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Abstract: This paper presents a new selective and non-directional protection method to 

detect ground faults in neutral isolated power systems. The new proposed method is based 

on the comparison of the rms value of the residual current of all the lines connected to a bus, 

and it is able to determine the line with ground defect. Additionally, this method can be used 

for the protection of secondary substation. This protection method avoids the unwanted trips 

produced by wrong settings or wiring errors, which sometimes occur in the existing 

directional ground fault protections. This new method has been validated through computer 

simulations and experimental laboratory tests. 
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1. Introduction 

Distribution power systems are equipped with sophisticated protection devices to keep them safe from 

overloads, short circuits, voltage sags and drops and, in general, any operation conditions out of rated 

values, something which might represent a clear danger not only to the facilities, but also to the power 

system operation. Although in some countries the distribution networks can reach 150 kV [1],  

the isolated distribution networks worldwide are normally classified in voltage levels from 1 kV to 45 kV 
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and have the advantage that a single phase ground fault (SPGF) of the system does not produce high 

ground fault overcurrents; therefore, the whole system remains operational. In this case, the power 

system must be designed to withstand high transient and permanent steady state over voltages, so its use 

is generally restricted to low and medium voltage systems. 

These systems enjoy low current values when a SPGF happens. Such ground fault currents are not 

related to the amount of power generated or distributed as they are only produced by the capacitance 

distributed in all power elements that form such neutral ungrounded network. Therefore, all kind of 

possible distributed generation units (DGs) connected to this kind of networks are not exposed to high 

currents values when a SPGF is taking place. These kind of neutral ungrounded networks are designed 

to be able to withstand over voltages up to190% of rated voltage value over 8 h [2,3]. 

A SPGF at one line of an isolated power system makes capacitive currents flow through all the lines, 

and the voltages of the phases without defect are increased up to the phase-to-phase voltage level—that 

is an overvoltage of 173%. 

Lines without ground faults contribute with their own capacitive current flowing from the busbars to 

the fault. The direction of the residual current in the line with ground fault is opposite to the direction of 

the capacitive currents in the lines without ground defect. Under such circumstances, the existing 

protection devices use directional ground fault criterion, measuring the residual current, the residual 

voltage and the phase shift between them. 

This relay provides ground fault detection, but presents important operational difficulties that could 

imply unwanted tripping commands. Such difficulties are related to substations that cannot be removed 

from service, while the commissioning jobs must be developed; therefore, there is no chance to test the 

directional ground fault protection relays using primary injection tests. Secondary tests are always 

satisfactory but they are not enough to grant the correct behaviour of the protection relay when there is 

a real ground defect, and in addition, some wrong tripping actions happen from time to time. 

The new proposed method is based on the comparison of the rms value of the residual current of all 

the lines connected to a bus. As it is a non-directional method, errors in the polarity of the connections 

of the current transformers have no influence on its operation. A wrong setting definition is also 

eliminated because of its comparison principle. These two last aspects normally drive directional ground 

fault protections to make unintended tripping commands. 

This paper first describes, in Section 2, the state of the art of fault detection in neutral isolated power 

systems. Section 3 describes the principle of operation of the new non-directional method to detect single 

phase ground faults at isolated networks. ATP simulation results and laboratory test results are shown in 

Section 4 and Section 5, respectively. Finally, in Section 6, the main conclusions are listed. 

2. State of the Art 

The use of symmetrical components [4] can also be applied to study the ground fault capacitive 

current values. Some research works have obtained excellent results using hybrid compensation  

methods [5,6] and their use, although it is not widespread employed by distribution electrical companies, 

is perfectly applicable to neutral ungrounded networks whereas other investigation works build different 

algorithms to determine the ground fault current value [7]. 
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There are several methods to detect SPGF at neutral ungrounded networks. Some of them use 

compensation factors [8] for the residual voltage whereas others study the shape of charge-voltage curves 

when a ground fault is present [9]. Other options include the installation of current and voltage  

sensors along the medium voltage network and install management software to detect the feeder with 

defect [10,11] after the protection systems have tripped the circuit breaker corresponding to the feeder 

with ground defect. 

New algorithms [12] and methods that compare the ground fault currents to new reference current 

magnitude [13] have been also evaluated. Open research that might be applied to the detection and 

localization of ground faults is described in [14]. Recently, the use of the Wavelet analysis [15–17] has 

achieved excellent results in fault detection. Once the fault has been detected, the different protection 

methods can give an alarm or a tripping command in order to avoid damage to the power system 

elements, and remove from service the zone with fault condition, providing selectivity. Normally,  

the distribution companies use two protection relays to detect and clear the SPGF in neutral  

ungrounded networks. 

 

Figure 1. Residual current distribution in an underground neutral undergrounded system 

with ground fault at F in phase “c” of Line 1. 

The first one is a residual over voltage protection relay (ANSI 59N). This protection relay only 

evaluates the residual voltage at the busbars of the substation, not the phase voltage values [18].  

This residual voltage is normally measured through three voltage transformers in open delta connection 

installed at the medium voltage busbars of the substation. The worst drawback of this way of detection 

is that the location of the fault is not possible to determine, as the residual voltage is present in the entire 

power system. In fact, depending of the distribution operator company, this type of protection can be 
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used to signal an alarm or trip the entire busbar system and remove from service all lines connected to 

such busbar system. The trip of the entire busbar system is unacceptable due to a SPGF in any line. 

The second protection relay used is the ground directional protection relay (GDPR) [19,20].  

This protection is based on the different directions of the residual currents in case of ground fault.  

The residual current in the line with ground defect has an opposite direction than in the rest of the lines, 

as shown in Figure 1. This protection only has to trip in case of residual current circulating in the 

appropriate direction. So in order to distinguish the line with ground defect, it is necessary to measure 

the residual current direction at every line connected to the busbars of the substation. For such purpose, 

a directional ground fault protection relay is installed at every line. 

The evaluation of the direction of the residual current needs the measurement of the residual voltage 

as reference vector. This residual voltage is obtained in the same way as described before in the use of 

the residual over voltage protection (ANSI 59N). Therefore, when the ground fault residual current and 

the residual voltage are over their setting values, a directional comparison between the ground fault 

residual current and the residual voltage is done. In function of the angle between them, a tripping 

command is performed. 

The maximum sensitivity characteristic angle between the residual voltage U0 and the residual current 

I0 can be adjusted in the directional protection relays as a function of the neutral point connection.  

These protections relays are more expensive than the residual overvoltage relays, as they have to manage 

voltages, currents and develop a directional comparison. 

This directional protection system is not free of problems. Sometimes, when there is a ground fault in 

one line, there are unwanted trips in other lines caused by a wrong setting or wiring errors in their 

respective ground fault directional protection relays. These wrong tripping commands cannot be avoided 

in some installations where a primary test injection is not possible because the power supply cannot be 

switched off; In this case, neither a minimum residual voltage nor a residual current can be injected in 

the directional relays, and only secondary tests could be performed. 

Under such circumstances, when a real ground defect happens, the correct behaviour of the directional 

protection relay cannot be granted. Therefore, only when a ground fault happens, is it possible to detect 

an error in the settings or in the wiring of the directional ground protection relays. 

Commissioning engineers have to cope with the right identification of the polarity of the VT’s and 

CT’s wired to the GDPR as its manufacturer indicates, the right tripping direction indicated by the GDPR 

manufacturer, the right tripping angle between residual voltage U0 and the residual current I0 and the 

right current circulations when there is a SPGF. 

These last drawbacks related to the GDPR make the use of other protection systems interesting,  

which could be set in operation without primary test injections and provide full protection with total 

selectivity against ground faults to all the lines connected to the same busbars in any substation. 

In Figure 2, the circulating currents are shown in all the lines in an underground power system when 

a ground defect happens at F location at phase “c” in Line 1. At every phase of the three lines, its own 

capacitive current is circulating towards the fault point F except the capacitive current components at 

the phase “c” in the entire power system because they are short-circuited. Therefore, the capacitive 

current measured by the ring core current transformers CT that embrace the three phases at Lines 2 and 3 

are the sum of the capacitive currents of their phases; in Line 2 it is IE2 = ICA,2 + ICB,2, and in Line 3 it is 

IE3 = ICA,3 + ICB,3. These currents IE2 and IE3 have direction from the busbars to the line. 
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Figure 2. Residual current distribution in a three line neutral ungrounded system with ground 

fault at F in phase “c” of Line 1. 

However, the capacitive current measured by the ring core current transformer (CT) in Line 1 is the 

sum of the capacitive currents IE2 and IE3 with direction from the fault point F to the busbars. The 

capacitive current IE1 flows back and forth through the CT of the Line 1, so it is neglected. Every ground 

fault directional protection relay installed per line, reads the residual voltage U0 at the busbars obtained 

from the voltage transformers (VT) in open-delta connection and the currents Ip1, Ip2 and Ip3. 

These Ip1, Ip2 and Ip3 currents are the respective capacitive currents in primary side of  

Lines 1, 2 and 3, referred to the secondary side through the current transformer ratio TR of the ring core 

current transformers CT used. 

In case of having an outdoor power system with feeders, there must be three current transformers 

installed in each feeder in Holmgreen connection to be able to read the ground fault current as it is 

indicated in Figure 3. In Figures 4–6 the measurements of residual voltage and current in the three GDPR 

are illustrated. Only when their settings and the wirings are correct, GDPR in Line 1 is the only one 

GDPR which trips when a SPGF happens in Line 1. 

From Figures 4–6 it is seen that the Line 1 with ground fault has residual current 3I0,1 leading the 

residual voltage 90°, whereas in Lines 2 and 3 without ground defect, their residual currents 3I0,2 and 

3I0,3 lag the residual voltage. It can be concluded that when the ground fault directional relays are well 

adjusted and wired, their performance is quite good, but in some situations, such as when a new relay is 

going to be installed or maintenance works do not allow making primary injection to test the protection 
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relays, their behavior is committed. A new protection method that avoids such maintenance problems 

and the difficulty of checking the performance of the relays at any time with full effectiveness is 

described in this article. 

 

Figure 3. Current transformers connected in Holmgreen connection. 

 

Figure 4. Vector diagram. Residual voltage and current in Line 1 with ground defect. 

 

Figure 5. Vector diagram. Residual voltage and current in Line 2 with ground defect in Line 1. 
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Figure 6. Vector diagram. Residual voltage and current in Line 3 with ground defect in Line 1. 

3. Principle of Operation of the New Selective Ground Fault Detection Technique 

Before explaining the new principle of operation, the circulating of defect and capacitive currents 

when there is a SPGF in an isolated network is explained in detail. 

In cases of ground fault, the capacitive currents of all the n−1 lines without defect will circulate to the 

line with ground defect. On the other hand, in any line free of defects, only its own capacitive current IE 

will flow as indicated in Figure 1. This can be expressed as follows: 

Residual capacitive current in line with no ground defect: ENGDE II , (A) 

Residual capacitive current in line with ground defect: 
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the capacitive current of the line with ground defect (WGD), IE,WGD, is the sum of the n−1 capacitive 

currents IE of the rest of the lines with no ground defect. 
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where Uphase is the nominal phase-to-neutral voltage of the power system, XC is the capacitive ground 

impedance value, f is the frequency of the power system, Cph is the capacitance per length unit of one 

phase and L is the length of the line or cable. The larger the capacitance, the greater capacitive current 

the line will have. Normally this capacitance Cph is given in F/km. When the power system is free of 

ground faults, the capacitive currents in any line have the same value in all its phases. 

Figure 2 shows an example of the circulating currents in all the lines in an underground 20 kV power 

system when a SPGF happens in Line 1, phase “c” in point F. The lengths of the Lines 1, 2 and 3 are  
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6, 10 and 8 km respectively; each line has one single cable per phase with a capacitance to earth  

0.25 μF/km which represents about 1.57 A/km/phase. These data represent in Line 1 a current value of 

IE1 = 18.84 A, in Line 2 it is IE2 = 31.407 A and in Line 3 IE3 = 25.122 A. The current IE1 circulates back 

and forth through the CT installed in Line 1 so it does not affect in the current value measured whereas 

both currents IE2 and IE3 circulate from busbars to the fault point F. Therefore, the circulating currents 

measured by the three CTs are: 56.53 A in Line 1 with direction from the fault point F to the busbars; 

31.40 A in Line 2 with direction from the busbars to the fault point, and 25.12 A in Line 3 from the 

busbars to the fault point. 

The proposed method is based on the comparison of the rms values of the residual current of all the 

lines connected to a bus. Figure 2 shows how Line 1 with SPGF has the highest residual current 

compared to the residual currents in Lines 2 and 3 without ground defect. An additional condition for 

verifying the presence of a ground fault in the power system should be the evaluation of a minimum 

residual voltage to avoid undesirable tripping commands [21]. Therefore, in a power system with more 

than two lines, in the case of a ground fault, the line with ground defect would have the biggest residual 

current of all the lines. 

3.1. Ground Fault Detection Method for Main Substations 

At main substations fed directly by power transformers, in the line that has a SPGF, a residual current 

can be measured that corresponds to the addition of the capacitive currents of the rest lines in service 

without ground fault. In each of the healthy lines, the residual currents correspond to their own capacitive 

currents. The line with SPGF is easily detectable in this type of substation by comparing the rms values 

of the residual currents. The line with the highest residual current is the line that has a ground fault.  

As shown in Figure 2, the line with ground defect (Line 1) has a residual current corresponding to the 

sum of the capacitive currents of the other lines: IE2 + IE3, while in Lines 2 and 3, the residual currents 

are IE2 and IE3, respectively. 

3.2. Ground Fault Detection Algorithm for Secondary Substations 

In power systems with one main substation and several secondary substations, the new non-directional 

method should be implemented in the main substation and in the secondary substations. Secondary 

substations correspond to those that have incoming feeders/lines and outgoing feeders/lines connected 

at the same busbars and can be considered as a single bus in the network. 

As shown in Figure 7, where there are one main substation and three secondary substations. In case 

of a SPGF, if the described method to detect ground faults is used in the secondary substations, tripping 

commands will take place at all secondary substations simultaneously. The reason is that when there is 

a ground fault, defect currents flow at every single line of the network. According to this new method 

presented for main substations, the line with the highest residual current at every substation will be 

tripped, and this line could be the line that has a ground fault or simply the longest line of the substation. 

For instance, in the power system represented in Figure 7, in case of a fault in Line 12, not only the 

outgoing Line 12 would be tripped, but also the longest lines at secondary substations 2 and 3 (Line 23 

and Line 32 respectively). Therefore, an important part of the power system will be disconnected 

inappropriately. This fact is considered by the proposed method in the specific case of secondary 
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substations. The method requires choosing the principal line or lines that supply electrical power to the 

busbars, as well as the outgoing lines that set out from such busbars. Once this selection is defined,  

the procedure to determine where the fault is to check two conditions.  

 

Figure 7. Highest ground fault currents at isolated network with secondary substations. 

Ground fault at Line 12. 

The first condition is to detect a SPGF in the system by the measurement of the residual voltage U0. 

If the value of this residual voltage U0 is above a previous setting value, the next step is triggered.  

Now the defect current rms values due to the capacitance of the system at every incoming and outgoing 

line at any secondary substation are read out and evaluated. The algorithm checks if the sum of all 

outgoing rms residual current values is equal to the sum of all incoming rms residual current values in a 

secondary substation. If so, the fault is not taking place at any outgoing line of that secondary substation. 

But if this second condition is not fulfilled at any secondary substation, the new system will trip the line 

with highest defect current at that secondary substation. The algorithm of the method is shown in Figure 8. 
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Figure 8. Secondary substation. Algorithm for SPGF detection. 

3.3. Examples of Application of the New Method 

The working principle of the new method is evaluated in two different scenarios: 

3.3.1. Ground Fault in an Outgoing Line of any Secondary Substation 

Let us consider a network composed of a main substation and three secondary substations, shown in 

Figure 9, where a SPGF has occurred in Line 22. The measurements of the current transformers of the 

main and secondary lines are summarized in Table 1. In this example, using the appropriated criteria for 

a secondary substation, the new selective ground fault method operates as follows: 

- When the residual voltage level is over the setting value, the residual currents are evaluated. 

- At secondary substation 1, the defect current measured at the incoming Line 1 by the current 

transformer CT-M1’ has an rms value equal to the sum of the rms values of the defect currents 

measured at the outgoing Lines 11, 12 and 13 by their respective current transformers CT-M11, 
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CT-M12 and CT-M13. Using the second condition criterion, it is concluded that the fault is not 

located at any of these outgoing lines. The same conclusion can be made for secondary substation 3. 

- At secondary substation 2, the defect current measured at the incoming Line 2 by its current 

transformer CT-M’ has a different rms value from the sum of the rms values of the defect currents 

measured at the outgoing Lines 21, 22 and 23 by their respective current transformers CT-M21, 

CT-M22 and CT-M23. Now, as the highest defect current is measured at outgoing Line 22,  

the conclusion from employing the second condition criteria is that the fault is in such line. 

- At the main substation, the defect current measured at the outgoing Line 2 by its current 

transformer CT-M2 has the highest rms value of all the outgoing currents in Lines 1, 2 and 3 

measured by their respective current transformers CT-M1, CT-M2 and CT-M3. The new method 

would switch off Line 2as a consequence of the first condition criterion. 

To avoid a tripping order at the outgoing Line 2 at the main substation before a tripping order at the 

outgoing Line 22, there must be a time delay between such commands. Tripping orders at secondary 

substations must be quicker than the main substation ones to provide selectivity. 

 

Figure 9. Highest ground fault currents at neutral undergrounded network with secondary 

substations. SPGF at Line 22. 
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Table 1. Residual current measurements. Ground fault at Line 22—Phase “a”—rms current 

value (A). 

Main station Secondary substation II 

CT-MP 0 CT-M2’ 
IE1 + IE11 + IE12 + IE13 + IE3 + IE31 + 

IE32 + IE33 + IE2 

CT-M1 IE1 + IE11 + IE12 + IE13 CT-M21 IE21 

CT-M2 
IE1 + IE11 + IE12 + IE13 + 

IE3 + IE31 + IE32 + IE33 
CT-M22 

IE1 + IE11 + IE12 + IE13 + IE3 + IE31 + 

IE32 + IE33 + IE2 + IE21 + IE23 

CT-M3 IE3 + IE31 + IE32 + IE33 CT-M23 IE23 

Secondary substation I Secondary substation III 

CT-M1’ IE1 + IE11 + IE12 + IE13 CT-M3’ IE3 + IE31 + IE32 + IE33 

CT-M11 IE11 CT-M31 IE31 

CT-M12 IE12 CT-M32 IE32 

CT-M13 IE13 CT-M33 IE33 

3.3.2. SPGF in a Line That Connects a Main Substation with a Secondary One 

Now the network study is represented in Figure 10, where a ground fault has occurred in Line 2.  

In this case, the new selective ground fault method operates as follows: 

- Residual voltage level is over the setting value, so the residual currents are evaluated. 

- At secondary substation 1, the defect current measured at the incoming Line 1 by its current 

transformer CT-M1’ has an rms value equal to the sum of the rms values of the defect currents 

measured at the outgoing Lines 11, 12 and 13 by their respective current transformers CT-M11, 

CT-M12 and CT-M13. The fault is not located at any of these outgoing lines as a result of  

second condition criterion. The same conclusion can be reached for the secondary  

substation 2 and 3. 

- At the main substation, the defect current measured at the incoming line by CT-MP has a different 

rms value than the sum of the rms values of the defect currents measured at the outgoing  

Lines 1, 2 and 3 by their respective current transformers CT-M1, CT-M2 and CT.M3. The defect 

current measured at the outgoing Line 2 by CT-M2 has the highest rms value of all the outgoing 

lines. The new method would switch off Line 2 as the result of the first condition criteria. 

The SPGF at outgoing Line 2 is cleared following the first criterion of maximum rms value, as well; 

there is no tripping command at any other secondary substation as a result of the evaluation of the second 

condition criterion. Table 2 shows the results of the current transformers placed at the main and 

secondary substations indicated in Figure 10. The same result is obtained when the SPGF is at Lines 1 

and 3. Finally, application at busbars that couple different substations has also given excellent results, 

with its implementation also being suitable. 
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Figure 10. Highest SPGF currents at isolated network with main and secondary substations. 

Ground fault at Line 2. 

Table 2. Residual Current Measurements. SPGF at Line 2—Phase “a”—rms current value (A). 

Main station Secondary substation II 

CT-MP 0 CT-M2’ IE2 + IE21 + IE22 + IE23 

CT-M1 IE1 + IE11 + IE12 + IE13 CT-M21 IE21 

CT-M2 IE1 + IE11 + IE12 + IE13 + IE3 + IE31 + IE32 + IE33 CT-M22 IE22 

CT-M3 IE3 + IE31 + IE32 + IE33 CT-M23 IE23 

Secondary substation I Secondary substation III 

CT-M1’ IE1 + IE11 + IE12 + IE13 CT-M3’ IE3 + IE31 + IE32 + IE33 

CT-M11 IE11 CT-M31 IE31 

CT-M12 IE12 CT-M32 IE32 

CT-M13 IE13 CT-M33 IE33 
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In Table 3 the main differences between the different protection methods used to detect and clear 

SPGF at neutral ungrounded networks are listed. 

Table 3. Comparison of the main features of the protection methods used nowadays to detect 

and clear SPGF at neutral ungrounded networks. 

Check list for  

commissioning 

Protection method 

Residual voltage 

(ANSI 59N) 

Ground fault directional 

overcurrent (ANSI 67N) 

New method non 

directional 

Check VT polarity No Yes No 

Check CT polarity No Yes No 

Check wiring polarity of VT’s to 

protection system 
No Yes No 

check wiring polarity of CT’s to 

protection system 
No Yes No 

Check tripping angle  

between I0 and U0 
No Yes No 

Selective tripping No Yes Yes 

Easy to set in operation Yes No Yes 

Cost of the protection system Low High Low 

Time to put the protection 

system into operation 
Short Long Short 

Primary injection needed to test 

its functionality 
No Yes No 

4. Analysis of Simulation Results 

The proposed selective SPGF protection method was simulated using Alternative Transient Program 

(ATP) while post-processing was done using Matlab. An equivalent “pi” model for lines was used as 

well as power transformers rated 132/20 kV, 10 MVA, with YNd11 connection group. The simplest and 

simplified schematic with one incoming line with 50 km in length and three outgoing lines with equal 

lengths of 150 km without any load connected (a) and the same circuit with different loads (b) are shown 

in Figure 11. 

The parameters of any equivalent “pi” feeder for conductor type LA56 with diameter Φ = 9.45 mm 

and delta disposition (Dab = 4 m, Dac = 2.3324 m, Dbc = 2.3324 m) are: R = 0.6136 Ω/km;  

X = 0.4148 Ω/km and C = 0.28 μF/km. Loads: Z1 = 960 + j719.42 Ω; Z2 = 545 + j263.89 Ω;  

Z3 = 380 + j124.72 Ω. 
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Figure 11. ATP single line diagram for main substation arrangement. 

4.1. Main Substation 

To simulate the new method for the detection of which line suffers a ground fault condition, a power 

system formed by three outgoing lines, of identical lengths, has been used, as seen in Figure 6. 

Simulations with load (a) and without load (b) at each line terminal have been carried out. In the 

simulation, ground faults were simulated at different phases and at different places with different 

resistance values up to 30 Ω. For instance, a ground fault at single line diagram shown in Figure 11 is 

evaluated at Line 1 phase “a” under no load conditions. Voltages under such fault condition at the 

distribution 20 kV busbars are shown in Figure 12. Voltages at the same distribution 20 kV busbars 

under the same fault conditions as before, but with load in the three feeders, turned out to be not so 

high—between 8 and 10 kV less. In Figure 13, all SPGF currents of all lines connected to the 20 kV 

busbars are represented considering the network as indicated in Figure 11 with load (b). The simulation 

results shown in Figure 13 are indicated in Table 4. It can be clearly observed that the line with the defect 

is the one which has the greatest residual current, its value being the sum of the other residual currents 

(IE1 = IE2 + IE3 + IE0). It is totally correct to say that using this proposed method in a main substation,  

a ground fault can easily be detected in a selective way. 



Energies 2015, 8 1306 

 

 

 

Figure 12. Phase voltages at main distribution busbars. SPGF at phase “a”—Line 1. 

 

Figure 13. Ground fault currents at main distribution busbars. SPGF at phase “a”—Line 1. 

Table 4. Residual current measurements. SPGF at Line 1—Phase “a”—rms current value (A). 

Main station 

 IE0 IE1 IE2 IE3 

(a) 3.71 25.81 11.05 11.05 

(b) 3.10 21.78 9.34 9.34 

4.2. Secondary Substations 

Figure 14 shows a network with one main substation and four secondary substations. Feeders L11, 

L12, L31, L32, L33, L41 and L42 supply different loads while feeders L2, L34 and L43 are energized 

without any load connected. Ground fault at Line 2 in phase “a” is evaluated, and the result shows that 
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ground fault current measurements at 20 kV busbars verify the proposed method. Ground fault currents 

at outgoing Lines1, 3 and 4 with no fault, keep the same phase angle, whereas the ground fault current 

at the Line 2 with ground defect has a 180° phase angle difference compared to those of Lines1, 3 and 4 

(Figure 15). The sum of the rms ground fault current values of Lines 0, 1, 3 and 4 is practically the same 

as that in Line 2. 

 

Figure 14. Single line diagram for main and secondary substations. 
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Figure 15. Ground fault currents at main distribution busbars. Single ground fault at  

phase “a”—Line 2. 

On the other hand, the evaluation of the defect currents at the three secondary substations has shown 

that the incoming defect current rms value has the same defect current value as has the sum of the rms 

defect current values of all the outgoing lines, at each of the three secondary substations. Therefore,  

no tripping command will be given at any other secondary substation. Evaluation of the highest defect 

current rms value at the main substation will give a tripping order to the Line 2 switchgear where the 

ground fault is taking place. These results are listed in Table 5. In Figure 15, the ground fault currents 

of all lines connected to the 20 kV busbars are represented. 

Table 5. Residual current measurements. SPGF at Line 2—Phase “a”—rms current value (A). 

Main station 

IE0 IE1 IE2 IE3 IE4 

1.25 6.44 24.80 11.92 5.19 

Secondary substation I 

IE1 IE11 IE12 

5.17 2.58 2.59 

Secondary substation II 

IE2 IE2 

24.80 24.80 

Secondary substation III 

IE30 IE31 IE32 IE33 IE34 

10.63 2.66 2.67 2.67 2.65 

Secondary Substation IV 

IE4 IE41 IE42 IE43 

3.92 1.31 1.31 1.31 
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5. Experimental Results 

To test the validity of the proposed SPGF detection method and its computer simulation results, 

different laboratory tests have been performed on an isolated network. These tests try to verify the 

operating principle of the detection technique. 

5.1. Experimental Setup 

The tests were carried out on an isolated network supplied by a power transformer rated 800 VA, 

400/100 Vac, and YNy0 connection group. Up to nine line modules with equivalent circuit “pi”  

were used, as shown in Figure 16. A per unit system of SB = 800 VA, UB = 100 V, IB = 4.618 A, and  

ZB = 12.5 Ω was selected to represent all values. These practical tests were carried out with loads and 

no loads at the end of the lines. The parameters of any equivalent “pi” feeder, also shown in Figure 16, 

have the following characteristics: R = 88.48 mΩ, L = 4 mH, and C = 4 μF each capacitor. 

 

Figure 16. Top: Actual network experiment set-up. Three identical lines. (1: Power transformer, 

2: Equivalent “pi” module, 3: Ground fault resistance). Bottom: Equivalent “pi” module and 

parameter values. 

Several SPGFs at different phases, lines, and configurations were implemented in the real  

isolated network erected in the laboratory. The ground fault resistance was shifted from 0 to 2.4 p.u. in 

all cases studied. 
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5.2. Three Lines with Identical Lengths 

This kind of single line network scheme is shown in Figure 17, where the lines have a total equivalent 

length of 150 km. Without any load connected (c), the measurements taken when a single ground fault 

is present at Line 1 are listed in Table 6, including the fault resistance Rf and the residual voltage U0 

measured at the busbars. The results show that the defect current measured at Line 1 has the highest 

value, compared to those registered at Lines 2 and 3. As shown in Table 6, the faults can be clearly 

located with different fault resistance values, chosen at random. The results obtained when having loads 

(d) as 300 VA in Line 1, 50 VA in Line 2 and 150 VA in Line 3 are listed in Table 7. Again, the results 

show that the defect current measured at Line 1 has the highest value, compared to those registered at 

Lines 2 and 3. 

 

Figure 17. Single line diagram with three lines with equal length. SPGF at phase “a”—Line 1. 

Table 6. Experimental results. Three lines not loaded with identical length. Residual current 

measurements IE in per unit values (p.u.). SPGF at Line 1—Phase “a”. 

Main station 

Rf U0 L1 L2 L3 IE1,a 

0.00 1.38 0.80 0.40 0.40 1.18 

0.32 1.21 0.70 0.35 0.35 1.03 

0.56 1.19 0.73 0.34 0.34 0.97 

0.80 1.03 0.59 0.30 0.30 0.88 

1.04 0.82 0.47 0.24 0.24 0.70 

1.20 0.75 0.47 0.23 0.23 0.69 

1.60 0.62 0.36 0.18 0.18 0.53 

2.00 0.53 0.30 0.15 0.15 0.45 

2.40 0.47 0.26 0.13 0.13 0.39 
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Table 7. Experimental results. Three lines loaded with identical length. Residual current 

measurements IE in per unit values (p.u.). SPGF at Line 1—Phase “a”. 

Main station 

Rf U0 L1 L2 L3 IE1,a 

0.00 1.38 0.78 0.39 0.39 1.16 

0.32 1.21 0.73 0.36 0.36 1.08 

0.56 1.19 0.64 0.32 0.32 0.95 

0.80 1.03 0.57 0.28 0.28 0.84 

1.04 0.82 0.50 0.25 0.25 0.74 

1.20 0.75 0.45 0.22 0.22 0.66 

1.60 0.62 0.36 0.18 0.18 0.53 

2.00 0.53 0.31 0.15 0.15 0.45 

2.40 0.47 0.27 0.13 0.13 0.40 

 

Figure 18. Multiple line network. SPGF at Line 12. 

5.3. Three Different Line Lengths 

This network is formed by three lines with different lengths of 150, 250, and 50 km. This kind of 

network with a SPGF at Line 12 is shown at Figure 18. Without any load connected (e), the 

measurements taken at Line 1 when a SPGF is present at Line 12 are listed in Table 8, where the fault 

resistance Rf and residual voltage U0 measured at the main station are also included. The results show 

that the defect current measured at Line1A has the highest value, compared to those registered at  

Lines 2A and 3A. On the other hand, at Secondary Substation II, the incoming defect current at Line 2 
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is equal to the sum of the defect currents at outgoing Lines 21 and 22. Also in Figure 18, with different 

loads connected (f) in Lines 11, 21 and 3, the measurements taken when a SPGF is present at Lines 12 

are listed in Table 9, where the fault resistance Rf and residual voltage U0 measured at the main station 

are also included. Table 10 shows the defect currents at substations I and II as well as the defect current. 

The results again show that the defect current measured at Line 1A has the highest value, compared to 

those registered at Lines 2A and 3A. On the other hand, at Secondary Substation II, the incoming defect 

current at Line 2 is equal to the sum of the defect currents at outgoing Lines 21 and 22. 

Table 8. Experimental results. Three lines not loaded with different lengths. Residual current 

measurements IE in per unit values (p.u.). SPGF at Line 12—Phase “a”. 

Main station Secondary substation II 

Rf U0 L1A L2A L3A IE12,a L2 L21 L22 

0.00 0.72 0.73 0.61 0.12 1.08 0.37 0.25 0.12 

0.32 0.66 0.71 0.59 0.11 1.04 0.34 0.23 0.11 

0.55 0.61 0.68 0.56 0.11 1.00 0.31 0.21 0.10 

0.80 0.51 0.58 0.49 0.10 0.87 0.27 0.18 0.09 

1.04 0.48 0.49 0.38 0.07 0.68 0.25 0.17 0.08 

1.20 0.40 0.45 0.37 0.07 0.66 0.21 0.14 0.07 

1.60 0.33 0.36 0.30 0.06 0.53 0.17 0.12 0.05 

2.00 0.28 0.30 0.25 0.05 0.44 0.14 0.10 0.04 

2.40 0.24 0.27 0.23 0.02 0.39 0.12 0.08 0.04 

Table 9. Experimental results. Lines with and without load with different lengths.  

Residual current measurements IE in per unit values (p.u.). SPGF at Line 12—Phase “a”. 

Main station 

Rf U0 L1A L2A L3A L0A 

0.00 0.91 3.27 2.76 0.53 0.0074 

0.32 0.84 2.56 2.25 0.44 0.0081 

0.55 0.79 2.34 2.01 0.38 0.0056 

0.80 0.66 2.18 1.76 0.34 0.0028 

1.04 0.59 2.11 1.43 0.29 0.0020 

1.20 0.48 2.03 1.70 0.33 0.0021 

1.60 0.37 1.63 1.37 0.27 0.0012 

2.00 0.33 1.40 1.18 0.23 0.0017 

2.40 0.27 1.22 1.02 0.20 0.0048 

In general terms, it must be said that the results obtained within these tests have turned out to be totally 

similar to the ATP simulations carried out. Again, different fault resistance values were tested with 

satisfactory results. 
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Table 10. Experimental results. Lines with and without load with different lengths.  

Residual current measurements IE in per unit values (p.u.). SPGF at Line 12—Phase “a”. 

Secondary substation I Secondary substation II 

Rf L1 L11 L12 IE12,a L2 L21 L22 

0.00 3.68 0.52 4.32 4.85 1.66 0.55 1.12 

0.32 3.04 0.39 3.36 3.70 1.38 0.41 0.96 

0.55 2.73 0.35 3.02 3.46 1.21 0.37 0.83 

0.80 2.47 0.28 2.75 3.18 1.09 0.36 0.73 

1.04 2.11 0.30 2.42 2.92 1.06 0.32 0.73 

1.20 2.01 0.32 2.68 2.79 1.03 0.34 0.67 

1.60 1.90 0.26 2.16 2.42 0.83 0.27 0.55 

2.00 1.62 0.22 1.81 2.06 0.71 0.24 0.46 

2.40 1.41 0.19 1.60 1.78 0.61 0.21 0.40 

6. Conclusions 

A new selective single phase ground fault technique for neutral undergrounded networks has been 

presented in this article. This new method is suitable for all kinds of main substations with at least three 

feeders and secondary substations. The proposed non-directional detection technique is based on the 

comparison of the rms value of the ground fault currents at each line position of each substation. 

At main substations, the highest ground fault current module belongs to the line with the ground fault. 

At secondary substations, if the ground fault current at the incoming line of the main busbars has the 

same rms value as the arithmetic sum of all outgoing ground fault currents, the fault is not located at any 

of the outgoing lines connected to those busbars, provided that a minimum residual voltage over an 

established setting value is present. 

ATP simulations with different substation configurations turned out to be totally satisfactory as well 

as the experimental results of the laboratory tests. All of them show that the localization of the single 

phase ground fault is easy to find, without any possible mistake, identifying the corresponding line as 

the “line with ground fault condition.” 

This new protection technique has the following advantages, when compared to traditional directional 

ground fault protection devices: 

1. It is much easier to measure the values of the ground defect currents than evaluate the direction 

of the ground defect currents compared to the residual voltage. 

2. In substations that cannot be removed from service, primary injection tests are not able to be 

developed, and the correct operation of the directional ground fault protection relays is not 

secured, whereas this new method is able to be totally commissioned without primary injection 

tests and its good performance can be granted without removing the substation from service. 

3. Unintentional wrong tripping commands given by directional protection relays due to wrong CTs 

and VTs polarities connections are avoided, as directional criterion is not used. 

4. It reduces dramatically the time and costs of installation and commissioning compared to the use 

of directional ground fault protection relays.  

The aforementioned advantages provide a great improvement in the network protection system as 

unintended trips caused by single ground faults are eliminated. 
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Nomenclature: 

a, b, c Phase “a”, “b”, “c”. 

ANSI: American National Standard Institute. 

CT:  Current transformer. 

CT-Mi: Current transformer for residual measurement in one end in line “i”. 

CT-Mi’: Current transformer for residual measurement in the other end in line “i”. 

CT-MP: Current transformer for residual measurement in main power transformer output. 

Cph:  Capacitance to earth of one line phase. 

DGs: Distributed generation units. 

f:  Frequency of the power system. 

GDPR: Ground directional protection relay. 

i:  Number of line: 1, 2, 3,…n. 

Ia:  Current in phase “a” at the protection relay side. 

IA,IB,IC: Capacitive currents in feeders at the primary side. 

ICAi:  Capacitive current at line “i” in phase “a”. 

IEi:  Capacitive current in line “i”. 

IEi,a:  Defect current at phase “a” at principal line “i”. 

3I0,i: Residual current in line “i”. 

Ipi:  Capacitive current in line “i” at protection relay side. 

L:  Length of the line. 

rms: Root mean square. 

SPGF: Single phase ground fault. 

TR:  Current transformer ratio. 

UA:  Voltage in phase “a” without ground defect. 

UA’:  Voltage in phase “a” with ground defect. 

Uphase: Rated phase voltage of the power system. 

Uo:  Residual voltage. 

Uo-i:  Residual voltage at substation “i”. 

U0-MP: Residual voltage at main power station. 

VT:  Voltage transformers. 

VT-i: Voltage transformers in substation “i”. 

VT-MP: Voltage transformers in main power station. 

XCa:  Capacitive impedance of phase “a”. 
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