-SVM 

Input  

vector II  

LS-SVM 

Input  

vector I  

LS-SVM 

Input 

vector II  

LS-SVM 

Input  

vector I  

LS-SVM 

Input  

vector II  

LS-SVM 

1 h 6.89% 6.88% 78.36% 78.29% 91.83% 91.76% 

3 h 8.76% 8.67% 70.50% 70.67% 88.40% 88.51% 

6 h 9.90% 9.89% 66.11% 64.94% 85.78% 85.65% 

12 h 10.74% 10.51% 63.27% 63.31% 82.95% 84.40% 

24 h 10.67% 10.36% 59.73% 63.34% 86.16% 86.65% 

7.2. Wind Power Forecast by Wavelet Based Forecasting Methods 

The proposed algorithm was applied to datasets of input vector Type II (Table 1). The hybridization 

of LS-SVM by WD was investigated and the results compared with similar results of the hybridized 

ANN. Focusing to the input vector Type II, the comparisons between NMAE values with and without 

WD are given in Table 5. In the same table the probability that an error E(i,l) occurs in the range ±10% 

or ±20% is reported. It’s evident the benefit due to WD at short-medium prediction horizons. 

However, the WD approach, essentially statistical, tends to be more computationally expensive, 

especially when the forecast time period becomes longer. 

As shown in Figure 5 for short term prediction (from 1-h up to 6-h ahead forecasting) hybrid 

methods based on WD lead to better results for both ANN and LS-SVM, with slightly better accuracy 

for LS-SVM. LS-SVM approach without WD outperforms other approaches at long term (24-h). 

This is also confirmed by the RMSE in Figure 6. RMSE gives more weight to large errors, whereas 

NMAE reveals the average magnitude of the error and bias (Figure 7) and it indicates whether there is 

a significant (and corrigible) tendency to systematically over-forecast or under-forecast. 
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S-SVM
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Table 5. NMAE and Error Range Probability for input vector Type II by LS-SVM and 

ANN without and with WD. 

Normalized Absolute Average Error NMAE 

Time 

Horizon 

Input Vector II  

ANN 

Input Vector II  

LS-SVM 

Input Vector II  

ANN with WD 

Input Vector II  

LS-SVM with WD 

1 h 7.04% 6.88% 5.67% 5.31% 

3 h 9.17% 8.67% 6.83% 6.57% 

6 h 9.99% 9.89% 8.56% 8.14% 

12 h 10.70% 10.51% 10.92% 10.33% 

24 h 11.27% 10.36% 15.50% 12.16% 

Error Range Probability [−10%; +10%] 

Time 

Horizon 

Input vector II  

ANN 

Input vector II  

LS-SVM 

Input vector II  

ANN with WD 

Input vector II  

LS-SVM with WD 

1 h 78.19% 78.29% 82.84% 83.56% 

3 h 71.88% 70.50% 78.12% 78.15% 

6 h 67.43% 64.94% 71.61% 71.62% 

12 h 65.11% 63.27% 60.95% 64.02% 

24 h 59.56% 63.34% 43.42% 56.65% 

Error Range Probability [−20%; +20%] 

Time 

Horizon 

Input Vector II  

ANN 

Input Vector II  

LS-SVM 

Input Vector II  

ANN with WD 

Input Vector II  

LS-SVM with WD 

1 h 91.45% 91.76% 94.93% 95.07% 

3 h 88.68% 88.51% 92.17% 92.18% 

6 h 85.55% 85.65% 88.66% 89.63% 

12 h 82.43% 84.40% 83.96% 84.80% 

24 h 84.35% 86.65% 72.44% 81.36% 

Figure 5. Histogram of NMAE for input vector Type II by LS-SVM and ANN without and 

with WD. 
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Figure 6. RMSE for input vector Type II by LS-SVM and ANN without and with WD. 

 

Figure 7. Bias error for input vector Type II by LS-SVM and ANN without and with WD. 

 

The decomposition of the RMSE into three contributions provides a better understanding of the 

origin of the differences between prediction and measurement. Furthermore, recent power forecasting 

systems typically take into account systematic errors by estimating the forecast bias (bias) and the 

SDbias error and then applying statistical correction schemes prior to analysis. The bias can be 

subtracted and increasing or decreasing the standard deviation of the prediction, contrary to the phase 

error, can adjust the SDbias. Phase deviations reflect the time accuracy of the prediction model and 

constitute the challenge for further improvements. The DISP provides a lower limit to the RMSE; 

therefore forecasting methods with low DISP allow for a better accuracy. As shown in Figure 8, the 

SDbias assumes negative values. It is consistent with findings in [47], in which it is underlined that the 

sites in flat terrain present positive bias and small SDbias, while the sites with complex terrain present 

negative bias and large SDbias at almost all prediction times. 
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Figure 8. SDbias for input vector Type II by LS-SVM and ANN without and with WD. 

 

Regarding relative dispersion in Figure 9, the different methods ANN and LS-SVM are rather similar. 

For the methods without WD, the DISP is in a rather narrow range of increasing linearly with the 

forecast horizon, from 1-h up to 12-h. A spread is evident among the methods without and with WD. 

The reduction in the phase error (DISP) is mainly due to the implementation of the Wavelet 

Decomposition rather than the choice of LS-SVM or ANN. Even if the use of LS-SVM allows a 

further decrease at the phase error 24-h. 

Forecast accuracy depends on the particular month under examination. The difference of 

forecasting accuracy can be correlated with temporal variation of NWP data as wind speed, 

temperature and pressure; the variation is estimated for each variable as the ratio between the absolute 

difference of two consecutive hourly values and the mean of values in the test period. 

Figure 9. DISP for input vector Type II by LS-SVM and ANN without and with WD. 

 

Comparing forecast errors in Figure 10 and the temporal variability of NWP data shown in  

Figure 11, it is evident that temporal variability is generally higher in December than in September and 

the greater and more irregular the wind speed is, the worse the resulting forecasting precision,  
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in particular for methods based on ANN. Prediction errors are more influenced by wind speed dynamic 

variation than absolute magnitude of wind speed or other NWP data. 

Figure 10. Error Ei and actual wind power in two different weeks of year. 

  

Figure 11. Temporal variability of NWP data in two different weeks of year. 
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A sensitivity analysis, for a deeper understanding of these results, was performed on each component 

of the WD decomposition to analyze the effect of the training parameters on the model predictions. 

For this purpose, an effectiveness factor αj was defined to show the influence of each input xi(j) 

representing the q adopted input parameters on model output [31–33]. Given ξ ( )j l  defined as: 

2

j

1

( , )1
ξ ( ) 1

( , )

M
j

i

T i l
l

M T i l

 
  

 
  (13) 

T(i,l) is the output of the neural network model with the input x(i) defined in Equation (3) and Tj(i,l) 

is the output of the neural network model with the input x(i,j) = [ )(),...,(),....,(),(
_

21 ixixixix qj ], where 

)(
_

ix j  is the average of xj(i) over the total number of samples M and it is given by: 

1

1
( )

M

j j

i

x x i
M 

   (14) 

The effectiveness factor αj is defined as: 

1

α ξ ξ
q

j j j

j

   (15) 

where q is the total number of inputs. 

The results of the effectiveness factor for each variable, averaged for all five sites, are shown in 

Figures 12–15. For the component a3 all input variables show the same behavior, in accordance with 

its characteristic to hold a generic trend of the original signal. A negligible influence of the measured 

power produced on ANN training is evident for the detail components, while NWP time series assume 

higher significant values, compared to a3 behavior, for short and very short prediction time lengths:  

in particular, the temperature for the component d1 and the pressure for the component d3, will exert a 

significant influence on the training of the ANN. 

Figure 12. Histogram of the effectiveness factors for the approximation component a3. 
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The analysis confirms the importance of the application of the wavelet decomposition that allows 

the input parameters with high frequency contents, such as the NWP temperature, to have a more 

significant influence on the training of ANN for the detail component d1. While the input parameters 

with low frequency component, such as NWP pressure, will exert a more significant influence on the 

training of ANN for the detail component d3. It is consistent with the findings that were reported by the 

authors in [6], the FFT amplitude of pressure data has a high contribution in the frequency band 

0.0625–0.125 [1/h] that corresponds to the scale d3 of the WD. 

Figure 13. Histogram of the effectiveness factors for the detail component d1. 

 

Figure 14. Histogram of the effectiveness factors for the detail component d2. 
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Figure 15. Histogram of the effectiveness factors for the detail component d3. 

 

8. Discussion and Conclusions 

In this study, a novel hybrid method based on LS-SVM algorithm and WD of input signals, was 

compared with hybrid methods based on ANN. It is found that methods based on LS-SVM perform 

better than ANN for all the horizons. In particular, at a short time horizon an improvement of LS SVM 

performances is due the application of WD, while the simple LS-SVM without WD outperforms other 

methods at 24-h head forecasting. 

The decomposition of the root mean squared error into three contributions (bias, standard deviation 

bias and dispersion) provides a better understanding of the origin of the differences between prediction 

and measurement. The bias can be subtracted and increasing or decreasing the standard deviation of 

the prediction, contrary to the dispersion error, can adjust the standard deviation. Therefore, the 

reduction of the dispersion error constitutes the challenge for further improvements; hence forecasting 

methods with low DISP allows improvement in accuracy. The analysis showed that the reduction in 

the dispersion is mainly due to the implementation of the Wavelet Decomposition rather than the 

choice of the LS-SVM or ANN, even if the use of LS-SVM allows for a further decrease of the phase 

error at 24h. 

Comparing forecast errors for all the non-linear statistical approaches and the temporal variability 

of NWP data it is evident that the greater and more irregular the wind speed is, the worse the resulting 

forecasting precision, in particular for methods based on ANN. Therefore prediction accuracy is 

influenced by wind speed dynamic variation more than by the absolute magnitude of NWP data.  

The LS-SVM model detects better the properties of the wind speed time series when used in the 

training process. 

LS-SVM solves a set of only linear equations, which is much easier and computationally simpler 

than SVM or ANN. At the same time, over-fitting is hard to find in the case of LS-SVM, while it is a 

disadvantage of ANN. LS-SVM could be a good alternative to the well-known ANNs, since it achieves 

better precision, good generalization capability and smaller computational time for training. 
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Then LS-SVM presents less parameters to optimize (regularization parameter, RBF kernel 

parameter and the number of previous data) than ANN, which requires optimization of the number of 

hidden layers, hidden nodes, and transfer functions. 

Finally, LS-SVM requires small sample size, because the determination of the decision function is 

only due to the supporting vectors that are a part of a training pattern whilst remaining patterns are not 

used. On the contrary, ANN uses all training data sets. This feature, together with the error 

minimization approach, leads to a higher generalization of the relationship between past data and 

future power values for LS-SVM and more suitable for long term prediction. 

The study also underlines that the use of an input vector with all the parameters available doesn’t 

entail the minimum prediction error. A comparison between forecasting systems with different input 

datasets was also carried out. Firstly, a multiple regression analysis was used to estimate the influence 

of input datasets. The analysis shows a good correlation with wind power for the set inputs given by 

wind speed, pressure and temperature. 

A further sensitivity analysis based on an effectiveness factor was performed for the hybrid ANN 

with WD. The sensitivity analysis applied to each component highlights the high frequency content of 

the temperature and pressure data. 

The results show that the NWP time series assume higher values of effectiveness factor for short 

and very short prediction lengths: in particular temperature for the component d1 that corresponds to 

high frequency 0.25–0.5 [1/h] and pressure for the component d3, frequency band 0.0625–0.125 [l/h]. 

The analysis also confirms the importance of the decomposition, which provides the input parameter 

with high frequency content, such as temperature, to have more weight in the training of ANN based 

on d1 detail component and the input parameter with low frequency component, such as pressure, to 

contribute more to the training of ANN based on detail component d3. 
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