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Abstract: With global conventional energy depletion, as well as environmental pollution, 

utilizing renewable energy for power supply is the only way for human beings to survive. 

Currently, distributed generation incorporated into a distribution network has become the 

new trend, with the advantages of controllability, flexibility and tremendous potential. 

However, the fluctuation of distributed energy resources (DERs) is still the main concern for 

accurate deployment. Thus, a battery energy storage system (BESS) has to be involved to 

mitigate the bad effects of DERs’ integration. In this paper, optimal scheduling strategies for 

BESS operation have been proposed, to assist with consuming the renewable energy, reduce 

the active power loss, alleviate the voltage fluctuation and minimize the electricity cost. 

Besides, the electric vehicles (EVs) considered as the auxiliary technique are also introduced 

to attenuate the DERs’ influence. Moreover, both day-ahead and real-time operation 

scheduling strategies were presented under the consideration with the constraints of BESS and 

the EVs’ operation, and the optimization was tackled by a fuzzy mathematical method and 

an improved particle swarm optimization (IPSO) algorithm. Furthermore, the test system for 

the proposed strategies is a real distribution network with renewable energy integration. 
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After simulation, the proposed scheduling strategies have been verified to be extremely 

effective for the enhancement of the distribution network characteristics. 

Keywords: battery energy storage system (BESS); electric vehicles (EVs); optimal scheduling 

 

1. Introduction 

Renewable energy generation, such as photovoltaic (PV), wind, biomass, etc., integrated into 

distribution power systems, expected to be one of the main solutions for clean power supply, will be 

considerably developed throughout the world during the next couple of decades. Currently, many 

countries have implemented or are in the process of implementing policies to promote renewable energy 

in the distribution network. This is because distributed energy resources (DERs) in the distribution power 

system could provide a better balance between the increasing electricity demand and traditional power 

exportation, reduce the power losses occurring in the feeders during energy transmission, as well as 

enhance the controllability of energy deployment, which would be the main component of the next 

generation distribution network framework, namely the active distribution network, with intelligent 

monitoring techniques and advanced management measures [1,2]. 

However, the fluctuation of DERs is still the main concern for large-scale implementation in low or 

medium voltage networks. Thus, the energy storage system (ESS) has to be involved to mitigate the bad 

effects of the DERs’ integration. Compared to other types of ESS, a battery energy storage system 

(BESS) is relatively the most stable, easy to access and control, as an extremely effective way to 

cooperate with DERs. [3] Therefore, the operation strategies for BESS have become a research hotspot 

from different perspectives. 

Actually, many researchers have proposed some optimal strategies to solve the BESS operation 

problems, as well as for EVs. In [4], an EV scheduling scheme has been proposed with an uncertain  

real-time price, taking the battery degradation into account. For another, a real-time scheduling strategy 

for EVs was presented in [5] to increase the voltage margin and tent to minimize the line loss. The two 

works above were inclined to solve the EV scheduling problem with different visions, the originality of 

which could also be applied in BESS scheduling. In [6], a mathematical model for a BESS scheduling 

procedure was proposed to simulate the charging/discharging process, with the objective of minimizing 

the line losses; however, only the aspect of the power losses was taken into account. Besides, BESS used 

for ramp rate control, frequency droop response, power factor correction, solar time-shifting and output 

leveling have been mentioned in [7], focusing on BESS operation to enable solar energy, which tends to 

solve BESS scheduling in a transient process. Furthermore, BESS was implemented to deal with power 

quality disturbances and to compensate reactive power in [8], as well as the optimal power flow in [9]. 

It is noted that the distribution network operation usually deals with power scheduling problems in the 

steady-state horizon, so in this paper, the BESS scheduling strategies, following the distribution network 

operation rules in China, are put forward with intervals of 15 min, which is also apparently a compromise 

decision between precision and computation quantity. Besides, Most of the strategies proposed from the 

works above were implemented one day ahead, considerably depending on the accuracy of prediction 

for renewable energy and power demand. Additionally, the errors from forecasting usually do not 
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account for the evaluation of model validity, which may affect the applicability of the model when 

launching in practice. Therefore, a real-time strategy is the most effective approach for power scheduling. 

In this paper, optimal scheduling strategies for BESS operation in both the day-ahead and real-time 

scale have been proposed, to minimize the renewable energy curtailment, to reduce active power loss, 

to mitigate the voltage fluctuation, as well as to lower the electricity cost. In addition, the EVs considered 

as the auxiliary technique are also introduced to attenuate the DERs’ influence. Besides, all of the 

scheduling produced by the proposed strategies has considered the constraints of BESS and EVs’ 

operation, as well as the power flow. Furthermore, the proposed scheduling strategies were simulated in 

a real distribution network with renewable energy integration, part of Beijing Jiaotong University power 

network, obtaining promising results and verifying the effectiveness of the proposed strategies. 

The reminder of this paper is organized as follows: Section 2 describes the relationships between load 

variance and power loss, as well as between power deviation and voltage deviation. Additionally, some 

simplifications have been utilized. Section 3 formulates the multi-objective optimization model.  

Section 4 presents the procedure of the day-ahead and real-time strategy to solve the optimization 

problem, as well as the solution of the multi-objective optimization model. Section 5 introduces our 

numerical studies and analyzes the results, followed by conclusions in Section 6. 

2. Problem Derivation 

In [10], it has been noted that minimizing distribution system losses could be equally considered as 

maximizing the load factor and minimizing load variance if the feeder is a single line from the substation 

with all loads at the end of the line. Actually, this conclusion could be generalized in a radial distribution 

system under some assumptions as follows: 

 Assuming that the mean value of each load in the radial distribution power system could keep 

constant during normal operation. 

 The voltage fluctuation of the initial nodes is supposed to be neglected, in consideration of these 

nodes usually being connected to the substation. 

 Besides, the reactive power in the distribution network could be ignored since the power factor 

correction facilities take effect. 

2.1. Relationship between Load Shaving and Power Loss 

The model utilized in this derivation is shown in Figure 1. The active power loss for this single branch 

could be formulated as Equation (1). 

P

I

R jX
 

Figure 1. Diagram of a single branch. 
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where Ploss is the active power loss of the single branch; It shows the current value running in the 

corresponding branch at time t; Pt represents the active power of Node 2 at time t; Urate means the rated 

voltage in the assigned level; and R is the equivalent resistance value [10]. 

The load variance could be shown as, 
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where 2
P  is the load variance and P  is the mean value of the load; T represents the time duration, which 

is 24 h in this paper. 

The conclusion could be derived in Equations (3) and (4), 
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Equation (4) could be plugged into Equation (1); in this way, the relation between Ploss and 2
P  is 

expressed in Equation (5), 
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In Equation (5), the active power loss is linear to the load variance in the single branch, if the deviation 

of the rated voltage could be neglected. 

2.2. Relationship between Load Smoothing and Voltage Deviation 

The voltage deviation in Figure 1 could be shown as Equation (6), and the relationship between real 

power and voltage magnitude could be easily derived based on Kirchhoff’s theory in Equation (7). Then, 

the combination of Equations (6) and (7) contributed to Equation (8), the relationship between power 

deviation and voltage deviation. 
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In the equations above, V1,t and V2,t represent the voltage magnitude of Nodes 1 and 2 at time t, 

respectively. Additionally, P2,t is the real power of Node 2 at time t. When the subscript shows t + t
instead of t, it denotes the assigned quantity at time t + t . 
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In Equation (7), assuming constant V1,t, with the consideration that Node 1 is close to the substation, 

it presents an inverted-U quadratic function relationship between P2,t and V2,t. Clearly, V2,t is definitely 

more than 1/2 V1,t under normal circumstances, which means it would follow the right-half rules of 

quadratic function; P2,t would be decreasing synchronously with the increasing of V2,t. Anyway,  
the variation absolute values show the same trend. Furthermore, in Equation (8), 2

2, 2, 1( )t t tV V V    is 

apparently positive with the quadratic term; this also suggests the positive correlation relationship between 

P2,t and V2,t. 

Through the derivation procedure above, the strong positive correlation between load variance and 

power losses is shown; likewise, the strong positive correlation between power deviation and voltage 

deviation. For the traditional optimization process with a distribution network, the power flow calculation 

must be involved with a slow computation speed and week convergence degree. Hence, the tedious 

iterative work could be avoided, when load variance and power deviation minimizing, to simplify,  

are utilized for power losses and voltage deviation minimizing, respectively. 

3. Model Formulation 

In a distribution network with DER integration, BESS and EV are introduced for minimizing the bad 

side effect from DERs’ access. An optimization framework has been proposed for reducing renewable 

energy curtailment, cutting feeder losses, mitigating voltage fluctuation and lowering electricity expense, 

considering the constraints of BESS and EV operation. The charging and discharging power of BESS 

and the charging period of EV are recognized to be control variables, and the optimization would be 

realized under minimizing one or more objective functions while satisfying the several equality and 

inequality constraints. Its mathematical model can be established as, 

( )

. . ( ) 0, ( ) 0

Min f x

s t g x h x 
 (9)

where f is the objective function to be optimized; g and h are the equality and inequality constraints, 

respectively; x is the vector of charging or discharging power or the period selection variable. The 

detailed description of the objective functions, equality and inequality constraints are stated as follows. 

3.1. Minimizing Renewable Energy Curtailment 

It is widely accepted that, in power system operation, the power generated is always equal to the 

power demand in any moment. Assuming that there is no energy storage facility in the regional 

distribution network, the extra DERs’ power has to be injected back to the substation or curtailed, 

resulting in extra power losses and unfortunate waste of renewable energy, when the DERs’ generated 

power is in excess of the power demand. Therefore, the BESS is integrated into the regional distribution 

network with renewable energy integration for minimizing DER curtailment [11], as Equation (10) shows, 

DER
0

T

curtail
t

Min P 

  (10)

where DER curtailP   is the DER power curtailment. 
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3.2. Minimizing Feeder Losses 

Minimizing feeder losses is a crucial indicator for power system economic operation and also a key 

means for energy conversation [6]. In this paper, reducing feeder losses is also proposed for BESS 

scheduling and EV coordinated charging. In terms of the theoretical derivation in Section 2, the load 

variance minimization could be used to substitute feeder loss minimization. 

2
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2 0
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load t average
t

loss P

P P
Min P Min

T



  


 (11)

where Pload,t is the load power at time t, and Paverage means the average power for the assigned duration. 

3.3. Minimizing Voltage Deviation 

With DERs integrated into the distribution network, their intermittent and fluctuation characteristics 

have aggravated the power and voltage volatility in the distribution power system, serving as the 

immediate cause of power quality reduction and electric equipment damage. Thus, the objective function 

of minimizing voltage deviation is proposed to mitigate the fluctuation brought by the DERs’ integration, 

similarly to the last optimization target, which is formulated by the power deviation in Equation (12). 

2
, 1 ,
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T

dev dev load t load t
t

Min V Min P P P


    (12)

3.4. Minimizing Electricity Cost 

Besides the power demand of the regular load, the charging cost of BESS and EV also contribute to 

electricity bills. On the contrary, the discharging power of BESS and the injected power of DERs 

facilitate reducing the utility expense. As a consequence, through the optimal scheduling of BESS 

associated with EV coordinated charging, the electricity cost could be reduced as Equation (13) shows, 

0

T

bill t t
t

Min C c P


   (13)

where billC  is the overall electricity cost in the distribution network with duration T, and ct means the 

time of use (TOU) electricity price at time t. 

3.5. Constraints of BESS Operation 

For the optimal scheduling strategy of BESS, the constraints of BESS are presented as the 

charging/discharging power limitation, the energy capacity restriction and the charging/discharging 

balance requirement. 

The constraint of charging/discharging power of BESS refers to the upper/lower power limitation 

during the BESS charging/discharging process; this means that the charging/discharging process should 

be within the allowance boundaries, as Equation (14) shows, 

max , maxstorage tP P P    (14)
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where Pstorage,t represents the charging/discharging power of BESS at time t, and −Pmax and Pmax signify 

the upper and lower boundaries of BESS power, respectively. 

The constraint of the energy capacity of BESS stands for the upper/lower energy limitation during 

BESS operation, to guarantee the capability for emergency incidents. In this work, the energy boundaries 

of BESS are from 10% to 90% of the energy capacity. 

, ,max90%storage t storageE E   (15)

, ,0 ,0
=

t

storage t storage storage kE E P dk   (16)

In Equations (15) and (16), ,storage tE  and ,maxstorageE  are the state of energy at time t and the designed 

energy capacity for BESS, respectively. Moreover, ,0storageE  indicates the initial energy state of BESS. 

The constraint of the charging/discharging balance of BESS means that the charging energy is 

supposed to be equal to the discharging energy during a certain period. 

b d

a c

t t

ch dist t
P dt P dt     (17)

In Equation (17), at , bt  denote the charging region and, similarly, ct , dt  the discharging region. 

Besides, chP , disP  represent the charging and discharging power, respectively. Additionally,   stands for 

the permissible error of the charging/discharging balance. 

It is to note that, since the BESS optimal scheduling strategy would be used in the duration of 24 h, 

the degradation of batteries is not considered in this paper. For long time operation, the boundaries of 

power and energy limitation should be reset for specified condition. 

3.6. Constraints of EVs’ Operation 

As an auxiliary technique, the coordinated charging strategy of EVs has been used to assist the BESS 

scheduling, and the constraints of EVs are presented as the constraints of the charging period and the 

charging pattern. 

The constraint of the EV charging period refers to that the charging period selection, which should 

meet the transport demands of EV users. In this paper, this means the start charging moment should be 

restricted as Equation (18) shows, 

, , , ,arrive i start i leave i c iT T T T    (18)

, ,(1 )c i arrive i fullT SOC T    (19)

In Equations (18) and (19), Tarrive,i, Tstart,i and Tleave,i are the arriving, start charging and leaving 

moment for EVi, and Tc,i represents the charging duration for EVi. Furthermore, the expression of Tc,i in 

Equation (19) has been given, where SOCarrive,i means the state of charge (SOC) condition of EVi when 

arriving at the charging spot, and Tfull stands for the full charging duration for the assigned  

EV model. 

The constraint of the charging pattern means the constant-current constant-voltage (CC-CV) mode 

for individual EV charging [12–14]. 
  



Energies 2015, 8 10725 

 

 

3.7. Other Constraints 

In this paper, the constraints of the balance between power demand and supply and the voltage 

upper/lower limits are also considered in the optimization procedure. 

Besides, the reverse-flow control is also introduced as Equation (20) illustrates, to eliminate the 

unnecessary power losses. 

, , ,load t DG t storage tP P P   (20)

where PDG,t means the sum of the DERs’ generation at time t. 

4. Solution Technique 

To tackle the optimization model proposed in Section 3, day-ahead and real-time scheduling strategies 

have been presented, respectively. The day-ahead strategy tends to settle the optimization problem one 

day ahead, which means obtaining the next day BESS operation profile globally and precisely. 

Alternatively, the real-time scheduling strategy is to solve it with interval updating, to avoid the related 

effect of regular load and DER forecasting errors. 

Both of the strategies are suitable for BESS scheduling and EVs’ coordinated charging. 

In terms of the positive performance of the optimization solution in [15], both of the multi-objective 

optimization problems derived from the two strategies above could be tackled by fuzzification  

multi-objective optimization and an improved particle swarm optimization (IPSO) algorithm. More 

specifically, the detailed description is illustrated as follows. 

4.1. Day-Ahead Strategy 

For the day-ahead strategy, DERs, EVs and regular load forecasting should be predicted before this 

procedure. The BESS scheduling profile of the next day with certain precise time, 15 min in this work, 

could be optimized, incorporated with minimizing the DERs’ curtailment, load variance, load deviation 

and electricity cost, to be the objective. The detailed procedure flow is demonstrated below and in Figure 2a. 

Step 1: According to the forecasting results of the regular load, DERs and EVs, the corresponding  

96-point profiles could be set for subsequent optimizing with a 15-min interval. 

Step 2: In the day-ahead strategy, the variables for BESS optimizing were Pstorage = [P1, P2, …, P96], 

and the variables for EVs’ coordinated charging were Tstart = [T1, T2, …, T96]. For better 

performance, the initial BESS variables would be set as a zero vector, and the initial EVs’ 

variables would be set as the forecasting vector. 

Step 3: The multi-optimization procedure and intelligent algorithm were implemented as in  

Sections 4.3 and 4.4. 
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Figure 2. (a) Day-ahead strategy flow chart; (b) real-time strategy flow chart. 

4.2. Real-Time Strategy 

In this section, a real-time strategy was proposed to solve the optimization problem, as well as to 

handle the dependency for forecasting errors. Both the forecasting data and real time capture data have 

been combined for optimizing globally and meeting the requirements of BESS or EVs’ operation. 

The real-time optimizing framework is illustrated in Figure 3. In every 15 min, the optimization 

procedure was performed once to get the optimal operation value for the current point. Additionally, the 

real-time data have been used for the duration from the beginning to the current point, as the orange lines 

show in Figure 3, and the forecasting data have been used for the duration from the current point to the 

end of the day, as the blue lines show in Figure 3. Besides being comparable to the day-ahead strategy, 

another reason to have optimization in a one-day scale is to ensure the charging and discharging balance 

for BESS operation. Then, the detailed procedure is shown below and in Figure 2b. 

Step 1: According to the forecasting results of the regular load, DERs and EVs, the corresponding  

96-point profiles could be prepared for subsequent optimizing with a 15-min interval. 

Step 2: The initialization: At time t = 1 (t =1, 2, …, 96), the real-time data of the DERs, EVs and 

regular load at current time t = 1 replaced the forecasting data at time t = 1, and the new load 

profile would be used for optimization. Afterwards, the BESS or EVs’ 96-point operation 

results could be obtained. Only the optimal value at time t = 1 was picked to be the operation 

value for time t = 1. 

Step 3: Go to the next moment t = t + 1; 
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Step 4: To make the load profile at time t, the real-time data from the beginning to time t have been 

used to replace the corresponding period of forecasting data. At the same time, the variables 

for BESS are Pstorage = [Pt, Pt+1, …, P96], 96-t + 1variables in all, and similarly, the variables 

for EVs are Tstart = [Tt, Tt+1, …, T96]. 

Step 5: Pt and Tt to obtain the optimal results for the current time t through the following  

optimization techniques. 

Step 6: Go back to Step 3, until completing the circle of 96 points. 

 

Figure 3. Framework of real-time optimizing. 

4.3. Fuzzy Multi-Objective Optimization 

In this paper, the optimization problem is actually a multi-objective optimization problem. The fuzzy 

mathematics method, with the membership function, has been utilized to perform the objective function 

fuzzification to transfer the multi-objective optimization to a single-objective issue [15,16]. 

For objectively considering the weight of each optimization objective, the linear membership function 

is used, which can be described as: 

min

min
min max

max min

max

0 ( )

( )
( ) ( )

1 ( )

1,2,3,4

i i

i i
x i i i

i i

i i

f x c

f x c
x c f x c

c c

f x c

i

 


    
 



 (21)

where ( )if x  is the i-th objective function of the fuzzy multi-objective problem; ( )i x  is the membership 

function of ( )if x ; m is the number of objective functions; minic , maxic  are the upper and lower limit 

values of ( )if x , respectively; minic  is the optimal value obtained by the single-objective function; and 

maxic  is initial value of each objective function. Besides, the curves of the membership function by 

Equation (21) are shown in Figure 4. 
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Figure 4. Membership function of the sub-objective. 

After the fuzzification, the sub-objectives also need to be integrated. In this work, minimizing the 

maximum of sub-objectives has been applied as shown in Equation (22), 

1 2 3 4max( , , , )fitness       (22)

where fitness means the integrated fitness for multi-objective optimization. 

4.4. IPSO Algorithm 

The optimization model proposed above is considered as a complex multi-constraint, nonlinear 

optimization problem. Compared to classical algorithms, such as linear programming, quadratic 

programming, the gradient descending method and other numerical algorithms, the heuristic algorithms 

are novel algorithms for solving the optimization problem and much easier to implement and extend, 

such as the genetic algorithms (GA), particle swarm optimization (PSO), differential evolution (DE), 

artificial immune algorithm and artificial bee colony (ABC) algorithm. 

The PSO algorithm possesses superior performance in its implementation and a good trade-off 

between exploration and exploitation ability, with a simple structure, a simple parameter setting and a 

fast convergence speed. It has been widely applied in function optimization, mathematical modelling, 

system control and some other areas [17–19]. 

In basic PSO algorithms,  , c1 and c2 are fixed values. For the search accuracy and search speed, in 

this paper, the improved inertia weight is shown in Equation (25). The algorithm may adjust   

dynamically via Equation (25), so that it can optimize dynamically by taking both global search and 

local search into account during changing The improved PSO is shown as follows: 
1

1 1 2 2( ) ( ) ( )k k k k
id id id id gd idv k v c r p z c r p z        (23)

1 1k k k
id id idz z v    (24)

2( ) ( )( )start start end

k
k

K
       (25)

where start  and end  represent the initial value and the final value of  , respectively; K is the maximum 

number of evolutionary generations; k is the current number of evolutionary generations. 
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5. Case Study 

5.1. The Case Setting 

For the project requirement, all of the simulation cases in this paper are carried out based on the 

framework of the campus distribution network and corresponding regular loads, as Figure 5a shows. 

Furthermore, PV, EVs and BESS are integrated into the network in some cases, of which there are  

a 300-kWp PV, 100 EVs and a 150-kWh BESS. The details of the case setting are descripted in  

Table 1. Additionally, the profiles of regular load forecasting, EV load estimation, PV forecasting and 

the total load prediction of this framework are shown in Figure 5b. 

 

Figure 5. (a) The simulation case setting; (b) The simulation case data. 

Table 1. The simulation cases’ settings. 

Category Settings Optimization scheme 

Case 1 Loads No optimization 
Case 2 Loads, PV and uncoordinated charging EVs No optimization 
Case 3 Loads, PV, BESS and uncoordinated charging EVs Day-ahead optimization 
Case 4 Loads, PV, BESS and uncoordinated charging EVs Real-time optimization 
Case 5 Loads, PV, BESS and coordinated charging EVs Day-ahead optimization 
Case 6 Loads, PV, BESS and coordinated charging EVs Real-time optimization 

During the IPSO optimizing, 1 2,c c  = 1.49, start  = 0.9, end  = 0.4, and the velocity step is 1 kW for 

BESS optimizing and 15 min for the EVs’ coordinated charging. 

Besides, the charging/discharging power limitation of BESS is 50 kW; the initial energy state is  

75 kWh. Additionally, the arriving time distribution and the arriving SOC distribution of EVs are 

demonstrated in Figure 6a,b, respectively. Furthermore, the difference between real-time operation data 

and the forecasting data for the regular load, PV and arriving time of EVs are also given in Figure 6c,d and 

Figure 7. 
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Figure 6. (a) EVs’ arriving time distribution; (b) EVs’ arriving SOC distribution;  

(c) real and forecasting data of the regular load; (d) real and forecasting data of PV. 
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Figure 7. Forecasting and real data of the EVs’ arriving time. 

In the simulation, there are six cases in all. The simulation case settings and the optimal schemes used 

are shown in Table 1. 

5.2. The Optimizing Results 

5.2.1. BESS Optimizing without EVs’ Auxiliary 

Based on the optimization model and the strategy above, first of all, the BESS day-ahead and  

real-time optimization without EVs’ auxiliary has been performed. The calculation results are shown in 

Table 2. It can be noticed that, in this work, due to the original case configuration, Objective 1, minimizing 

the DERs’ curtailment, is zero in all cases. 
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Table 2. Index comparison of BESS optimizing. 

 Case 1 Case 2 Case 3 Case4 

Objective 1 0.00 0.00 0.00 0.00 
Objective 2 30,484 32,478 28,830 27,830 
Objective 3 120,300 233,010 112,500 178,290 
Objective 4 13,613 12,927 12,767 11,707 
Ploss (MW) 0.8661 0.8551 0.8526 0.8206 

Vdev (10−5 kV2) 6.18 11.2 5.59 8.49 

In Table 2, it is clear that Objective 2 and 3’s values in Case 2 are higher than that in Case 1, which 

means that the integration of PV and EVs brings about the load variance increase, with the power 

deviation increasing. Besides, both the day-ahead strategy and real-time strategy are effective for all of 

the objectives, except for zero DER curtailment, which already achieved the minimum. Comparing 

between the day-ahead and real-time strategy for BESS optimization without EVs’ auxiliary, these two 

strategies displayed different advantages; the real-time strategy shows better performance in load 

variance, feeder losses and utility cost control, and the day-ahead strategy shows better effectiveness in 

the power deviation and voltage deviation control. 

The load profiles of before and after BESS day-ahead and real-time optimizing are displayed in  

Figure 8a,b, respectively. Additionally, the BESS operation power profiles and energy profile for  

day-ahead and real-time are shown in Figure 8c,d, respectively. It expresses the distinct optimization 

tracks of day-ahead and real-time optimization. 
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Figure 8. (a) Load profiles of before and after BESS day-ahead optimizing (without EVs);  

(b) load profiles of before and after BESS real-time optimizing (without EVs); (c) BESS 

operation power profiles of day-ahead and real-time (without EVs); (d) BESS operation 

energy profiles of day-ahead and real-time (without EVs). 
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5.2.2. BESS Optimizing with EVs’ Auxiliary 

Then, the BESS with EVs’ auxiliary day-ahead and real-time optimization has been implemented.  

The calculation results are shown in Table 3. 

Table 3. Index comparison of BESS and EV optimizing. 

 Case 1 Case 2 Case 5 Case6 

Objective 1 0.00 0.00 0.00 0.00 
Objective 2 30,484 32,478 29,696 17,465 
Objective 3 120,300 233,010 141,050 165,490 
Objective 4 13,613 12,927 12,805 10,152 
Ploss (MW) 0.8661 0.8551 0.8522 0.8156 

Vdev (10−5 kV2) 6.18 11.2 3.36 7.52 

In Table 3, it is obvious that both the day-ahead strategy and real-time strategy for BESS and EV 

combined optimization are effective for all of the objectives, regardless of Objective 1. Compared 

between the day-ahead and real-time strategy for combined optimization, these two strategies also show 

distinct superiority, the same as BESS optimization without EVs’ auxiliary; the real-time strategy shows 

better performance in load variance, feeder losses and utility cost control, and the day-ahead strategy 

shows better effectiveness in power deviation and voltage deviation control. 

The load profiles of before and after combined day-ahead and real-time optimizing are displayed in 

Figure 9a,b, respectively. Additionally, the BESS operation power profiles and energy profile for  

day-ahead and real-time are shown in Figure 9c,d, respectively. It expresses the distinct optimization tracks 

of day-ahead and real-time optimization. Besides, in Figure 10, the EVs’ profiles of forecasting, day-ahead 

and real-time optimization are presented. 

In the BESS without and with EVs’ auxiliary optimization above, the results illustrated that both of 

the optimizing scheduling strategies took effect for individual objective and integrated fitness. Moreover, 

it is also clear that, under the same BESS configuration, strategies with EVs’ coordinated charging show 

significant enhancement for all of the optimization targets. From another perspective, the day-ahead and 

real-time optimization, no matter if for BESS only or the BESS and EV combination, the optimization 

routes are totally different, resulting in various profiles of power and energy tendency. 

In our view, both strategies show significant effectiveness, and the main distinction is to be applied 

for different requirements. The day-ahead strategy turns out to be used in the scheduling focusing on the 

global optimization without bidirectional communication, especially the situation with a high accuracy 

of profile prediction. Additionally, the real-time strategy is suitable to handle the modest accuracy degree 

of forecasting and to update the scheduling on the basis of two-way communication. 

It should be noted that the BESS did not show the load-shaving effect in the cases above; this is 

because the BESS power and energy constraints would not allow this and which has been formerly set. 

Moreover, the main objective of BESS is to alleviate the fluctuation of DERs, which has been 

considerably verified in this work. 
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Figure 9. (a) Load profiles of before and after combined day-ahead optimizing (with EVs); 

(b) load profiles of before and after combined real-time optimizing (with EVs);  

(c) BESS operation power profiles of day-ahead and real-time (with EVs); (d) BESS 

operation energy profiles of day-ahead and real-time (with EVs). 
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Figure 10. EVs’ load profiles of forecasting, day-ahead and real-time optimization. 

6. Conclusions 

In this paper, the scheduling framework for BESS operation with EVs’ auxiliary in a distribution 

network with renewable energy integration has been proposed, to reduce the renewable energy 

curtailment, decrease the power losses, mitigate voltage deviation and lower the electricity expense. 

Moreover, the model also takes into account the BESS operation constraints and EVs’ charging 

limitation. To tackle the scheduling problem, two optimization processes are presented, the day-ahead 

strategy and the real-time strategy, to be incorporated into the framework, separately. To handle the 

multi-objective formulation, a fuzzy mathematical method has been launched to turn multi-objective 

optimization into a single-objective issue; from another aspect, the IPSO algorithm has been 

implemented to obtain the optimal scheduling results. 
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Through the simulation results of six cases, it could be concluded that the proposed BESS scheduling 

and EVs’ coordinated charging scheme are effective for the assigned distribution network, and both the 

day-ahead and real-time strategy procedures show significant performances. Additionally, from our 

perspective, the mode of the real-time strategy for BESS scheduling with EVs’ auxiliary is recommended 

for the cases with confined load forecasting accuracy, as well as with EVs’ access. 
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