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Abstract: Critical peak pricing (CPP) is a demand response program that can be used to 

maximize profits for a load serving entity in a deregulated market environment. Like other 

such programs, however, CPP is not free from the payback phenomenon: a rise in 

consumption after a critical event. This payback has a negative effect on profits and thus 

must be appropriately considered when designing a CPP scheme. However, few studies 

have examined CPP scheme design considering payback. This study thus characterizes 

payback using three parameters (duration, amount, and pattern) and examines payback 

effects on the optimal schedule of critical events and on the optimal peak rate for  

two specific payback patterns. This analysis is verified through numerical simulations.  

The results demonstrate the need to properly consider payback parameters when designing 

a profit-maximizing CPP scheme. 

Keywords: critical peak pricing; critical event scheduling; optimal peak rate; payback 

phenomenon; load recovery; load serving entity 
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1. Introduction 

Demand response (DR) programs give customers a more active role in the operation of the power 

system, allowing them to change their consumption patterns. They have been implemented to ensure 

secure power system operation when the system suffers from severe supply-demand imbalances [1]. 

The main operators of DR programs are load serving entities (LSEs) that supply electricity to 

contracted customers (i.e., utilities). Recent deregulation of the power industry has made it possible for 

DR programs to be implemented in a market environment [2]. Accordingly, an LSE could become  

a demand-side participant in the market, aiming to maximize its profit through the DR program [3]. 

In a market context, the LSE’s profit depends on the difference between the purchase and resale 

prices. The purchase prices are determined for a specified time interval (e.g., every five min) based on 

the supply and demand for electricity [4]. They are inherently time-varying, and will be denoted here 

as “real-time market clearing prices” (RTMCPs). Since the resale (or retail) rates are relatively fixed 

compared to the RTMCPs, a sudden increase in the RTMCP leads to a corresponding reduction in the 

LSE’s profits [5]. As a result, dynamic pricing schemes are typically designed and included in DR 

programs to take variations in the RTMCPs into consideration [6]. 

Such dynamic pricing schemes include three main approaches: real-time pricing (RTP), time-of-use 

(TOU), and peak pricing (CPP) [6]. This study focuses on CPP, which has certain advantages over 

RTP and TOU. In RTP, customers are exposed to continuously changing prices; they must thus repeatedly 

decide whether to respond to price changes in order to reduce their electricity bills. By contrast,  

in a CPP scheme, customers must make decisions about whether to reduce consumption only when 

critical events occur. Thus, CPP is simpler to implement than RTP, particularly for residential 

customers [7]. TOU is also easy to implement, as it consists only of a few block rates. However, these 

rates must be announced to customers in advance, making TOU unable to manage sudden increases in 

the RTMCP. CPP can thus complement TOU by dynamically applying the peak rate during critical 

situations of high RTMCP [7]. 

In terms of the design of a CPP scheme, two main problems have been addressed in the literature. 

One, the event scheduling problem, seeks to determine when critical events should be triggered to 

maximize or minimize a certain target outcome, such as profits. Past research has formulated and 

solved the event scheduling problem so as to maximize profit via dynamic programming based on the 

forecasted price and demand [8]. In [9], the problem is solved through a stochastic approach 

considering the uncertainties inherent in price and temperature, also with the goal of profit 

maximization. Integer programming is used to solve the problem in [10]. The second problem in CPP 

design involves selection of the peak rate. Recent research [11] presents guidelines for determining the 

optimal peak rate (along with other CPP parameters) to achieve maximum profits for an LSE. In [12], 

a methodology is proposed to determine the peak rate as well as the optimal events schedule 

considering variable wind power generation. 

In various DR programs, the interrupted or curtailed demand later appears as delayed consumption 

after the restriction is lifted [13–18]. This phenomenon is referred to differently in the literature—as 

payback in [13–15] and load recovery in [16,17]—but here we refer to it as payback. Further, in [18], 

the payback is represented concisely as the cross-elasticity in a mathematical form of the elasticity 

matrix. In DR programs, the payback phenomenon occurs because demand is shifted in time, but the 
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reduction in overall consumption is very small [19]. Moreover, the paid-back amount may exceed the 

amount of curtailed demand because of losses from the energy conversion processes of customers’ 

appliances [20]. Because of the costs incurred in serving this delayed demand, the payback lessens the 

market value of demand-side resources [21]. Therefore, some studies model the payback phenomenon 

as part of their economic analyses. In [13], the effect of payback on generation costs and the amount of 

peak reduction are evaluated for air-conditioning loads. In [16], a mathematical model of payback is 

developed, and its effects on each market participant are analyzed from an economic perspective. 

The payback phenomenon also occurs in CPP following a critical event [22]. Accordingly,  

it affects the profits enjoyed by the LSE and thus must be appropriately considered when designing  

a profit-maximizing CPP scheme. The optimal peak rate in a CPP scheme is determined in [11] based 

on the assumption that customers’ demand is not recovered but rather purely reduced when critical 

events take place. However, if the payback phenomenon occurs, the optimal peak rate given in [11] no 

longer ensures optimality. In addition, the main concerns of an LSE operating a CPP scheme are the 

optimal schedule of critical events and the resulting profit. However, if payback is present, the optimal 

event schedule and the LSE’s profit, which are determined without considering payback as in [11], 

would change in a manner differing from the characteristics of the payback phenomenon. Nonetheless, 

few studies have examined the payback within CPP schemes; even fewer have presented how CPP 

parameters, such as the peak rate, should be chosen to maximize LSE profits considering the payback. 

This study thus extends the work presented in [11] and presents several analyses to fill these gaps in 

knowledge. First, the payback phenomenon is characterized using three parameters: duration, amount, 

and pattern. Further, a payback ratio and a payback function are introduced and defined for the payback 

amount and pattern, respectively. Second, the payback effects on the critical event scheduling problem 

are demonstrated based on the characteristics of customers’ responses to a critical event. Finally,  

an analytical expression for the optimal peak rate considering payback is derived for a general payback 

pattern. Then, the payback effects on the optimal peak rate are further analyzed for two specific 

payback models: exponentially decreasing payback (EDP), to model an intense demand recovery  

a short time after a critical event, and uniformly distributed payback (UDP), to represent a redistribution 

of demand over a longer time period. In all these analyses, we adopt the customer price response 

model used in [23] to quantify the reduction in electricity consumption in response to a critical event. 

The remainder of this paper is organized as follows. As background information, Section 2 briefly 

describes the customer price response model [23] and CPP design in the absence of payback [11]. 

Section 3 characterizes the payback phenomenon. The effects of payback on the design of a CPP 

scheme are analyzed in Section 4, the results of which are verified through numerical simulations in 

Section 5. Finally, Section 6 offers some concluding remarks. 

2. Backgrounds 

2.1. Price Responsiveness Model 

The response of customers to a price change is described in [23] as given by: 

 0
0

0

1 k k ,k
k ,k

,k

q q
        

 (1)



Energies 2015, 8 11366 

 

 

where 0 ,kq  and 0 ,k  are the nominal demand and price, respectively; kq  and k  are the modified 

demand and price, respectively; and k  is the customers’ demand elasticity, defined as: 

k k
k

k k

dq

q d


 


 (2)

The variable k  is negative because a price increase leads to a demand reduction. For example, 

when k  is equal to −0.01, demand decreases by 1% following a 100% increase in price. 

CPP consists of two price levels: the off-peak rate, BASE , and the peak rate, PEAK . The off-peak 

rate is applied in most periods while the peak rate is applied only rarely, when critical events are 

triggered. When a critical event is triggered, the price changes from BASE  to PEAK , and demand 

changes accordingly. Assuming that elasticity of demand is constant at  , the modified consumption, 

CR,kq , during the critical event triggered in period k can be determined by replacing 0 ,k  and k  in 

Equation (1) with BASE  and PEAK , respectively, as [11]: 

0 1 1PEAK
CR,k ,k

BASE

q q
          

 (3)

In reality, 0 ,kq  does not occur when consumption has already changed to kq  in response to PEAK . 

Thus, 0 ,kq  should be interpreted as forecast demand based on BASE . The cumulative curtailed demand 

CUR,kQ  for a critical event starting in period k can then be represented as: 

1 1

0 01
CPP CPPk D k D

PEAK
CUR,k ,i CR,i ,i

i k i kBASE

Q ( q q ) q
   

 

 
       
   (4)

where CPPD  is the duration of the critical event. It should be noted that CUR,kQ  takes a positive value 

because both   and  1 PEAK BASE   are normally negative. 

2.2. Designing a Critical Peak Pricing (CPP) Scheme without Payback 

The event scheduling problem of CPP to maximize LSE profits can be formulated as: 

 
1k

H

k k
u

k

max R C


  (5)

where ku  is a binary event decision variable that takes a value of one if a critical event is triggered and 

zero otherwise, H is the scheduling time horizon of the problem, and kR  and kC  are the LSE’s 

revenues and costs, respectively, in period k. When payback does not occur, kR  and kC  are defined as: 

01k k PEAK CR,k k BASE ,kR u q ( u ) q      (6)

01k k RTMCP,k CR,k k RTMCP,k ,kC u q ( u ) q      (7)

where RTMCP,k  is the forecasted RTMCP in period k. The constraints consist of the conditions on the 

maximum number of events, the maximum event duration, and the minimum interval between 

successive events [8,11]. The specific forms of these constraints are as follows: 
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Maximum Number of Events ( CPPN ): 

 1
1

1
H

k k CPP
k

u u N


   (8)

Maximum Event Duration ( CPPD ): 

     1 2
CPPk D

i CPP CPP
i k

u D , k , , ,H D




      (9)

Minimum Interval between Successive Events ( k ): 

   
1

1 11 0          1 2 1
k k

k k i i
i k

u u u u , k , , ,H k
 

 


         (10)

In Equations (8)–(10), 0ku   is assumed for 0k  . These constraints are imposed in order to avoid 

inconveniencing customers by interrupting consumption through critical events. For example, 

Equation (8) prevents triggering an excessive number of critical events, and Equation (10) allows 

customers to return to normal consumption within a reasonable time. The existing techniques for 

solving such an optimization problem include dynamic programming [8] and integer programming [10]. 

In this study, we use the former methodology, as in [8], to solve the event scheduling problem. 

In terms of the optimal peak rate, we first need to define the profit index, which means an additional 

profit that the LSE will receive from triggering a critical event. Suppose that 

1 2{ }
CPPPEAK N PEAKk ,k , ,k  Κ   denotes the optimal solution of the event scheduling problem for  

a given PEAK . Then, the profit index, N ,k PEAKPI ( ) , for a critical event in period PEAKk Κ  without 

payback can be expressed as [11]: 

    
1

0

CPPk D

N ,k PEAK CR,i PEAK RTMCP,i ,i BASE RTMCP,i
i k

PI ( ) q q
 



        (11)

where the event duration is equal to the maximum event duration, CPPD , because the LSE’s profit is 

always maximized when the maximum event duration applies. Substituting Equations (3) into (11) 

makes N ,k PEAKPI ( )  a quadratic function of PEAK . Then, the critical point of the function is 

determined as the optimal peak rate without payback, *
N ,PEAK , which has a form as [11]: 

1

0

0

1
1

2 2

CPPk D

,i RTMCP,i
* i kBASE k
N ,PEAK

,k
k

q

Q

 






  

     

 


*

*

Κ

Κ

 (12)

where *
N ,PEAK *Κ Κ  is the optimal event schedule for optimal peak rate and 0,kQ  is cumulative 

consumption during all critical event periods starting from period k, which is expressed as: 
1

0 0

CPPk D

,k ,i
i k

Q q
 



   (13)
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3. Characterization of the Payback Phenomenon 

There are two key aspects that characterize the payback phenomenon. The first is the amount of 

paid-back demand. The curtailed demand, CUR,kQ , may be under-, equally, or over-recovered following 

a critical event [13–15]. Thus, a payback ratio, denoted as PB,k , is introduced as the ratio of recovered 

consumption to curtailed demand. The specific value of PB,k  depends on the composition of customer 

demand. For example, one does not compensate for turning off lights during a critical event period by 

greater light use later on; such demand thus tends to be connected with under-payback, or 1PB,k  .  

In contrast, a heating or air-conditioning system may require more post-event energy for transition to 

the target value from the decreased or increased room temperature arising during the critical event 

period; this tends to result in over-payback, or 1PB,k  . Let PB,kQ  be defined as the amount of  

paid-back demand for a critical event in period k. Then PB,kQ  can be represented as: 

1

1
1

CPP PB ,k PB ,k

CPP

CPP

k D D D

PB,k PB,i PB ,n k D PB,k CUR,k
i k D n

Q q q Q
  

  
  

      (14)

where PB,iq  is the recovered demand in period i and PB,k  and PB,kD  are the payback ratio and 

duration, respectively, for the critical event in period k. 

The other key aspect of the payback phenomenon is its pattern. Let the payback function,  PB,kf n  for 

 1 2 PB,kn , , ,D  , be defined as the ratio of paid-back demand to CUR,kQ  in the n-th time period from 

the end of the critical event. Then, 1CPPPB,n k Dq     in Equation (14) is expressed as: 

1CPPPB ,n k D CUR ,k PB ,kq Q f ( n )     (15)

Comparing Equations (14) and (15),  PB,kf n  should satisfy the condition: 

1

PB ,kD

PB,k PB,k
n

f ( n )


   (16)

Let the normalized unit payback function,  U
PB,kf n , be defined as    U

PB,k PB,k PB,kf n f n  , which 

satisfies the condition: 

1

1
PB ,kD

U
PB,k

n

f ( n )


  (17)

Then,  PB,kf n  is represented as    U
PB,k PB,k PB,kf n f n   such that the payback function can be 

separately expressed by the payback ratio, PB,k , and the payback pattern, ( )U
PB,kf n . 

In real-world situations, it is difficult to specify a particular form for ( )U
PB,kf n . Nonetheless, some 

studies suggest a payback function model for analytic purposes particularly for water heating and air 

conditioning loads. Empirical results in [14] show that the payback pattern can be represented with  

an exponentially decreasing function for water heating loads. In [13] and [15], sets of decreasing 

values are specified as the payback function values for water heating loads and both water heating and 

air conditioning loads, respectively. This study thus adopts an EDP function as a specific payback 

pattern to model an intensive recovery of demand over a short time period immediately after a critical 

event. This takes the form of: 
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     1 2U n
PB,k PB,kf ( n ) e , n , , ,D     (18)

where   is a constant, which is determined by solving the equation 
1

1PB ,kD n

n
e 


  derived from 

Equation (17). For example, 1 5 2ln(( ) / )    can be obtained when 2PB,kD  . Figure 1 shows the 

shape of the EDP function for various values of PB,kD  when 1PB,k  . It should be noted from Figure 1 

that the EDP functions are almost identical for PB,kD  greater than five. 

 

Figure 1. Exponentially decreasing payback functions for several payback duration values 

of 1, 2, 3, 5, 7, and 9. 

Despite past studies [13–15] mentioning the EDP pattern, we cannot rule out the possibility that the 

curtailed demand is recovered fairly evenly during the payback period. Consequently, a constant 

function is used to model UDP and is analyzed as an additional specific payback pattern for 

comparison purposes. The UDP function is expressed as: 

 ( )     1 2U
PB,k PB,kf n c, n , , ,D    (19)

where c is a constant that takes the value 1 PB,kc D  from Equation (17). 

4. Payback Effects on CPP Design 

4.1. Payback Effects on the Event Scheduling Problem 

The optimal schedule of critical events that was determined without considering payback may no 

longer be optimal once the payback phenomenon is taken into account. Further, the LSE’s profits may 

decrease if the additional costs arising from payback exceed the cost savings reaped through the 

critical event. A simple example in Figure 2 demonstrates such a scenario. Suppose that 4H  , 

1CPPN  , 2 3 1PB, PB,D D  , 2 3 1PB, PB,    , 4BASE   cents/kWh, and 44PEAK   cents/kWh.  

The nominal demand and RTMCPs are given in Figure 2a. The customers’ price responsiveness is 

assumed as 0 05.   . 
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Under these parameter settings, customers eliminate half of their nominal demand when a critical 

event is triggered according to Equation (3). Figure 2b and Table 1 present the modified consumption 

and profit levels under four different scenarios. Without payback, the profit is largest when a critical 

event is triggered in period 2k  ; when payback is considered, however, the profit-maximizing 

critical event period shifts to 3k  . In other words, the optimal event schedule changes due to 

payback. In addition, profit decreases from $30 in the case without payback to $28 in the case of 

payback with optimal scheduling. This clearly indicates that payback may have a negative effect on  

an LSE’s profits, suggesting that the event scheduling problem in the presence of payback must be 

solved as a separate optimization problem. 

 
(a) 

 
(b) 

Figure 2. (a) Demand and real-time market clearing prices (RTMCPs); (b) A simple 

example to show how payback affects the optimal schedule of critical events. 
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Table 1. Profits of the load serving entity (LSE) with and without payback for two event 

schedules in the example. 

Critical Event Period Without Payback ($) With Payback ($) 

2k   
revenue 84 88 

cost 54 61 
profit 30 27 

3k   
revenue 84 88 

cost 55 60 
profit 29 28 

4.2. Payback Effects on the Optimal Peak Rate 

As in Equation (11), the profit index including the payback arising from a critical event in period k, 

PB,k PEAKPI ( ) , is represented as: 

    

   

1

0

1
1

CPP

PB ,k

CPP

k D

PB,k PEAK CR,i PEAK RTMCP,i ,i BASE RTMCP,i
i k

D
U

PB,k CUR,k PB,k BASE RTMCP,n k D
n

PI ( ) q q

Q f n

 



  


      

   




 (20)

As with the procedures for *
N ,PEAK  in Equation (12), the optimal peak rate considering payback, 

*
PB,PEAK , can be obtained by substituting Equations (4) into (20), differentiating with respect to PEAK , 

and solving the resulting equation for PEAK . After rearranging the terms, a specific form of *
PB,PEAK  is 

obtained as: 

 

1

0

0

0 10
1

0 0

1
1

2 2

2 2

CPP

PB ,k

CPP

k D

,i RTMCP,i
* i kBASE k
PB,PEAK

,k
k

D
U

PB,k ,k PB,k RTMCP,n k DBASE PB,k ,k
nkk

,k ,k
k k

q

Q

Q f nQ

Q Q

 





  


 

 
          

 
 
  

    
    

 
  

 


 
 

*

*

**

* *

Κ

Κ

ΚΚ

Κ Κ

 (21)

The terms in the first square bracket in Equation (21) are equal to *
N ,PEAK  in Equation (12). Thus, 

*
PB ,PEAK  can be represented as: 

* *
PB,PEAK N ,PEAK PB,PEAK      (22)

where PB,PEAK  indicates the payback effect on the optimal peak rate, the expression of which is as 

given in the second bracket in Equation (21). The optimal event schedule, *Κ , depends on PB . Thus, 

PB  should be included within the summation sign in Equation (21). However, if *Κ  does not change 

and the payback parameters are the same for k  *Κ , that is, PB,k PB   , PB,k PBD D ,  

and    U U
PB,k PBf n f n  for k  *Κ , then PB  can be pulled out of the sum and PB,PEAK  can be 

represented as: 
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 0 1
1

02

PB

CPP

D
U

,k PB RTMCP,n k D
nkPB

PB,PEAK BASE
,k

k

Q f n

Q

  




  
  

       
 
  

 


*

*

Κ

Κ

 (23)

Equation (23) shows that, while maintaining the optimal schedule of critical events, the payback 

ratio, PB , has a linear relationship with the amount of change in the optimal peak rate. PB  is not, 

however, related to whether the payback causes an increase or decrease in the optimal peak rate.  

On the other hand, the payback pattern,  U
PBf n , and duration, PBD , affect both the amount and sign of 

the change in the optimal peak rate. 

Despite the relationships between the payback parameters and the optimal peak rate, it is not 

evident whether payback causes an increase or decrease in the optimal peak rate based only on 

Equation (23). This is because PB,PEAK  depends on the specific RTMCPs and nominal demand as 

well as the payback parameters; the interrelation among these factors is difficult to define conclusively, 

particularly in cases where 2CPPN  . As a result, the payback effects on the optimal peak rate will first 

be examined analytically for the simplest case ( 1CPPN  ). These results will then be extrapolated to the 

general cases with 2CPPN  . 
Suppose that 1CPPN   and the optimal event schedule is determined as { }*k*Κ . Then, 0,kQ  terms 

in the numerator and denominator of Equation (23) cancel one another out and PB,PEAK  can be 

simplified to: 

 
1

12

PB

*
CPP

D
UPB

PB,PEAK BASE PB RTMCP,n k D
n

f n
  



 
     

 
  (24)

For EDP, most of the paid-back demand is concentrated in the initial time periods following the 

critical event. In addition, a critical event is usually triggered when the real-time market clearing price 

(RTMCP) is high, such that the RTMCPs in the early time periods of the payback phase are likely to 
be higher than BASE . This implies that the second term inside the bracket in Equation (24), which 

refers to the average RTMCP weighed by  U
PBf n  during the payback periods, is also likely to exceed 

BASE ; PB,PEAK  is thus negative. Consequently, for EDP, where the curtailed demand is recovered 

quickly, *
PB,PEAK  tends to be lower than *

N ,PEAK . Additionally, as described in Section 3, the EDP 

functions hardly change for 5PBD  . Therefore, for EDP, as PBD  increases, *
PB,PEAK  converges to a 

value, which is likely less than *
N ,PEAK . 

For UDP, PB,PEAK  in Equation (24) can be simplified as: 

1
1

1

2

PB

*
CPP

D
PB

PB,PEAK BASE RTMCP,n k D
nPBD   


 
     

 
  (25)

In Equation (25), all relevant RTMCPs are equally weighted in the calculation of PB,PEAK .  

In addition, the RTMCPs are likely to be small, as the times in question are far from the critical event 

period. As a result, the absolute value of PB,PEAK  for UDP might be smaller than for EDP, suggesting 

that *
PB,PEAK  is greater for UDP than for EDP. In the extreme situation when the RTMCPs below BASE  

are dominant over a long payback duration, it is possible that PB,PEAK  becomes positive and thus 



Energies 2015, 8 11373 

 

 

*
PB,PEAK  exceeds *

N ,PEAK . Moreover, assuming that BASE  is set close to the average of the RTMCPs 

over all periods, *
PB,PEAK  for UDP approaches *

N ,PEAK  as the payback duration increases. Nonetheless, 

in real situations, the payback duration is usually limited to a few time periods, and the RTMCPs 

around the critical event periods are likely to exceed BASE . Therefore, *
PB,PEAK  for UDP is still likely 

to be below *
N ,PEAK , even though it increases and approaches *

N ,PEAK  as the payback duration increases. 

Until now, the analysis has considered payback effects on the optimal peak rate for the simplest 

case, 1CPPN  . As indicated in Equation (23), PB,PEAK  in the general case ( 2CPPN  ) can be 

interpreted as a superposition of the effects for the 1CPPN   case, weighted by the 0 ,kQ  terms. In other 

words, PB,PEAK  for 2CPPN   can be determined as the weighted sum of CPPN  terms of PB,PEAK  for 

1CPPN  . Therefore, the above-presented analysis of payback effects on the optimal peak rate remains 

valid in cases with 2CPPN   unless 0 ,kQ  takes a very abnormal value for a certain critical event. 

Nonetheless, the payback effects on the optimal peak rate still depend strongly on the specific 

conditions of the RTMCPs and demand levels. As a result, the following section will perform 

numerical simulations for 3CPPN   given specific values of the RTMCP and demand; this will allow 

verification of the payback effects for 1CPPN   and validate their application to cases with 2CPPN  . 

5. Simulations and Verification 

5.1. Simulation Methods 

Actual data for future RTMCPs and demand is unavailable when an LSE designs a CPP scheme. 

Thus, these quantities must be forecasted for all periods within the scheduling time horizon. In this 

study’s simulations, the autoregressive moving average (ARMA) method in [24] is used for the 

forecasting. Historical data on RTMCPs and demand levels, as announced by the Pennsylvania-New 

Jersey-Maryland Interconnection for 31 days in January 2014 [25], are used as input data for the 

ARMA method. The resulting forecasted data are shown in Figure 3. The time period length is 

assumed to be one hour, making the simulations’ scheduling time horizon, H, equal to 744.  
The simulations are performed using the CPP parameters of 3CPPN  , 48k   hours, and  

12BASE   cents/kWh and a customer price responsiveness of 0 05.   . It is assumed that the 

payback parameters are equal for all critical event time period, that is, PB,k PB   , PB,k PBD D , and 

   U U
PB,k PBf n f n . 

 

Figure 3. Forecasted data for real-time market clearing price (RTMCP) and demand. 
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5.2. Results: Payback Effects on the Optimal Event Schedule 

The effects of payback on the event scheduling problem are examined under the conditions that 

1PB   and 3PBD   h. For set-ups both with and without payback, the optimal peak rate is arbitrarily 

selected as 120N ,PEAK PB,PEAK     cents/kWh. Simulations of three different scenarios were 

undertaken, as listed in Table 2, including without payback, with EDP, and with UDP.  

The specific values of the payback functions are also given in Table 2 (first column). 

The results for the simulated optimal schedule and corresponding profits are also listed in Table 2. 

The optimal schedules differ from one another according to not only whether or not payback occurs 

but also the payback pattern. This suggests that the payback phenomenon must be considered to 

properly solve the event scheduling problem. Furthermore, the profit is larger in the non-payback case 

than in either case with payback, verifying that the payback phenomenon has a negative effect on the 

LSE’s profits due to the additional cost of the paid-back demand. 

Table 2. Simulation results for the optimal schedule and the corresponding profit of the LSE. 

 ( ) (1) (2) (3)PB PB PB PBf n f , f , f  Optimal Schedule of Critical Events Profit (Million Dollars) 

Without payback {154, 561, 668} 46.476 

Exponentially decreasing payback  

{0.54, 0.30, 0.16} 
{157, 561, 644} 40.265 

Uniformly distributed payback  

{1/3, 1/3, 1/3} 
{157, 561, 704} 40.843 

5.3. Result: Payback Effects on the Optimal Peak Rate 

The effects of payback on the optimal peak rate are simulated by changing the payback duration and 

ratio. The payback duration is set to change from one to ten ( {1 2 10}PBD , , ,  ), and the range of the 

payback ratio is taken from [13] as 0 80 1 06PB. .   , with 271 equidistant values of PB  selected 

within this range. For each combination of PBD  and PB , the optimal peak rate is determined from 

Equation (21) and the corresponding profit for the LSE is calculated. For the case without payback,  

we find that 177 68*
N ,PEAK .   (cents/kWh), which yields a profit of $52.355 million. 

The simulation results for the optimal peak rate, *
PB,PEAK , for three values of PB  are presented 

with respect to PB  in Figure 4, where 0PBD   indicates the case without payback. As described in 

Section 4.2, the values of *
PB,PEAK  are below *

N ,PEAK  in all simulations because the RTMCP values 

around critical event periods are larger than BASE . Therefore, *
PB,PEAK  should be set below the usual 

level if the payback phenomenon is expected. In addition, Figure 4 shows that *
PB,PEAK  tends to be 

smaller for a short payback duration than for a long one, regardless of the payback pattern. This suggests 

that the LSE should select a lower optimal peak rate if the payback period is expected to be short. 

Figure 4 also demonstrates how the payback pattern affects the optimal peak rate. The value of 
*
PB,PEAK  is smaller for EDP than for UDP, particularly for a long payback duration. This is because the 

RTMCPs in the late time periods of the payback duration are smaller than those in the early time 

periods, but they are all equally weighted when determining *
PB,PEAK  for UDP. Moreover, in contrast 
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with the fact that *
PB,PEAK  for UDP increases as PBD  increases, *

PB,PEAK  for EDP hardly changes for 

5PBD  . 

As shown in Figure 4, the effect of PB  on the changing shape of *
PB,PEAK  is insignificant when 

compared with the effect of PBD . Nevertheless, to examine the effects of PB  on *
PB,PEAK  in greater 

detail, the change in *
PB,PEAK  with respect to PB  is represented in Figure 5 for a few values of PBD . 

As Equation (24) and the associated analyses indicate, *
PB,PEAK  decreases linearly as PB  increases, 

irrespective of the payback duration and pattern. This linear relationship between PB  and *
PB,PEAK  

holds only as long as the optimal event schedule, *Κ , does not change. When the optimal schedule 

changes, a step change of *
PB,PEAK  occurs, as can be clearly observed from the cases 1PBD   for EDP 

and UDP and 5PBD   for UDP in Figure 5. However, Figure 5 shows that *
PB,PEAK  decreases linearly 

after the step change as long as the modified optimal schedule is maintained. 

(a) (b) 

Figure 4. Simulation results of the optimal peak rate with respect to the payback duration 

for (a) Exponentially decreasing payback (EDP); (b) Uniformly distributed payback (UDP). 

 

Figure 5. Simulation results of the optimal peak rate with respect to the payback ratio for 
selected values of PBD . 

Finally, it is necessary to check whether the values of *
PB,PEAK  determined in the simulations are 

optimal. Figure 6 illustrates the profits with payback for {1 3 5}PBD , ,  and 1PB   with respect to the 

peak rate for the two payback patterns. The profit without payback is also shown in Figure 6.  
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The values for *
N ,PEAK  and *

PB,PEAK  determined via the simulation are clearly the extreme ones, 

yielding maximum profits. The existence of payback decreases profits in all cases. To emphasize the 

significance of this analysis, the profits resulting when 177 68*
N ,PEAK .   cents/kWh and 

151 41*
PB,PEAK .   cents/kWh for 1PBD   and 1PB   are indicated in Figure 6. (Note that the 

functions for the two payback patterns are the same for 1PBD  ). Comparing the two profits reveals 

that using *
PB,PEAK  increases profits by 2.83% (from $40.307 million for *

N ,PEAK  to $41.448 million for 
*
PB,PEAK ). In practical terms, properly designing a CPP scheme by considering payback effects could 

lead to a significant, if not dramatic, increase in profits for the LSE. 

 

Figure 6. Profit of the load serving entities (LSE) with respect to the peak rate for the case 

without payback and several cases with payback. 

6. Conclusions 

A CPP scheme is a useful demand response program that enables an LSE to increase profits by 

controlling customers’ demand at key moments. However, these profits are later reduced by the 

payback phenomenon. This study considered optimal strategies for designing a profit-maximizing CPP 

scheme taking payback into consideration. After characterizing payback through the appropriate 

parameters, the resulting change in optimal event scheduling was demonstrated, and the optimal peak 

rate under payback was analytically derived. The validity of this analysis was then verified through 

numerical simulations. 

The results yield certain practical suggestions for designing a CPP scheme in a payback scenario.  

When payback occurs, it is better to set the peak rate to a lower value than would be optimal without 

payback. Moreover, if the paid-back demand is expected to be concentrated in the time periods soon 

after a critical event, the peak rate should be set at an even lower value. As long as the optimal event 

schedule does not change, payback results in a slight linear decrease in the optimal peak rate. 

However, if the schedule changes, there is a step change in the optimal peak rate. Consequently, the 

LSE should jointly optimize the event schedule and the peak rate. 

Although the results of the proposed method are helpful for designing a CPP scheme, there remain 

open questions regarding their practical applications. In particular, the availability of payback 
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parameters, which are not constant but depend on the levels of demand and price, can be challenging in 

the implementation of a CPP scheme. This is one reason why payback has never been considered in 

the operation of a real-world CPP scheme; as such, it is not obvious that the extended characterization 

of the payback concept with other unknown and arbitrary parameters will have meaningful 

implications for actual operations. Additionally, the effects of nonlinear and unpredictable behavior 

resulting from different compositions of customer loads need to be examined. Therefore, further 

empirical research will be necessary to demonstrate the practical implications and real-world 

effectiveness of the CPP design strategy presented here. 
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Nomenclature 

BASE  off-peak rate of a critical peak pricing scheme 

PEAK  peak rate of a critical peak pricing scheme 

,ρRTMCP k  real-time market clearing price in period k  
*

,ρN PEAK  optimal peak rate for a normal situation without payback 
*

,ρPB PEAK  optimal peak rate considering payback effects 

,ρPB PEAK  difference of *
,ρPB PEAK  from *

,ρN PEAK  

0,kq  nominal consumption of customers in period k  

,CR kq  consumption of customers in period k  when a critical event is triggered 

,PB kq  recovered demand due to payback in period k  

0,kQ  cumulative consumption during the critical event periods starting from the period k  

,CUR kQ  cumulative curtailed demand for a critical event starting in period k  

,PB kQ  paid-back demand for the critical event in period k  

kR  revenue of a load serving entity in period k  

kC  cost of a load serving entity in period k  

kPI  profit index in period k  

,N kPI  profit index in a normal situation without payback in period k  

,PB kPI  profit index considering payback effects in period k  

ku  binary event decision variable in period k  

CPPN  maximum number of critical events 

CPPD  duration of the critical event 
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PBD  payback duration 
( )PBf n  payback function 
( )U

PBf n  normalized payback function 
αPB  payback ratio 
β  price elasticity of customers 

H  scheduling time horizon of the event scheduling problem 

k  minimum interval between successive events 

λ  constant for the exponentially decreasing payback function 

c  constant for the uniformly distributed payback function 

PEAKΚ  solution of the events scheduling problem for a given peak rate PEAK  
*Κ  solution of the events scheduling problem for the optimal peak rate 

Abbreviations 

ARMA autoregressive moving average 

CPP critical peak pricing 

DR demand response 

EDP exponentially decreasing payback 

LSE load serving entity 

RTMCP real-time market clearing price 

RTP real-time pricing 

TOU time-of-use 

UDP uniformly distributed payback 
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