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Abstract: The increasing use of information technologies in power systems has increased the risk
of power systems to cyber-attacks. In this paper, we assess the risk of transmission lines being
overloaded due to cyber-based false data injection attacks. The cyber risk assessment is formulated
as bilevel optimization problems that determine the maximum line flows under false data injection
attacks. We propose efficient techniques to reduce the computation complexity of solving the bilevel
problems. Specifically, primary and secondary filtering techniques are employed to identify the lines
whose flows will never exceed their limits, which can significantly reduce computation burden. A
special feasibility cut-based acceleration technique is introduced to further reduce the computation
burden. The simulation results on the IEEE 30-bus, IEEE 118-bus, IEEE 300-bus and IEEE 2383-bus
systems verify the proposed risk assessment model and the effectiveness of the proposed filtering
and acceleration techniques.

Keywords: smart grid; energy storage; security-constrained optimal power flow; corrective
control; overload

1. Introduction

Power systems are evolving to a large man-made Cyber-Physical System (CPS), whose reliable
operation is crucial to a nation’s economy and homeland security. Supervisory Control and
Data Acquisition (SCADA) systems are widely used by utilities for the communication between
remote infrastructures and the control center. With the integration of more information technology,
SCADA systems have evolved from using proprietary protocols and software to using open
standards products and solutions including standard PCs and operating systems, Transmission
Control Protocol/Internet Protocol (TCP/IP) and Ethernet communications and Internet access.
Consequently, SCADA systems are becoming the primary target of cyber-attacks. It has been shown
that an attacker can compromise the Direct Current (DC) state estimation by launching false data
injection attacks, which could be undetectable if the attacker can construct the false data that obeys
Kirchhoff’s Current Law (KCL) and Kirchhoff’s Voltage Law (KVL) based on the full network
information of the power grid [1].

During the last six years, a lot of attentions have been directed to the study of cyber security
in smart grids, with a focus on investigating the attacking mechanisms of false data injection attacks
and the impact on the operation of power systems. Ozay et al. [2] proposed a distributed attacking
strategy for false data injection attacks. The sparse optimization technique was used to construct
the corresponding sparse attacking vector. Qin et al. [3] introduced the concept of unidentifiable
attack, where the control center can detect the existence of false data but has no way to identify which
meters are attacked. Xie et al. [4] investigated the impacts of false data on the real-time Locational
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Marginal Price (LMP) and analyzed the sensitivity of LMPs to injected false data. Ye et al. [5] proposed
an assessment model for evaluating the potential risk of distribution automation systems to cyber
attacks. More research work regarding false data injection models are presented in [6–13].

Note that there is a strong condition in [1–13] that the full network information of a power
network is assumed to known to an attacker. This strong condition would make the proposed
attacking model impractical. This might be beneficial to a defender. However, our previous work [14]
revealed that the strong condition can be relaxed. In fact, an attacker only needs to obtain the network
information of the attacking region to construct an undetectable attack vector based on KCL and KVL.
The principle is to ensure that the incremental phase angles of all the boundary buses in the attacking
region are the same such that the additional power flow due to the injected false data will never
flow out the attacking region. As a result, the network information of the non-attacking region is not
required. We also developed a heuristic algorithm [15] to determine a feasible attacking region for
attacking the measurement at a load bus.

The physical security of lines has been widely recognized [16,17]. Recently, the cyber security of
transmission lines has attracted much attention. Kim et al. [18] proposed a topology attack model. It
was shown that the real-time topology sent to the control center can be masked by injecting a pair of
false power injections at the terminal buses of the line to be attacked. To overcome the practical issues
of the proposed model in [18], we introduced a local topology attack model [19], which determines an
optimal attacking region for attacking a single line. A heuristic algorithm was proposed to minimize
the effort of obtaining the network information. In [20,21], the authors further showed that some
lines might be physically overloaded after the security constrained economic dispatch (SCED) due to
cyber attacks. This is because SCED is performed according to the corrupted load data rather than
the true load data. Accordingly, the calculated line flow is not the same as the true line flow. Thus,
the line will be overloaded if its true flow is greater than the calculated flow that is limited within its
flow limit. It is well known that the overloading of lines will pose a high risk on the reliable operation
of power systems. The outage of a set of critical lines could lead to cascading failures, which would
result in serious damages to power systems. For the safety of operation, it is essential for the operator
to asset the risk of cyber-attacks: which lines could be overloaded due to the injected false data after
SCED. These lines should be monitored and protected to avoid potential adverse impacts due to
cyber-attacks.

In this paper, we assess the risk of transmission lines under cyber-attacks. The goal is to identify
a set of lines that could be overloaded due to injected false data after SCED. The main contributions
of this paper are three-fold:

(1) We formulate the cyber risk assessment of transmission lines as a bilevel optimization problem.
In the lower level, the SCED is performed to minimize the operation cost according to the
received corrupted data. In the upper level, the power flow of a line is maximized to determine
the cyber risk due to injected false data. The bilevel problem for each line is further transformed
into an MILP problem.

(2) We propose two fast filtering techniques to identify the lines whose flows will not exceed their
flow limits under cyber-based false data injection attacks. This is based on the fact that there are
few lines of which power flows may exceed the transmission limits due to the disruption of false
data. This will reduce the computation burden of the risk assessment significantly by reducing
the number of MILP problems that need to be solved.

(3) We introduce a special feasibility cut to accelerate the solution process of the MILP problems. The
special feasibility cut can significantly reduce the search space of the branch and bound algorithm
for solving the MILP problems, so the computational burden is further reduced.

The rest of this paper is organized as follows: Section 2 reviews the concept of false data injection
attacks. Section 3 presents the proposed model to assess the cyber risk of transmission lines, as
well as the primary and secondary filtering techniques and the feasibility cut acceleration technique.
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Section 4 demonstrates the proposed risk assessment model and the effectiveness of the proposed
filtering and acceleration techniques using the IEEE 30-bus, IEEE 118-bus, IEEE 300-bus and IEEE
2383-bus systems. Section 5 concludes the paper.

2. Review of False Data Injection Attacks

In a real-world power system, it is essential for the operator to obtain the real-time state
of the system to monitor the operation and take preventive/corrective controls if necessary. To
achieve the goal, a large amount of real-time measurements including line flow measurements, bus
voltage measurements, and bus power injection measurements are transmitted to the control center
to estimate the state of the system using the least-square method or other methods. In DC state
estimation, the state is generally estimated by the least square method (1), where z is the vector of
measurements, θ is the vector of system state, and H is the constant Jacobian matrix.

min ||z´ Hθ||2 (1)

The accuracy of the received data could be compromised by the faults of sensors and other
natural or malicious disruptions. Since the economic dispatch and other controls rely on the accurate
result of the state estimation, so the operator will check the validity of the data by calculating the
residual r using (2) based on the estimated state θ̂.

r “
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
z´Hθ̂

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
(2)

If r is greater than the given threshold value, then some data is regarded as being corrupted.
Unfortunately, this detection approach cannot ensure the integrity of the data transmitted to the
control center. It has been shown in [1] that a wise attacker can construct the coordinated false data
z “H∆θ to avoid being detected by the residual checking. Thus, such an attack is called undetectable
false data injection attack.

However, the attack model in [1] requires an attacker to obtain the network information of the
entire power grid. If this is the real case, the risk of power systems to cyber-attacks will be mitigated
significantly. This is because in practice it is very difficult for an attacker with limited budget to
have this information since: (1) most power grids have thousands of buses and lines; and (2) power
grid data are strongly protected. Unfortunately, we have proven that an attacker is able to construct
an undetectable attack vector z “ H∆θ with incomplete network information [14]. This is done by
ensuring that all boundary buses in the attacking region connected to the same non-attacking region
have the same incremental phase angle. By doing so, the attacker only needs to obtain the topology
and line parameters in the attacking region. A heuristic algorithm was proposed to obtain the feasible
attacking region for attacking the measurement at a bus [15]. It was shown that an attacker only needs
to have the network information of a small region to launch a successful attack. This observation
indicates power systems are subject to a high risk of such attacks since a weak attacker can still attack
the power system without paying a high cost. This also motivates us to assess the cyber risk of power
systems, which will be addressed in the next section.

3. Mathematical Formulation of Cyber Risk Assessment Model for Transmission Lines

In this section, we propose the mathematical model for determining the maximum flow of a line
under false data injection attacks. Several filtering and acceleration techniques are proposed to speed
up the solution process.

3.1. Mathematical Formulation of the Bilevel Attack Model

In the real-time operation of power systems, when loads at buses change, the operator in the
control center will redispatch the power outputs of units to achieve a new optimal operating point
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based on the data sent from a set of installed sensors. The power flows of lines are enforced
within their flow limits for the purpose of reliable operation. Due to the close association with
communication networks, Reference [20] pointed out that an attacker can inject false data into the
measurements at load buses to change the readings sent to the control center. We further showed
that an attacker can also launch a robust attack strategy even though the dispatch result of SCED is
uncertain in the context of multiple solutions of SCED [21]. These corrupted data will induce the
operator to make a false SCED which results in some lines being overloaded. From the perspective
of system security, it is essential for a defender to determine these lines whose power flows can
exceed their flow limits after SCED. This is done by calculating the maximum line flows due to false
data injection attacks. These lines are viewed as high-risk lines due to cyber-attacks and should
be strongly monitored to ensure the reliability and safety of power systems. The optimization
problem of determining the maximum line flow is formulated as a bilevel optimization problem
Equations (3)–(14):

max t (3)

subject to:
fk ě 0 Ñ t “ fk; fk ă 0 Ñ t “ ´ fk (4)

f “ Sˆ pUˆ P´Vˆ pD´ Jqq (5)

0 ď J ď D (6)

1T∆D “ 0 (7)

´ τDd ď ∆Dd ď τDd p0 ă τ ă 1q (8)

mincg
T ˆ P` cd

T ˆ J (9)

subject to:
1TP “ 1T pD´ Jq λ (10)

F “ SˆUˆ P´ SˆVˆ pD` ∆D´ Jq µ (11)

Pmin ď P ď Pmax α, α (12)

´ Fmax ď F ď Fmax β, β (13)

0 ď J ď D` ∆D γ, γ (14)

The upper level of the above bilevel problem simulates the attacker’s attacking strategy, which
is to determine the injected false data ∆D that maximizes the potential flow of line k in Equation (3).
The lower level simulates the system operator’s operation strategy, which is essentially an SCED
problem that minimizes the total generation cost and load shedding cost in Equation (9). Constraint
Equation (4) finds the absolute value of the flow for line k. They can be modeled as Equations (15)
and (16) below.

fk ´ t` pM1 ´ εq v ď M1; ´ fk ` t` pM1 ´ εq v ď M1; fk ´M1v ď ε (15)

´ fk ´ t` p´M1 ` εq v ď ε; fk ` t` p´M1 ` εq v ď ε; ´ fk ` pM1 ` εq v ď M1 (16)

Constraint Equation (5) gives the line power flows after attacks. Note that the injected false
data ∆D is not included since it is not a physical load. The amount of load shedding at a load bus
J is limited by the physical load D in Equation (6). The injected false data ∆D is summed to zero
in Equation (7) and the attacking amount at a load bus ∆Dd is limited by constraint Equation (8).
Corresponding Lagrangian multipliers are assigned for power balance in Equation (10), line flow
constraint Equation (11), and lower and upper bound constraints of generation in Equation (12), line
flow in Equation (13), and load shedding in Equation (14).
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Figure 1 summarizes the bilevel model for assessing the risk of one transmission line. In the
upper level, an injected false data ∆D vector is determined to maximize the flow t of a line after
SCED. If t is greater than the flow limit of line k, then this line can be regarded as a high-risk
line under cyber attacks. In the lower level, the operator minimizes the operation cost under the
injected false load data ∆D. The risk assessment will be done for each transmission line, which means
the bilevel problem will be solved multiple times. As shown later, solving the bilevel problem is a
time-consuming process. This paper proposes two filtering techniques so that the bilevel problems
for some lines can be skipped. This paper also proposes one acceleration technique so that the bilevel
problems for the remaining lines can be solved faster.
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Figure 1. Bilevel model for assessing the risk of a transmission line.

3.2. Solution to the Bilevel Risk Assessment Model

In this section, we provide the solution to the bilevel optimization problem Equations (3)–(14).
One of the most popular methods used to solve a bilevel optimization problem is the
Karush-Kuhn-Tucker (KKT) based reformulation approach, in which the lower level is replaced with
its KKT optimality constraints.

First, the lagrangian function of the lower level optimization problem Equations (9)–(14) is
written as Equation (17):

L “ cT
g ˆ P` cT

d ˆJ´ λ
“

1TP´ 1T pD´ Jq
‰

´µT rF´ SˆUˆ P` SˆVˆ pD` ∆D´ Jqs ´αT pP´ Pminq

´αT p´P` Pmaxq ´β
T pF` Fmaxq ´β

T
p´F` Fmaxq ´ γ

T p´J`D
`∆Dq ´ γT J

(17)

At the optimal point, the first order optimality must be met, so we have:

BL
BP

“ cg ´ 1λ´ pSˆUqT µ`α´α “ 0 (18)

BL
BJ
“ cd ´ 1λ´ pSˆVqT µ` γ´ γ “ 0 (19)

BL
BF
“ ´µ´β`β “ 0 (20)

According to the KKT optimality condition, the complimentary conditions for the inequality
constraints Equations (12)–(14) should be also satisfied, which yields:

αT p´P` Pmaxq “ 0; αT pP´ Pminq “ 0 (21)

β
T
p´F` Fmaxq “ 0; βT pF` Fmaxq “ 0 (22)

γTJ “ 0; γT p´J`D` ∆Dq “ 0 (23)
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The nonlinear constraints in Equations (21)–(23) can be convert to the following linear constraints
in Equations (24)–(26) using the big-M method [22].

α ď Mαωα; ´P` Pmax ď Mα p1´ωαq ; α ď Mαωα; P´ Pmin ď Mα p1´ωαq (24)

β ď Mβωβ; ´F` Fmax ď Mβ

´

1´ωβ

¯

; β ď Mβωβ; F` Fmax ď Mβ

´

1´ωβ

¯

(25)

γ ď Mγωγ; J ď Mγ

`

1´ωγ

˘

; γ ď Mγωγ; ´J`D` ∆D ď Mγ

´

1´ωγ

¯

(26)

α,α, β,β,γ, γ ě 0 (27)

where Mα, Mβ ,Mγ are diagonal matrices with all entries equal to M. For each nonlinear
constraint, two additional binary variables are introduced to linearize the complementary constraints
and form the so-called big-M constraints. For instance, constraint Equation (24) is the linearized
big-M constraints for constraint Equation (12). Similarly, Equation (25) is for Equation (13), and
Equation (26) is for Equation (14). Constraint Equation (27) represents that the Lagrangian multipliers
for inequality constraints should be non-negative.

Then, the lower optimization problem Equations (9)–(14) can be equivalent to the constraints
in Equations (10)–(14), (18)–(20) and (24)–(27). Note that the objective function in the lower level
has been removed. Accordingly, the bilevel problem in Equations (3)–(14) is transformed into an
equivalent single-level MILP problem in Equation (28).

max t (28)

subject to Constraints Equations (5)–(8), (10)–(16), (18)–(20), and (24)–(27).
It is well known that the introduction of binary variables and the big-M constraints will increase

the computation burden significantly. Thus, it is necessary to develop effective techniques to
reduce the computation burden. It seems that we need to calculate the maximum flow by solving
Equation (28) for each line. Luckily, in real power systems, most transmission lines will not be
operating at or close to their flow limits. Accordingly, only a small number of lines may have flows
exceeding their flow limits even under the disruption of false data injection. This motivates us to
develop techniques to filter out those lines whose flows will never exceed their flow limits. In this
paper, we propose two filtering techniques as described in the next two sections.

3.3. Primary Filtering Technique

It can be seen from Equation (5) that the line flow f is determined by the generation vector P
and load shedding vector J. This motivates us to initially determine the maximum line flows by only
considering the power balance equation in Equation (10), the upper and lower bound constraints
Equation (12) for P, and the upper and lower bound constraints in Equation (6) for J. Since the power
flow of a line could be positive or negative, the maximum flow of line k can be determined by solving
the two LP problems introduced as follows:

[LPx1] x1 “ maxSk ˆ pUˆ P´Vˆ pD´ Jqq (29)

subject to Constraints Equations (6), (10) and (12):

[LPx2] x2 “ minSk ˆ pUˆ P´Vˆ pD´ Jqq (30)

subject to Constraints Equations (6), (10) and (12).
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We define X “

”

P J
ıT

Xmax “
”

Pmax D
ıT

Xmin “
”

Pmin 0
ıT

. Then, the optimization
problems in Equations (29) and (30) can be rewritten as Equations (31) and (34), respectively.

[LPx3] x1 “ max
NG`ND
ÿ

i“1

aiXi ` const (31)

subject to:
1TX “ 1TD (32)

Xmin ď X ď Xmax (33)

where const “ ´Sk ˆVˆD

[LPx4] x2 “ min
NG`ND
ÿ

i“1

aiXi ` const (34)

subject to Constraints Equations (32) and (33).
Reference [23] showed that the optimal solutions to the above two LP problems can be obtained

directly without actually solving the LP problems. In this paper, we employ this technique to
determine the values of x1 and x2. Without loss of generality, we assume that a1 ě a2 ě a3 . . . ě
aNG`ND . Then there must exist an index m such that:

m
ÿ

i“1

Xi,max ď 1TD ă

m`1
ÿ

i“1

Xi,max (35)

Then, it is trivial to prove that:

x1 “
m
ÿ

i“1

aiXi,max ` am`1r1TD´
m
ÿ

i“1

Xi,maxs ` const (36)

Similarly, for the optimization problem Equation (34), there must exist an index n such that:

NG`ND
ÿ

i“NG`ND´n

Xi,max ď 1TD ă

NG`ND
ÿ

i“NG`ND´n´1

Xi,max (37)

Then, it is trivial to prove that:

x2 “
NG`ND
ÿ

i“NG`ND´n

aiXi,max ` an´1r1TD´
NG`ND
ÿ

i“NG`ND´n

Xi,maxs ` const (38)

The maximum flow of line k will be y “ max t|x1| , |x2|u. This indicates that the maximum
flow of a line can be directly calculated without actually solving the two LP problems. Thus, the
computation burden will be reduced significantly. As only partial constraints of the optimization
problem in Equation (28) are included, y is no less than the value determined by Equation (28) since
the feasible region is enlarged. This indicates if y ă Fmax

k , then the true maximum flow of line k must
be less than its flow limit; accordingly, this line can be excluded from further consideration. As a
result, the number of MILP problems in Equation (28) to be solved is reduced by one.

3.4. Secondary Filtering Technique

As only partial constraints are included in the primary filtering phase, there might be a large
difference between the calculated and true maximum line flows. In other words, the maximum
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flows of some lines would decrease significantly if all constraints in Equation (28) are included.
This indicates that the primary filtering phase might not effectively filter out a large number of
lines. Regarding this, we employ the secondary filtering technique to further filter out a subset of
lines by narrowing down the feasible region in the primary filtering phase. As shown in Figure 2,
suppose that the feasible region in the primary filtering phase is G. To make the calculated maximum
line flow closer to the actual value, we include all the primal constraints. Accordingly, the feasible
region is narrowed to G1, the optimization problems in Equations (29) and (30) become Equations (39)
and (40), respectively.

x1 “ maxSk ˆ pUˆ P´Vˆ pD´ Jqq (39)

subject to Constraint Equations (6)–(8) and (10)–(14):

x2 “ minSk ˆ pUˆ P´Vˆ pD´ Jqq (40)

subject to Constraint Equations (6)–(8) and (10)–(14).
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Figure 2. Feasible regions of the primary filtering phase G and the secondary filtering phase G1.

Note that Equations (39) and (40) are two LPs, which require much less effort to obtain the
solutions compared to the KKT based MILP problem Equation (28). Thus, for the remaining lines
that cannot be filtered out in the primary filtering phase, we solve two LP problems in Equations (39)
and (40) in the secondary filtering phase. If the maximum flow of a line obtained based on
Equations (39) and (40) is smaller than its line flow limit, then this line can be excluded from further
consideration. As a result, the number of MILP problems in Equation (28) to be solved is reduced
by one.

3.5. Acceleration via Feasibility Cut

Note that Equation (28) is an MILP problem, which can be solved by the popular branch and
bound algorithm. In essence, the branch and bound algorithm is an implicit enumeration algorithm.
The advantage over the general enumeration algorithm is that it discards a large part of the search
space based on the current estimate of the optimization problem. As shown in Figure 3, the basic
principle of the branch and bound algorithm can be represented as a search tree. At each node,
a branching rule is used to divide the feasible region into two or more subregions. For a given
subregion, a bounding function is provided to determine a lower bound for the optimal solution
for the entire feasible region. By doing so, the subregions in which the objective values are greater
than the lower bound can be discarded, thus, the search space can be reduced.
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Figure 3. Principle of feasibility cut acceleration technique.

Note that the interest of a defender is to determine the set of lines whose flows will exceed their
flow limits. The actual values of the line flows are not needed, especially for the lines whose flows
will never exceed their flow limits after SCED. In light of this, we introduce an additional constraint
Equation (41) into the optimization problem in Equation (28), which is to check whether the maximum
flow of a line exceeds its limit rather than obtain the actual value of the maximum line flow.

t ě Fmax
k (41)

Since satisfying Equation (41) means the optimization problem will have a feasible solution, we
call Equation (41) a feasibility cut. Accordingly, adding Equation (41) is called the feasibility cut
acceleration technique. The feasibility check problem is formulated as follows:

Max1 (42)

subject to Constraints Equations (5)–(8), (10)–(16), (18)–(20), (24)–(27) and (41).
Then, two cases are considered as follows.

Case 1: the maximum flow of line k is less than its flow limit. In this case, Equation (42) is
infeasible. That is, the branch and bound search process will stop after a finite number of iterations.
Simulations show that the number of iterations with the feasibility cut is much less than that without
the feasibility cut. This is because, as shown in Figure 3, the feasibility cut makes the feasible region
an empty set, thus, the search space in the branch and bound algorithm can be reduced significantly.

Case 2: the maximum flow of line k is no less than its flow limit. In this case, Equation (42) is
feasible. That is, a feasible solution can be found after a finite number of iterations in the branch and
bound search process. Note that, as shown in Figure 3, the feasible region is reduced if we introduce
the feasibility cut, which reduces the search space of the branch and bound algorithm. In addition,
since only the feasibility is checked, it requires less time than does the determination of the actual
maximum line flow. This is because we only need to find one feasible solution. However, all feasible
solutions have to be evaluated to determine the maximum flow.

Therefore, the introduction of the feasibility cut can reduce the computation complexity for both
cases, especially for case 1. The advantage will be demonstrated in the case study.

13804



Energies 2015, 8, 13796–13810

4. Case Study

In this section, we first test the proposed risk assessment model using the IEEE 30-bus system,
which has 30 buses and 41 lines. All the data are from MATPOWER 4.1 [24]. For the purpose of
illustration, bus loads are scaled by 1.5. Simulations are carried out on a 2.4 GHz personal computer
with 4 GB of RAM. We assume that an attacker has the full network information of a power grid.
That is, the attacker has the full topology, line parameter, and bus load information. We also assume
that the attacker can attack all the load measurements of the power grid. For simplicity and without
loss of generality, the maximum allowable attacking amount at a bus is set to 50% of its load. The
specific value of the threshold will not change the nature of the model, and can be easily modified in
practical implementations.

Figure 4 gives the maximum line flows determined in the primary filtering phase and the
secondary filtering phase. It can be seen that the maximum flows of 22 lines determined in the
primary filtering phase are less than their flow limits. That is, more than half of the lines are filtered
out in the primary filtering phase and can be ignored in the secondary filtering phase. As mentioned,
the primary filtering phase only includes partial constraints, so it can only provide rough upper
bounds of the maximum line flows since the feasible region is enlarged. The true maximum line
flows after SCED are smaller than the rough upper bounds. Thus, whether the true maximum flows
of the remaining lines exceed the limits are unknown.
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Hence, in the secondary filtering phase, we further determine the maximum flows of the
remaining lines. Compared to the primary filtering phase, we include all the primary constraints in
the optimization problem in the secondary filtering phase. As shown in Figure 4, the maximum line
flows are less than the values determined in the primary filtering phase. For instance, the maximum
flow of line 1–2 determined in the secondary filtering phase is 20.30 MW, much less than 61.96 MW
calculated in the primary filtering phase. This is because the line flow constraints in Equations (11)
and (13) are introduced in the secondary filtering phase, which reduces the feasible region. Thus,
the objective value is decreased and becomes closer to the true value. The secondary filtering phase
determines that the flows of five lines, which cannot be filtered out in the primary filtering phase, are
less than their flow limits. They will be excluded from next phases of the risk assessment.

In Table 1, y1
k and y2

k represent the maximum line flows determined by single-level MILP
problem in Equation (28) with and without the feasibility cut in Equation (41), respectively. The term
“infeasible” represents that Equation (28) with the feasibility cut is infeasible. That is, the maximum
flow of a line after SCED will not exceed its flow limit. We can see that for lines 2–6, 4–6, 6–8 and 15–23
whose flows are greater than their flow limits, the maximum flows determined by the two models are
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the same. For the remaining lines, the maximum flows calculated by Equation (28) are less than their
flow limits. This indicates that the introduction of the feasibility cut will not impact the determination
of critical lines.

Table 1. Maximum line flows in the feasibility cut acceleration phase.

Line index From bus To bus y1
k (MW) y2

k (MW) Limit (MW)

1 1 2 infeasible ´7.29 15
2 1 3 infeasible 8.48 15
6 2 6 15.47 15.47 15
7 4 6 18.97 18.97 15
9 6 7 infeasible 21.05 30

10 6 8 34.41 34.41 30
11 6 9 infeasible ´6.67 30
14 9 10 infeasible 3.55 30
21 16 17 infeasible 6.81 16
22 15 18 infeasible 15.98 16
23 18 19 infeasible 13.69 16
29 21 22 infeasible ´41.53 50
30 15 23 ´20.10 ´20.10 16
32 23 24 infeasible 11.45 16

There are 41 lines for the IEEE 30-bus system, but only four lines 2–6, 4–6, 6–8 and 15–23 may
be overloaded due to false data injection attacks. The objective of the risk assessment of transmission
lines due to cyber attacks is to identify such a small set of critical lines. The injection of false data
could make lines 2–6, 4–6, 6–8, and 15–23 overloaded although the SCED process in the control center
aims to limit their line flows within their flow limits. This is because SCED is performed according
to the corrupted load data, not the true load data. Accordingly, the calculated line flow is not the
same as the true line flow. As an attacker can inject false data to make these lines out of service due
to overloading after SCED, these lines are under high risk due to cyber-attacks. From the perspective
of system security, it is essential for the defender to close monitor the operation of these lines.

Table 2 compares the iterations and run times of the branch and bound algorithm for the cases
with and without the introduction of the feasibility cut in Equation (41). It can be seen that the
iterations and run times are reduced if we introduce the feasibility cut, especially for the lines
whose power flows are much smaller than their flow limits. For instance, the branch and bound
algorithm needs 875,593 iterations and 25.94 s to determine the maximum flow of line 2–6. However,
if constraint t2´6 ě 15 is added into the optimization problem in Equation (28), the iteration and
run time are reduced to 88,676 and 1.33 s, respectively. For lines 9–10 whose maximum flow is much
less than its limit 30 MW, the iterations is reduced from 479,843 to 159, and the run time is reduced
from 7.91 to 0.05 s. This verifies the advantage of the introduction of the feasibility cut that it can
effectively cut down the size of the search tree in the branch and bound algorithm and thus reduce
the computation burden, especially for the case in which the line flow is less than the flow limit.

The run times for the primary and secondary filtering phases are 0.01 s and 1.32 s, respectively.
In addition, it requires 12.80 s to determine the maximum line flows in Table 2. Thus, a total of 14.22 s
is needed. However, if we do not consider the primary and secondary filtering techniques and the
feasibility cut acceleration technique, the run time will be increased to 362.02 s, which is much higher
than 14.22 s, the run time with the proposed filtering and acceleration techniques. It can be seen that
the computational burden is reduced significantly by the primary and secondary filtering techniques
and the accelerating technique in the branch and bound algorithm.
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Table 2. Impact of the feasibility cut acceleration technique.

Line index From bus To bus
Iterations Run times (s)

Without
feasibility cut

With
feasibility cut

Without
feasibility cut

With
feasibility cut

1 1 2 431,974 43,421 10.01 0.78
2 1 3 661,919 64,261 10.84 0.99
6 2 6 875,593 88,676 25.94 1.33
7 4 6 248,872 8279 4.29 0.31
9 6 7 303,782 36,367 5.68 0.69

10 6 8 302,966 13,059 7.74 0.36
11 6 9 315,716 142 8.30 0.55
14 9 10 479,843 159 7.91 0.05
21 16 17 422,800 23,227 7.05 0.61
22 15 18 134,188 86,674 3.06 1.34
23 18 19 147,809 51,190 3.23 0.83
29 21 22 294,511 195 8.27 0.27
30 15 23 269,026 136,799 5.87 2.51
32 23 24 338,603 113,257 8.72 1.87

The primary and secondary filtering techniques are also applied to the IEEE 118-bus system,
which has 186 lines, the IEEE 300-bus system, which has 411 lines, and the Polish 2383-bus system,
which has 2896 lines. Their effectiveness is summarized in Table 3, where ρ is the load level
coefficient. n1 and n2 give the number of lines filtered out in the primary and secondary filtering
phases, respectively, and p represents the ratio of the number of lines filtered out to the total number
of lines. It is observed that fewer lines will be filtered out as the load level ρ increases. However,
there are still around 70% of lines filtered out by the filtering techniques when the system is under
the load level ρ “ 1.4. This shows the effectiveness of the proposed filtering techniques. In fact, most
of power systems will not be operated at the very heavy load level for the reliable operation. The
primary filtering phase can filter out most lines, but there are still a significant number of lines that
can be filtered out in the secondary filtering phase. For instance, when ρ “ 1.0, the secondary filtering
phase will filter out 760 lines of the Polish 2383-bus system, around 1/4 of the total number of lines.

Table 3. Impact of the primary and secondary filtering techniques.

ρ
IEEE 118-bus System IEEE 300-bus System Polish 2736-bus System

n1 n2 p n1 n2 p n1 n2 p

0.6 143 21 88.17% 273 48 78.10% 2235 548 96.10%
0.8 135 24 85.48% 267 41 74.94% 1964 667 90.85%
1.0 128 19 79.03% 259 43 73.48% 1722 760 85.70%
1.2 126 14 75.27% 255 34 70.32% 1541 824 81.66%
1.4 119 14 75.51% 245 33 67.64% 1411 823 77.14%

5. Conclusions and Future Work

The evolution of power systems into smart grids, while having great benefits, makes it possible
for an attacker to design and inject false data into measurements that are sent to the control center,
which may mislead the operator to perform a wrong SCED leading to the overloading of lines. In
this paper, we propose a bilevel model to assess the cyber risk of transmission lines due to false
data injection attacks. The results show that around 70% lines can be filtered out by the primary
and secondary filtering techniques, which verifies the effectiveness of the filtering algorithm. For the
remaining lines, the feasibility cut can significantly improve the efficiency of the KKT-based algorithm
for determining the solution by reducing the feasible region.

Note that there are still a few lines where maximum flows are needed to be determined by
solving the bilevel optimization problem Equations (3)–(14). However, thus far, there has been no
an efficient algorithm to obtain the global optima of a bilevel optimization problem, especially for
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a large-scale system. To this end, one of our future works is to develop a fast algorithm to get a
near-optimal solution to the bilevel problem.

As an extension of the work, we will also investigate the possibility of cascading failures
triggered by false data injection, which represents a much more serious cyber risk for the system.
The principle is that the outage of a small number of lines could trigger more line outages, especially
when the system is under heavy load level. As a defender, it is essential to identify the set of critical
lines whose outages can trigger cascading failures. To mitigate the risk of cascading failures, some
countermeasures will be also expected to be developed.
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Nomenclature

M sufficient large number for Lagrangian multipliers
M1 sufficient large number for line power flows
ε given small positive number for line flows
τ given maximum percentage of change for loads
ND, NG number of loads/generators
d, k subscripts: index for loads/lines
Dd load at bus d
∆Dd injected data into the measurement at bus d
fk true power flow of line k
Fk calculated power flow of line k with injected false data
Fmax

k transmission limit of line k
n1 number of lines filtered out in the primary filtering phase
n2 number of lines filtered out in the secondary filtering phase
p percentage of lines filtered out
r residual value
t absolute value of line flow
λ Lagrangian multiplier
ρ coefficient for load level
v indicator variable for fk: v “ 1 if fk ě 0; v “ 0 otherwise
∆θa incremental phase angle at bus a
B bus susceptance matrix
Cg, Cd Generation/load shedding cost vector
D bus load vector
∆D false data injection vector into load measurements
f true line flow vector
F calculated line flow vector with injected false data
Fmax line flow limit vector
∆F incremental power flow vector
H Jacobian matrix
J load shedding vector
P generator power output vector
Pmax, Pmin generator maximum/minimum output power vector
S shift factor matrix of the power grid
U bus-generator incidence matrix
z measurement vector
α,α,β,β,γ, γ, µ Lagrangian multiplier
ωα, ωα,ωβ,ωβ, ωγ, ωγ indicator variables for Lagrangian multipliers
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