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Abstract: The energy cost for producing electricity via wave energy converters (WECs) is still not
competitive with other renewable energy sources, especially wind energy. It is well known that
energy maximising control plays an important role to improve the performance of WECs, allowing
the energy conversion to be performed as economically as possible. The control strategies are
usually subsequently employed on a device that was designed and optimized in the absence of
control for the prevailing sea conditions in a particular location. If an optimal unconstrained control
strategy, such as pseudo-spectral optimal control (PSOC), is adopted, an overall optimized system
can be obtained no matter whether the control design is incorporated at the geometry optimization
stage or not. Nonetheless, strategies, such as latching control (LC), must be incorporated at the
optimization design stage of the WEC geometry if an overall optimized system is to be realised.
In this paper, the impact of device motion and force constraints in the design of control-informed
optimized WEC geometries is addressed. The aim is to verify to what extent the constraints modify
the connection between the control and the optimal device design. Intuitively, one might expect that
if the constraints are very tight, the optimal device shape is the same regardless of incorporating
or not the constrained control at the geometry optimization stage. However, this paper tests the
hypothesis that the imposition of constraints will limit the control influence on the optimal device
shape. PSOC, LC and passive control (PC) are considered in this study. In addition, constrained
versions of LC and PC are presented.
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1. Introduction

Wave energy technology development is at a relatively early stage of maturity. A wide variety
of wave energy converters (WECs) with many different operating principles have been proposed and
tested in the sea [1], but there are a few commercially-available devices. The levelized cost estimates
of wave energy, i.e., the production cost of an energy unit (1 kWh), is still higher than the estimated
costs of non-renewable sources (e.g., pulverized fuel and nuclear) and other renewable sources
(e.g., onshore and offshore wind) [2]. Thus, there is a corresponding “fertile field” for tools and
techniques able to address improvements in the economic cost of wave energy.

Many aspects of WEC design and operation can be affected by dynamic analysis and control
system technology, including maximization of energy extraction from waves and optimization of the
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energy conversion in the power take-off (PTO) system [3]. Such tools can play a fundamental role in
improving the performance of WECs and allowing the wave energy conversion to be performed as
economically as possible to minimize the delivered energy cost.

Aiming to improve wave energy extraction, a number of studies have been carried out on
device geometry optimization of WECs [4–8] and on control strategies for optimising the wave
energy absorption; see, e.g., [9–12]. The WEC geometry is usually designed for the prevailing sea
conditions in a particular location, and the control techniques are subsequently used to improve
the energy conversion performance of the device for sea states other than the design sea state.
However, particular control strategies, subsequently employed and while doing their best to broaden
the frequency response or the response amplitude operator (RAO) across the active frequency range,
can be limited in capability to produce an overall optimal system.

Recently, [13] has shown that different optimal geometries are obtained depending on the type
of control strategy that is employed at the design optimization stage of the WEC, where no device
amplitude and force constraints are considered. An optimal geometry obtained with latching control
(LC) is highly control dependent and can shorten the original natural resonance period of the device.
The optimal geometry obtained with a declutching-controlled device is slightly different from an
uncontrolled device, and its resonance period is marginally longer than the uncontrolled case. In
addition, a pseudo-spectral optimal control (PSOC) optimizes the wave energy absorption regardless
of the geometry of the device. For the PSOC, nearly the same amount of power can be obtained,
no matter whether the control design is incorporated at the geometry optimization stage or not.
However, constraints in the amplitude of the body motion, and PTO force constraints, may influence
the optimal geometry dependence, especially in the PSOC case, which results in more exaggerated
motion of the body and requires higher PTO forces than the latching or declutching strategies.

Most WECs are subject to constraints on the PTO system, such as the PTO stroke length and
the maximum force that the PTO can tolerate. Thus, for practical application studies, the physical
constraints of the PTO system should be taken into account. The objective of this paper is to verify the
impact of device motion and PTO force constraints on the control-informed geometry optimization
of WECs.

We assume that the PTO stroke length is related to the amplitude of the body motion and that
the amplitude of the motion cannot exceed the draught of the body. In addition, different limits are
considered for the constraints in the PTO force. The following control strategies are used here: passive
control (PC), LC and PSOC.

2. Energy from Sea Waves

In order to absorb energy from the waves, an oscillating body must be equipped with a PTO
system, which allows the production of usable energy. The process of energy conversion is based on
the body motion (in one or more degrees of freedom) as a response to incoming waves, and then, the
kinetic energy is transferred into electrical energy either by means of a hydraulic intermediate stage
or directly by a linear generator, depending on the PTO mechanism. Here, we consider a generic
WEC with a generic PTO system. The WEC is represented as a truncated vertical cylinder with a
wetted surface defined by a draught d and a radius r, as is illustrated by Figure 1.

2.1. Mathematical Model of Oscillating Bodies

Linear hydrodynamic theory and heave oscillatory motion of the cylinder are assumed. In such
a case, the motion of the floating body can be described by Cummins’ equation [14]:

[M + Mr(∞)]ẍ(t) +
∫ ∞

0
K(t− τ)ẋ(τ)dτ+ Sh x(t) = fe(t) + fp(t) (1)

where x(t) is the vertical position of the body, M is the body mass, Mr(∞) is the infinite-frequency
added mass coefficient, defined with the added mass asymptotic value at infinite frequency, Sh is the
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hydrodynamic stiffness coefficient, fe(t) is the wave excitation force and fp(t) is the force applied by
the PTO mechanism. The kernel of the convolution term, K(t − τ), is known as the fluid memory
term and expressed as [14]:

K(t− τ) = 2
π

∫ ∞

0
Br(ω) cos[ω(t− τ)]dω (2)

where Br(ω) is the radiation damping coefficient and ω is the wave frequency. Assuming the body
is floating in equilibrium, the body mass is equal to the mass of the displaced water in free flotation,
that is:

M = ρπr2d (3)

where ρ is the water density. Furthermore, the natural resonant period of the device is defined as:

Tr = 2π

√
M + Mr(∞)

Sh
(4)

SWL x (t)

PTO

SYSTEM

r

d

2d

fp(t) 

fe
(t) 

Figure 1. Schematic of the generic heaving floating body. PTO: power take-off.

The excitation force is calculated as fe(t) = F−1{Fe(ω)η(ω)}, where η(ω) is the Fourier
transform of the wave elevation and Fe(ω) is the excitation force transfer function.

The extracted energy and the mean extracted power by the WEC over a time range T0 are,
respectively, calculated as:

Ea = −
∫ T0

0
ẋ(t)fp(t)dt (5)

Pa =
Ea

T0
(6)

where fp is the force applied by the PTO system and ẋ is the velocity of the body.
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2.2. Upper Bounds for Wave Power Absorption

By virtue of the conservation of energy, WECs must interact with the waves and reduce the
amount of energy present in the sea. The device must be able to generate waves, which interfere
destructively with the sea waves [15]. For sinusoidal incident waves, the optimum destructive
interference occurs when two optimum conditions for the body oscillation (phase and amplitude
conditions) are fulfilled. The optimum phase condition is verified when the body velocity oscillates
in phase with the wave excitation force, and the optimum amplitude condition implies that the
resistive load of the PTO force must equal the hydrodynamic damping coefficient at the incident
wave frequency [15].

The maximum power that can be absorbed by an oscillating body, or the optimum destructive
interference, corresponds to [16–18]:

Pmax =
Jλ

2π
(7)

where J is the power level of a sinusoidal plane wave and λ is the wavelength. On deep water,
λ= (g/2π) and J = ρg2TH2/(32π), where g is the acceleration due to gravity, H is the wave height
and T is the wave period. Thus, the upper limit for the absorbed power Pa is given by [19]:

Pa < PA ≡ c∞T3H2 (8)

where c∞ = ρ(g/π3)/128 for an incident sinusoidal plane wave interfering with a ring-shaped
outgoing wave from a heaving axisymmetric body [19].

Taking into account the physical limitations of the body, Budal [20] presented an upper bound
(PB) of the absorbed wave power by an immersed oscillating volume Vo,

PB ≡ c0
VoH

T
(9)

where c0=πρg/4.
For a practical WEC, the converted power is necessarily below the upper bounds PA and PB.

However, it does not mean that the whole region between these bounds is allowed [19]. The physical
limits of the PTO, which are specific to the PTO itself, should also be taken into account for practical
application studies.

3. Control-Informed Geometry Optimization

The overall optimization of the WEC consists of determining the radius r and draught d of the
cylinder that maximizes the average absorbed power Pa in Equation (6), informed by the control
system employed. The following control strategies are applied: PC, LC and PSOC.

Physical limitations of the WEC are taken into account by introducing constraints on the motion
of the body. In particular, an oscillation amplitude constraint is introduced to reflect the finite
excursion of the body, and a constraint on the PTO force is also introduced, indicating the maximum
force that the PTO can tolerate. For the device motion constraints, the amplitude of the body motion
cannot exceed the draught of the body. Thus, the oscillation amplitude constraint is defined as:

|x(t)| ≤ kC d (10)

where kC is a dimensionless constant, and 0 < kC < 1. In addition, the PTO force constraint is
defined as:

|fp(t)| ≤ FC (11)

where FC (in N) represents the physical limitation of the PTO system.
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3.1. Control Methods

3.1.1. Passive Control

PC consists of varying the damping coefficient of the PTO force for a given sea state. If we
consider a generic PTO system with a linear damper (coefficient Bp ∈ R+), then the PTO force is
given by:

fp(t) = −Bp ẋ(t) (12)

where ẋ(t) is the vertical velocity of the body.
Assuming the wave excitation force is known completely over the interval T0, the motion of the

body can be estimated. Thus, the PTO coefficient Bp is initially tuned as:

Bp ≡ Bpc,opt =
√
(Br(ω))2 + (ω(M + Mr(ω))− Sh/ω)2 (13)

which represents optimal linear damping when the body is subjected to incident regular waves [15].
Polychromatic waves are not defined by a single frequency, so a frequency that best characterizes the
wave spectrum should be selected. Here, Bp is tuned to the peak frequency of the wave spectrum
(ωp) for each sea state. Notice that tuning Bp to the peak frequency of the spectrum is a sub-optimal
approach. An optimal approach where Bp is time varying and obtained through a nonlinear model
predictive controller is presented in [21].

We define the maximum amplitude of the body motion over the time interval T0 as:

xm(Bp) = max|x(t)|T0 (14)

if xm(Bp) does not exceed the allowed limits, defined by Equation (10), with Bp defined by Equation
(13), then Bp=Bpc,opt. Otherwise, the following optimization problem is defined to find the damping
Bp: Find the optimal damping Bp that minimizes the function , defined as:

(Bp) = kC d− xm(Bp) s.t. Bp > Bpc,opt (15)

Here, the method of bisection [22] is used for solving Equation (15).

3.1.2. Latching Control

The principle of LC is to lock the motion of the body at the moment its velocity vanishes and
to wait for a favourable situation to release the body again. As a result, the body velocity is forced
to be in phase with the wave excitation force. The determination of the time that the body is locked
(latching duration, TL) is the problem to be solved. Figure 2 illustrates the evolution of the system
variables under LC.

LC “slows down” the natural response of the device when the wave period is longer than the
device period, in order to force the velocity of the body and the excitation force to reach their extrema
(maxima or minima) at the same time.

The latching time can be determined semi-analytically for regular waves [23,24]. However, for
polychromatic waves, the concept of phase between excitation force and velocity is not well defined,
in which case the optimization of the latching duration does not return a unique solution [23]. In this
case, the latching duration (or equivalently, the unlatching time) can be optimized to synchronize the
peak of the velocity with the peak of the excitation force [25] or to maximize the absorbed power [9].
In addition, a number of different strategies have been proposed to determine the best unlatching
time for polychromatic waves; see, e.g., [26–32]. In this study, the body is unlatched at the instant
when the excitation force passes a chosen threshold (threshold unlatching [30]). Here, we choose zero
as the threshold value. In [31], the authors verify the influence of the threshold unlatching time, the

13676



Energies 2015, 8, 13672–13687

PTO damping coefficient and the mass ratio of a generic two-body WEC on the LC efficiency for a
given annual wave climate.

x (t)

0

0

T
L

T
L

T

x (t)
.

t (s)

t (s)

T

Figure 2. System variables under latching control (LC).

The PTO force is defined by Equation (12) for the instants the PTO is on. To further optimize the
wave energy absorption, an optimal PTO damping can also be determined for the LC. In this case,

Bp ≡ Blc,opt = Dm M (16)

where 0.05 < Dm < 2.5, and the problem to be solved is to determine the coefficient Dm, which
optimizes the absorbed power for a specific geometry and sea state.

If xm in Equation (14) does not exceed the allowed limits, defined by Equation (10), with Bp

defined by Equation (16), then Bp = Blc,opt. Otherwise, the same optimization problem defined
for finding the optimal damping for the PC is defined for the LC. In this case, Equation (15) is
subject to Bp > Blc,opt. The method of bisection is also used to calculate the optimal Bp due to the
motion constraint. Notice that for both the PC and LC, the PTO force constraint is implemented as a
saturation. However, this is only a theoretical approach, since the body motion is also a function of
the wave excitation force, which is an external force that cannot be manipulated. The implementation
of saturation on the force signals of a real WEC is not physically possible.

3.1.3. Pseudo-Spectral Optimal Control

The control problem for the PSOC is defined as follows: to find the optimal profile for the PTO
force that maximizes the total energy absorbed (Equation (5)) over a time interval T0, subjected to the
equation of motion (Equation (1)) and the physical constraints (Equations (10) and (11)).

For this purpose, the control problem is discretised by approximating the velocity and the PTO
force with a linear combination of basis functions. Such a combination results in a finite dimension
optimization problem. Following the procedure from [33,34], trigonometric functions are chosen
as basis functions. Then, the PTO force and the velocity are, respectively, approximated with the
truncated zero-mean Fourier series:

ẋ(t) ≈
N/2

∑
k=1

xc
2k cos(kω0t) + xs

2k sin(kω0t) = Φ(t) x̂2 (17)

fp(t) ≈
N/2

∑
k=1

uc
k cos(kω0t) + us

k sin(kω0t) = Φ(t) û (18)
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where ω0 is the fundamental frequency of the Fourier series, N is the total number of components
and Φ(t) =

[
cos(ω0t), sin(ω0t), . . . cos(N

2 ω0t), sin(N
2 ω0t)

]
. The best approximation of the solution

for the equation of motion (Equation (1)) is sought by applying the Galerkin method (see [33,34] for
more details), and the result is the linear system:

Gx̂2 = û + ê (19)

where x̂2, û, ê are, respectively, the vectors of the Fourier coefficients of the velocity, PTO force and
excitation force and G is the matrix of hydrodynamical coefficients of the system. The set of vectors
are arranged as:

x̂2 =
[

xc
21, xs

21, xc
22, xs

22, . . . , xc
2 N

2
, xs

2 N
2

]T

û =
[
uc

1, us
1, uc

2, us
2, . . . , uc

N
2

, us
N
2

]T

ê =
[
ec

1, es
1, ec

2, es
2, . . . , ec

N
2

, es
N
2

]T

The matrix G ∈ RN×N is defined as:

G =



D1 C1 0 · · · 0 0
−C1 D1 0 · · · 0 0

0 0
. . .

...
...

...
...

. . . 0 0
0 0 0 0 DN/2 CN/2
0 0 0 0 −CN/2 DN/2


with:

Dk = Br,k(kω0) , and

Ck = kω0
(

M + Mr,k(kω0)
)
− Sh,k/(kω0)

The vector of the Fourier coefficients of the position can be expressed as [33]:

x̂1=D−1
φ x̂2 (20)

where Dφ ∈ RN×N is the differentiation matrix. Each block Dk
φ for k = 1, . . . , N/2 is:

Dk
φ =

[
0 kω0

−kω0 0

]
(21)

The physical limitations in Equations (10) and (11) are also discretised. Following [33], the
approximated position and force constraints are enforced only at a set of specific time instants {tk}Nc

k=0.
The resulting amplitude and force constraint are respectively approximated by the linear inequalities:[

Θ

−Θ

]
x̂1 ≤ 12(Nc+1)×1 kC d (22)[

Θ

−Θ

]
û ≤ 12(Nc+1)×1 FC (23)

where 12(Nc+1)×1 is the vector of all ones of size 2(Nc + 1), and Θ = [Φ0, Φ1, . . . , ΦNc ]
T . The

motion inequality constraint in Equation (22) can be expressed as a function of û using Equations (19)
and (20):
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[
Θ

−Θ

]
D−1

φ G−1û ≤ 12(Nc+1)×1 kC d− D−1
φ G−1ê (24)

Assuming the wave excitation force is known completely over the time interval T0 and G is
nonsingular, the vector of the optimal PTO force û∗ is obtained by solving the following optimization
problem [33]:

û∗ = arg max
û

(−ûTG−1û− ûTG−1ê) (25)

subject to the linear inequality constraints on the PTO force (Equation (23)) and oscillation amplitude
(Equation (24)). More details on how to solve the energy optimization problem subject to device
motion and force constraints can be obtained in [33].

All of the constrained control strategies considered in this paper require the wave excitation
force to be known completely over the time interval T0 to optimize Bp (PC or LC) or to determine
the optimal PTO force (PSOC). In addition, the optimal power absorption by the PSOC may require
a PTO that is able to supply power during part of the wave cycle (reactive power), which places
particular demands on PTO systems.

4. Simulations Results

4.1. Simulation Parameters

The optimal geometries informed by the control system employed (PC, LC or PSOC) are
determined via simulations with a complete set of possible values of radius r and draught d, in which
153 different cylinders are considered. As a result, a clear overview of the mapping between the
absorbed power Pa and the optimization parameters can be observed. The ranges of both the radii
and draughts goes from 2 m to 18 m, in steps of 1 m (radius) and 2 m (draught). The coefficients
Fe(ω), Br(ω), Mr(∞) and Sh for all of the cylinders are computed using the boundary element solver
WAMIT [35]. In Equations (1), (2) and (4), all of the hydrodynamic quantities are represented in the
dimensional form, following guidelines from [35].

Polychromatic waves are considered for the control-informed geometric optimization study of
the WEC subject to constraints. The polychromatic waves are calculated as a linear combination
of monochromatic waves using a Bretschneider spectral envelope, defined by the significant wave
height Hs = 1.8 m, peak period Tp = 7.4 s and random phases. Phases were pre-computed once in
order to be exactly the same for every simulation.

4.1.1. Passive Control and Latching Control Parameters

For the PC and the LC strategies, the fourth-order Runge–Kutta method is adopted for
simulating the equation of motion (Equation (1)). The time step used is 0.1 s, and the time interval T0

is set to 1200 s, which is the usual recording time used to obtain real statistical values of a wave field
and to characterize a sea state [36].

The PTO damping coefficients were pre-computed for each one of the geometries following the
procedure described in Sections 3.1.1 and 3.1.2. The initial interval chosen for the bisection method is
defined as: [Bpc,opt, 5Bpc,opt] for PC or [Blc,opt, 5Blc,opt] for LC. The bisection algorithm stops when the
difference between two consecutive damping values is less than or equal to 1000 kg/s. Figure 3 shows
the PTO damping coefficients for PC and LC with the studied cylinders and the defined sea state.
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Figure 3. PTO damping coefficients when kC =0.75 for (a) passive control (PC) and (b) LC.

4.1.2. Pseudo-Spectral Optimal Control Parameters

In the PSOC, the optimal control problem is discretized by approximating the velocity of the
body and the PTO force with truncated zero-mean Fourier series. Then, the solution of the linear
system (Equation (19)) represents the steady-state solution of the equation of motion (Equation (1)),
and the time interval T0 is defined by the fundamental frequency of the Fourier series, that is T0 =

2π/ω0. For regular waves, ω0 = ω. For panchromatic waves, a simulation study has been done to
determine ω0 for the sea state Hs = 1.8 m and Tp = 7.4 s. Figure 4 shows the normalized absorbed
power by the WEC as a function of T0 (Figure 4a) and as a function of the number of frequencies
(Figure 4b). The normalized absorbed power is calculated as Pa/P∗a , where P∗a is the average absorbed
power for T0 = 1200 s. In Figure 4a, the number of frequencies for each one of the simulations is
defined as N = 2T0/Tp. It can be noted that for T0 > 60 s, the power ratio converges to one. For
panchromatic waves, the simulation parameters are set as: N=128 andω0=0.0304 rad/s.
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Figure 4. Normalized absorbed power by the cylinder (r=5 m; d=10 m) as a function of (a) the time
interval T0 and (b) the number of components of the Fourier series. Panchromatic waves.

4.1.3. Budal Diagram

Figure 5 shows the Budal diagram with the two upper bounds for wave energy absorption (PA

and PB) for a geometry with r=5 m and d=10 m and the power absorbed by the same geometry when
different control strategies and PTO constraints are adopted. It can be noted that the unconstrained
PC and LC result in absorbed powers below the allowed regions, but the unconstrained PSOC results
in about the same power as suggested by the upper bound PA. Thus, we have used the upper bounds
curves in Figure 5 to define the PTO force limits (FC). After trial and error, we verify that for kC=0.75
and FC ≤ 3500 kN, the absorbed power by the PSOC is inside the allowed region defined by curves
PA and PB.
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Figure 5. Two upper bounds (PA and PB) for the power that can be absorbed from a sinusoidal wave
with H = 1.8 m and power absorbed by the cylinder (r = 5 m; d = 10 m) when different control
strategies and constraints are employed for it.

4.2. Optimal Geometries

Figures 6 – 8 illustrate the variation of the absorbed power Pa for different values of r and d for
each of three control methods (PC, LC and PSOC). Figures 6 – 8 also show the level curves of Pa under
the surface plot and the optimal cylinder parameters, which are identified by the symbol “∗”. In order
to compare different scenarios for the optimal geometries informed by the control system employed,
the simulations were run without any constraints on the oscillation amplitude of the body or PTO
force (Figure 6), with amplitude constraints only (Figure 7) and with both oscillation amplitude
constraints and PTO force constraints (Figure 8). Table 1 shows the relative size of the various
optimized devices when the constrained control strategies are subject to different PTO constraints.
The first line shows the optimal geometries for the cases when the PTO is not constrained (NC).
Overall, 11 different geometries are obtained for the considered scenarios.

By comparing Figure 6a with Figure 7a, it can be noted that the oscillation amplitude constraints
have no effect over the variation of the absorbed power for PC. Only when the PTO force limits are
lower than 500 kN (FC < 500 kN) are the optimal geometries smaller than the case when the PTO
force is unconstrained, or the PTO limits are not very constraining for PC (FC ≥ 1500 kN). For LC,
the amplitude constraint slightly modifies the absorbed power for the smallest geometries, but the
optimal geometries are still the same, as is illustrated by Figures 6b and 7b. The optimal geometry
becomes different only when the PTO force is restricted to 250 kN (Table 1).

For the PSOC cases, the amplitude constraint has an effect on the power absorbed for the
smallest bodies (Figure 7c), and the PTO force constraint affects the power absorbed by the
biggest bodies (Figure 8c). An interesting effect is noticed here for the optimal geometries: the
cylinders are flat geometries when the PTO force is unconstrained or set to more relaxed limits
( e.g., FC=3500 kN, which is about 82% of the maximum value of the PTO force in the unconstrained
case). Nonetheless, the optimal geometries are slender cylinders when conservative PTO limits are
imposed (e.g., FC = 500 kN, which is about 12% of the maximum value of the PTO force in the
unconstrained case). Notice that a zoom of the flat region has been included in Figure 7c to better
illustrate the variation of the absorbed power for such a region.
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Figure 7. Absorbed power by the cylinders with oscillation amplitude constraints (kC = 0.75) and
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Figure 8. Absorbed power by the cylinders with oscillation amplitude constraints (kC = 0.75) and
force constraints (FC =500 kN): (a) PC, (b) LC and (c) PSOC.

Table 1. Optimal values of r (m), d (m) and Tr (s) of the cylinders for different constrained control
strategies. The PTO is subject to device motion constraints (defined by kC d) and force constraints
(defined by FC in kN). The first line shows the optimal parameters for the unconstrained control cases.
NC, not constrained.

kC FC
PC LC PSOC

Geometry r∗ d∗ T∗
r Geometry r∗ d∗ T∗

r Geometry r∗ d∗ T∗
r

NC NC

A

11 6 7.06

B

8 4 5.91 C 12 2 5.78
0.75 3500 11 6 7.06 8 4 5.91 12 2 5.78
0.75 1500 11 6 7.06 8 4 5.91 D 7 6 6.43
0.75 500 11 6 7.06 8 4 5.91 E 5 10 7.32
0.75 250 F 9 8 7.37 G 6 6 6.27 H 4 10 7.16
0.75 125 I 8 8 7.22 J 5 6 6.08 K 3 12 7.55

It can be noted that different optimal geometries are obtained depending on the control
strategy employed and on the constraints, but overall, tight PTO force constraints result in optimal
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geometries with smaller radii, bigger draughts and longer resonant periods than relaxed PTO limits
or unconstrained cases. Figure 9 illustrates the effect of the constraints on the RAO of the PSOC,
when geometries C and K are adopted, respectively, for FC = 3500 kN and FC = 125 kN. Figure 9
shows that a tight PTO force constraint results in a large peak in the RAO plot and that a relaxed
constraint results in a low peak and a large plateau, as is expected, respectively, for geometries with
big draughts (like geometry K) and geometries with small draughts (like geometry C).
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Figure 9. Response amplitude operator (RAO) for optimal geometries with constrained PSOC. PTO
constraints: kC = 0.75, and the force constraints are FC = 3500 kN (for geometry C) and FC = 125 kN
(for geometry K).

4.3. Discussion

Table 1 shows that the geometries designed with unconstrained control are the same as
the geometries designed with constrained control when the limits of the PTO force are relaxed
FC≥ 3500 kN or when the force limits are FC≥ 500 kN for the PC and LC (constraints are relatively
inactive). To verify the impact of constrained control on the optimal shape of the device, firstly we
compare the power absorbed by the WEC when two different geometries are used with a constrained
controller. The first geometry is an optimal geometry designed for an unconstrained controller, and
the second geometry is an optimal geometry designed for a constrained controller. The average power
of the geometry designed for the unconstrained control is denoted by Pgeo_uc, and the average power
of the geometry designed for constrained control is denoted by Pgeo_cc. Table 2 shows the average
absorbed powers when different geometries are used with the constrained PC, LC and PSOC.

Table 2. Average absorbed power (kW) for various constrained control strategies with geometries that
are designed with unconstrained control (Pgeo_uc) and geometries that are designed with constrained
control (Pgeo_cc).

kC FC (kN) PC LC PSOC
Pgeo_uc Pgeo_cc Pgeo_uc Pgeo_cc Pgeo_uc Pgeo_cc

0.75 3500 98.69 98.69 148.92 148.92 252.93 252.93
0.75 1500 98.69 98.69 148.92 148.92 239.08 245.51
0.75 500 98.69 98.69 148.07 148.07 134.90 171.98
0.75 250 62.01 76.14 114.65 137.65 78.34 121.15
0.75 125 33.77 51.30 64.75 100.30 42.39 81.77

It can be noted that if the force constraints are not very constraining ( e.g., Fc≥1500), the effect of
considering the constraints in the control-informed optimal design is null or minimal. However, more
constraining limits in the PTO force do have an impact on the optimal geometry and, consequently,
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on the absorbed power. For instance, when kC = 0.75 and FC = 125 kN, an improvement of 55% is
obtained in the absorbed power if geometry J is adopted instead of B, for the LC. Note that geometry
J is the optimal geometry for LC with kC = 0.75 and FC = 125 kN, as indicated by Table 1. Moreover,
an improvement of up to 93% is obtained if geometry K is adopted instead of C for the PSOC.

In addition, our aim is to compare the power improvement of the constrained control-informed
optimized geometries to the power improvement of the unconstrained control-informed optimized
geometries. For this purpose, we follow the usual procedure of applying a control strategy to a
geometry that was designed without the controller in place. Hence, we compare the performance
(in terms of absorbed power) of applying such a control strategy to a geometry optimized with the
same controller in place. Thus, we apply LC to geometries optimized when PC and LC were in place,
and the same procedure is repeated applying PSOC to geometries optimized when PC and PSOC
were in place. The average power absorbed by a geometry optimized for PC is denoted by Ppc and
respectively by Plc and Poc for geometries optimized for LC and PSOC. The power improvement of the
unconstrained control-informed optimized geometries is Plc/Ppc=1.1896 for LC and Poc/Ppc=1.0044
for PSOC. Figure 10 shows the ratios Plc/Ppc and Poc/Ppc for the constrained control cases where
different PTO constraints are considered.
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Figure 10. Ratio between the average absorbed power when two different optimal geometries are
adopted for constrained LC (Plc/Ppc) and PSOC (Poc/Ppc). The PTO is subject to device motion
constraints (kC =0.75) and force constraints (defined by FC).

For the LC, it can be noted that when the constraints are more relaxed (e.g., FC ≥ 1500 kN), the
impact of the constrained control strategy on the optimal shape of the device is the same impact of
the unconstrained control case (Plc/Ppc = 1.1896). Nonetheless, such an impact increases if more
constraining limits are imposed on the PTO force, and a performance improvement of up to 82%
can be obtained in the absorbed power, as is illustrated in Figure 10. For the PSOC, the impact of
the control strategy on the optimal geometry is minimal if the controller is unconstrained or if the
constraints are not very tight (e.g., FC=3500 kN), but the impact becomes significant if the constraints
are tight. In this case, a performance improvement of up to 15% can be obtained, as is also illustrated
in Figure 10.

A comparison of the power capture per unit volume for the cases when the same control
strategies employed to the WEC (LC and PSOC) were in place at the geometry design stage with
the cases where these strategies were not in place is illustrated in Figure 11, for Hs = 1.8 m, different
peak periods and kC = 0.75, FC = 1500 kN. Figure 11a shows the power/volume ratio when LC
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is employed to the WEC. It can be observed that the power/volume ratio for geometry B is up to
5.6 times larger than the ratio for geometry A, which is the optimal geometry for PC. A significant
improvement is also observed in the ratio Pa/Vo for the PSOC strategy (Figure 11b) when geometry
D is adopted. In this case, the power/volume ratio for geometry D is up to 2.7 times larger than
the ratio for geometry A. However, it should be noted that the power capture per unit volume is not
explicitly optimized in this study.
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Figure 11. Power capture per unit volume when different geometries are adopted for constrained
control: (a) LC and (b) PSOC. The PTO constraints are: kC =0.75, FC =1500 kN.

5. Conclusions

This paper has studied the effects of applying system constraints in the control-informed
geometric optimization design of a WEC. Constraints in the amplitude of the body motion and
PTO force constraints were considered. In contrast to what one might have expected, the effect of
considering constraints in the control-informed optimized design of WECs is more significant when
tight limits are adopted in the PTO force.

Different optimal geometries are obtained depending on the control strategy employed and on
the constraints, but overall, tight PTO force constraints result in optimal geometries with smaller
radii, bigger draughts and longer resonant periods than relaxed PTO limits or unconstrained cases.
The optimal controller (PSOC) completely modifies the shape of the cylinder depending on the the
maximum force that the PTO can tolerate: for relaxed force limits, the optimal cylinder is a flat
geometry, and for very constraining limits, the cylinder becomes a slender geometry.

For the studied cases, the impact of the LC on the optimal device shape is already significant if
the controller is unconstrained or if relaxed constraints are considered. An improvement of up to 19%
can be obtained in the absorbed power when the optimization design stage of the geometry employs
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the controller. Such an improvement increases for tighter constraints. In addition, the impact of the
PSOC on the optimal device shape is minimal if the controller is unconstrained or if the constraints
are not very tight (e.g., Fc≥ 3500 kN, which is about 82% of the maximum value of the PTO force in
the unconstrained case). However, the impact of the PSOC on the optimal shape becomes significant
if the constraints are tight.

In a real WEC environment, the study of the control-informed optimal geometry should consider
the statistical sea states’ occurrence of a specific site. Then, the best geometry can be defined
after running simulations for a different set of wave parameters, e.g., significant wave height and
peak period. The main focus of this paper is to prove that, for some sea states, the optimal (in
terms of absorbed power) device geometry is sensitive to the control scheme employed, even under
constrained control. The degree to which the control system influences the optimal geometry, and the
nature of that influence, would likely vary between different sites and devices. Our main aim is to
alert designers of the need to consider control at the device design stage.

For any comparative economic assessment of WECs, many aspects need to be taken into account,
such as the device survivability and design specification and manufacturing, e.g., stroke length, PTO
force limits, volume and type of material, etc. This study has shown that when constrained LC or
PSOC are incorporated at the design stage of the geometry, the performance of the WEC in terms of
absorbed power can improve, especially if the PTO force limits are tight.
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