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Abstract: Direct Current (DC) electrical resistivity is a material property that is sensitive 

to temperature changes. In this paper, the relationship between resistivity and local 

temperature inside steel shell battery cells (two commercial 10 Ah and 4.5 Ah lithium-ion 

cells) is innovatively studied by Electrical Resistance Tomography (ERT). The Schlumberger 

configuration in ERT is applied to divide the cell body into several blocks distributed in 

different levels, where the apparent resistivities are measured by multi-electrode surface 

probes. The investigated temperature ranges from −20 to 80 °C. Experimental results have 

shown that the resistivities mainly depend on temperature changes in each block of the  

two cells used and the function of the resistivity and temperature can be fitted to the  

ERT-measurement results in the logistical-plot. Subsequently, the dependence of resistivity 

on the state of charge (SOC) is investigated, and the SOC range of 70%–100% has a 

remarkable impact on the resistivity at low temperatures. The proposed approach under a 

thermal cool down regime is demonstrated to monitor the local transient temperature. 

Keywords: local temperature; electrical resistance tomography; metal shell battery; 

resistivity; thermal safety 
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1. Introduction 

Overcharge, over-discharge and short circuits are the three most common failure modes of a lithium-ion 

(Li-ion) cell. Due to the violent electrochemical reactions, related processes can generate excess heat. 

Dangerous gases, like oxygen or hydrogen, can quickly raise the core temperature up to 150 °C inside 

a Li-ion cell. As the heat and gas gradually accumulate in the cell body, they can cause the cell to 

bulge, leak, and ultimately even explode. Especially for battery cells with steel or aluminum shells, the 

large battery capacity determines a low heat capacity, which means the internal temperature can reach 

a higher level in normal cell operation. Internal temperature measurement and evaluation are thus very 

critical for thermal management system design [1]. If the changes of the temperature can be predicted 

precisely, potential threats can be avoided effectively and the battery lifespan can be extended [2–4]. 

Surface temperature monitoring is well addressed by traditional external sensors, i.e., thermocouples, 

thermistors and resistance temperature detectors (RTDs). However, the internal cell temperature is rarely 

studied. As the remaining lifespan gradually reduces, aging of the internal cell materials, such as 

electrolyte, electrode, solid-electrolyte-interphase (SEI), is accelerated. In this case, the thermal 

conductivity will decrease rapidly, which can cause temperature differences between the surface and 

internal battery, so evaluating the internal temperature of the cell based on the mean or maximum 

surface temperature would not be accurate. 

In order to monitor the internal cell temperature, numerical models were developed by several 

authors to estimate the core temperature [5–12]. Srinivasan and Wang [5] analyzed the electrochemical 

and thermal behavior of Li-ion battery cells by a proposed two-dimensional thermal and 

electrochemical coupled model. Chen et al. [6] developed a three-dimensional model to examine the 

thermal behavior of Li-ion batteries. Then in 2006 Chen et al. [7] designed a two-dimensional thermal 

model to establish a standard for the simulation of spirally wound cells. Subsequently, Kwon et al. [8] 

presented a two-dimensional thermal model based on the potential and current density distributions, 

which was later described in detail by Kim et al. [9,10]. Meanwhile, Forgez et al. [11] developed a 

lumped-parameter thermal model to simulate the internal temperature directly from the measured 

current and voltage of cylindrical Li-ion cells. Kim et al. [12] presented the finite element method for 

modeling the thermal behavior of a Li-ion battery during charge. 

In recent years, some non-destructive methods of internal temperature measurement have been 

investigated [13–15]. Fleckenstein et al. [13] introduced a Thermal Impedance Spectroscopy (TIS) 

method for thermal characterization of battery cells to determine the temperature via the heat 

conductivity and the specific heat capacity. Srinivasan et al. [14] proposed an Electrochemical 

Impedance Spectrum (EIS) method to explore the correlation between the internal cell temperature and 

the phase angle of electrochemical impedance at a certain frequency. This method increases the 

accuracy of the temperature measurement without requiring additional external sensors and wires. 

Subsequently, taking a closer look to the selection of measurement frequency, Schmidt et al. [15] 

investigated the sensitivity of the method on temperature and state of charge (SOC). In a word,  

both TIS and EIS methods are innovative compared to traditional methods. These novel methods show 

a broad study of significant parameters that are sensitive to temperature, and provide a valuable 

breakthrough for further detection of the internal cell temperature. 
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In summary, most of the methods mentioned above only utilize a local point estimation or derived 

temperature to describe the whole cell temperature, which cannot indicate the local temperature 

distribution accurately. Especially with the growth in battery cell size and increasing power demands, a 

significant time delay will occur in the thermal runaway from inside to outside a cell due to its thermal 

inertia. The differences in local temperature in various areas of the Li-ion cells may rise to 10 °C or 

even more. Therefore, the local temperature monitoring inside a Li-ion cell is important for cell  

safety protection. 

In this paper, the authors propose a new approach to monitor the local temperature of the cell body 

based on analyzing the material resistivity in different areas of the cell body, and the relationship 

between the resistivity and local temperature. Electrical Resistance Tomography (ERT) technology is 

innovatively applied to measure the resistivity distribution of the whole cell body. Furthermore,  

a standard evaluation of the method under a wide temperature range is presented for two steel shell  

Li-ion cells widely used in electric vehicles. 

2. Resistivity, Temperature and the ERT 

The Li-ion cell production process is sophisticated and the electrolyte inside is a complex mixture 

of conductive chemicals. As a characteristic quantity of the internal cell material resistance,  

the resistivity can effectively reflect the internal cell temperature changes. Meanwhile, due to the 

complex internal structure, evaluating the temperature with a single resistivity value may lead to a 

great error. The whole cell body can be divided into several blocks using the Finite Element Method 

(FEM). Thus, the local temperatures inside the battery cell can be determined by the block resistivities.  

This approach greatly benefits cells with a large size and increases the accuracy of evaluating the 

whole distribution of the internal cell temperatures. 

To non-destructively evaluate the resistivity elements of metal shell battery cells, the ERT method 

using point electrode arrays has potential advantages. This approach facilitates the determination of the 

internal cell temperature by a two-dimensional or three-dimensional image of resistivity distribution. 

Furthermore, real-time changes of the local cell temperature can be reflected indirectly in these images. 

ERT has been studied for many years in geophysical surveys to map the subsurface structure [16–18]. 

In past decades, this method has been successfully applied in medical inspection [19], two-phase flow 

detection [20] and concrete structure investigation [21]. Recently, the ability of ERT, self-potential 

method (SP) and distributed temperature sensing (DTS) to monitor, spatially and temporally, 

temperature changes in the subsurface has been investigated [22]. However, the application of the ERT 

technique for evaluating the internal cell temperature of a battery is still a new field of study. 

The ERT based on multi-electrode configuration divides the internal complex structure of the cell 

body into several independent levels. Each level, depending on the number of electrodes, can be 

subdivided into many simple blocks. In this way, the measured apparent resistivities of the blocks will 

determine the block temperatures inside the cell. So far, the ERT method has only been utilized for 

apparent resistivity measurements, not in measurements of indirect variables, such as temperature. 

In this paper, the authors concentrate on the determination of the resistivity and the local 

temperature through the experimental evaluation of an advanced ERT method in the battery field.  

The block resistivity measurements were performed on two commercial steel shell Li-ion battery cells  
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(4.5 and 10 Ah). According to the changes of temperature, the variations of the resistivities in each 

level were investigated. Meanwhile, the reproducibility of this method was validated with these two 

different cells. An equation of the relationship between the resistivity ρ and the local temperature T for 

the level 𝑗 was obtained by the logistic fit, and the effect of SOC on resistivity was subsequently 

investigated. In the experimental study, the temperature monitoring of the 10 Ah cells based on the 

proposed approach was demonstrated during a thermal cool down. 

3. Theory 

3.1. Principle 

The four-point configuration (see Figure 1) is most commonly used in ERT. As the amplitude 

modulated periodic current signals are imposed on the exciting electrodes A and B, a stable electric 

field will be produced. The electric potential difference between measured electrodes M and N can 

effectively determine the resistivity below the electrodes. In general, the four electrodes have a 

symmetrical arrangement. As AM = MN = NB = a, a common Wenner configuration is constructed;  

while AM = NB = na and MN = a, herein n is the ratio of the distances between the A-M and the M-N 

electrodes, and it is a standard Schlumberger configuration being sensitive to the survey depth. 

Considering the small size of Li-ion cells, the survey lines on the cells may not be long enough to 

place a sufficient number of electrodes, thus the four-point Schlumberger configuration would be 

suitable to obtain enough survey depth. 

 

Figure 1. Common four-point surface resistivity measurements. 

There have been some publications regarding multi-electrode resistivity measurements of structures 

with ERT [23,24], but few of them have been written on using this technique for condition assessment 

of Li-ion cells. However, to map property gradients over depth or perform ERT, multiple measurements 

using point electrodes at different offsets are necessary. Based on the four-point Schlumberger 

configuration, the 7-electrode and 12-electrode surface resistivity probes were developed for on-site 

cell testing application (see Figure 2). After all voltage measurements are finished, the resistivity value 

ρ for the Schlumberger configuration is derived by: 
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ρ = 𝐺
𝑈AB
𝐼

 (1) 

where, I is the exciting current amplitude, and the geometrical factor G can be defined analytically for 

the infinite half-space as: 

𝐺 = 𝑛(𝑛 + 1)π𝑎 (2) 

 

Figure 2. Distribution of blocks from multi-electrode probe measurements based on 

Schlumberger configuration. (a) Twenty-five blocks in five levels obtained from  

12 electrodes for 10 Ah battery; (b) Six blocks in two levels obtained from seven 

electrodes for 4.5 Ah battery. 

Due to the inhomogeneous nature of a battery cell, the measured resistivity ρ called the apparent 

resistivity cannot represent the real resistivity ρ0, which is mainly affected by the current density. 

Assuming the condition inside the battery is homogeneous, the uniform current density is j0 while the 

actual current density in region M-N is jMN. The apparent resistivity ρMN of this region can be 

expressed as: 

ρ𝑀𝑁 = (𝑗𝑀𝑁/𝑗0)ρ0 (3) 

As shown in Equation (3), the ρMN is proportionally related to ρ0. Especially when the materials 

below the region M-N are in a low impedance condition, the current will be drawn to make the surface 

current density decrease, namely jMN < j0 and ρMN < ρ0; whereas the current will be rejected when the 

materials remain in a high impedance state, namely jMN > j0 and ρMN > ρ0. Therefore, the changes and 

distribution of the real resistivity can be determined by the measured apparent resistivity. 

(a)

(b)
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3.2. Survey Depth 

In the ERT method described previously, the median depth of investigation can be analytically 

related to the electrode spacing for the homogeneous infinite half-space [25]. For inhomogeneous 

conditions in Li-ion cells, the survey depth theoretically depends on the current density. As effected by 

the original exciting current density 𝑗𝑂
𝐴 and 𝑗𝑂

𝐵, the current density 𝑗𝑂
𝐴𝐵 in the midpoint O of the AB line 

in Figure 3a can be expressed as: 

𝑗𝑂
𝐴𝐵 = 𝑗𝑂

𝐴 + 𝑗𝑂
𝐵 = 2𝑗𝑂

𝐴 = 2(I/2π𝑏2) = I/π𝑏2 (4) 

where 𝑏 is the spacing between the O and A (or B) points. Furthermore, the current density 𝑗𝑍
𝐴𝐵 in the 

point Z at depth 𝑏 decomposes into the vectors 𝑗𝑍
𝐴 and 𝑗𝑍

𝐵: 

𝑗𝑍
𝐴𝐵 = 2𝑗𝑍

𝐴 ∙ cosθ = (
𝐼

π𝑏2
)cos3θ (5) 

Combining the Equations (4) and (5): 

 𝑗𝑍
𝐴𝐵 𝑗0

𝐴𝐵⁄ = cos3θ = 𝑏3/(𝑏2 + ℎ2)3/2 (6) 

Figure 3b shows a nonlinear relation between 𝑗𝑍
𝐴𝐵 𝑗0

𝐴𝐵⁄  and ℎ/𝑏. It can be found that the current 

density is more intensive in the shallow region and decreases sharply with the increase of survey depth.  

For example, the current density  𝑗𝑍
𝐴𝐵  is only 8.9% of the original when ℎ = 2𝑏 . In practice,  

an empirical Equation (7) can be helpful for determining the depth, 𝑑: 

𝑑 = λ𝑏, λ ∈ [1 3, 1 2⁄⁄ ] (7) 

Herein, λ is the depth calibration factor. It is suggested that a lesser value of λ could be suitable for 

the measurements in shallower regions where the current density is intensive. Correspondingly, as the 

survey depth increases, a larger value λ can be a sensible choice. 

 

Figure 3. (a) Vector decomposition of current density in vertical direction; (b) Variations 

of current density with depth, as ℎ/𝑏 virtually depends on 𝑗𝑍
𝐴𝐵 𝑗0

𝐴𝐵⁄ . 

3.3. Impact of Temperature and SOC on Resistivity 

The resistivity of any conductor not only depends on its material properties but also on the 

temperature. In a narrow temperature range, the resistivities of most metal conductors display a linear 

app:ds:theoretically
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change [26]. However, the internal material of a Li-ion cell is not composed of pure metallic elements 

but rather some complex material units, i.e., organic electrolyte, electrodes, SEI, etc. Therefore,  

the assumption of whether the linear relationship is still suitable for the Li-ion cell still needs to be 

validated in ERT. 

Somehow the various materials and temperatures have a significant dependence on the cell’s SOC [27], 

as reported in the literature [28–30]. The properties of the anode are affected prominently [28];  

the internal resistance and capacity also display significant changes [29]. Moreover the electrolyte 

concentrations would suffer from a strong effect [30]. Consequently, it is essential to investigate the 

impact of temperature and SOC on the apparent resistivity simultaneously in experiments.  

The experimental setup will be described in the next section, followed by a comprehensive discussion 

of the research results. 

4. Experiments 

4.1. Materials and Equipment 

In order to build a stable electric field, two main challenges should be addressed. Firstly the required 

battery shell in ERT test has to be non-insulated. Thus, two jelly-roll types of commercial steel shell 

Li-ion cells were tested in this paper, a 10 Ah Phylion IFP16/65/126(10) PAP and a 4.5 Ah Phylion 

IFP11/65/124(4.5) PAP. Detailed information can be found in Figure 4 and Table 1. Secondly, the 

conductivity of the electrode must be larger than that of the steel shell. Therefore, red copper has been 

chosen in the experiment for the electrode material, allowing for its economical and practical advantages. 

 

Figure 4. Schematic diagram of the internal cell structure of the batteries used in the 

experiments. As the battery is symmetrical, the figure only shows half of the structure.  

The other half has the same conditions, except the current collector (Al for cathode). 

As described in Section 3.1, the four-point Schlumberger configuration was applied in the 

experiments described below. Allowing for the cell size, the multi-electrode resistivity array consists of 
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several round red copper electrodes (5 mm diameter by 0.5 mm thickness). For the 10 Ah battery cell 

in Figure 5, 12 electrodes were arrayed on the narrow side A of 16 mm width by 126 mm length,  

and the spacing of two adjacent electrodes remained at 10 mm. According to Section 3.2, the survey 

depth can reach 25 mm at most. In order to increase the survey depth and ensure the survey integrity, 

another 12 electrodes were arrayed on the other narrow side B in the same way. Then as for another 

4.5 Ah battery cell, there were only 7 electrodes arrayed on the side A with 17 mm spacing. 

Table 1. Specifications of the investigated Li-ion cells. 

Cell Brand Phylion Geometrical Cell Type Square 

Cathode material LiFeMnO4 Nominal Capacity (Ah) 10(4.5) 

Anode material Graphite Length (mm) 65 

Shell material Steel Width (mm) 16(11) 

Shell resistivity (ohm·m) 5 × 10−7 Height (mm) 126(124) 

Separator material Polypropylene Nominal voltage (V) 4.2 

 

Figure 5. Experimental set-up to apply a multi-electrode resistivity probe on the used  

10 Ah cell connected by shield cables. Surface temperatures on top and bottom of the cell 

are measured with thermocouples type K from the temperature-inspecting instrument.  

The local temperatures for blocks 3, 7 and 9 are determined in Section 5.4. 

The experiment platform mainly consists of four parts: ERT acquisition system, climate chamber, 

temperature inspecting instrument and upper computer. The independently developed ERT acquisition 

system connects the copper electrodes via the shield cables to perform the apparent resistivity 

measurements. To avoid the electrochemical reaction on the copper electrodes, a current excitation 

signal can effectively eliminate the influence of contact resistance [31]. A bi-directional pulse current [32] 

of 2 mA amplitude with 1 ns polarity switching time was chosen. All experiments were carried out 

inside an Espec QW1070P6W15 climate chamber with volume at 1 m3 (Espec Corp., Tokyo, Japan).  

It provided a defined thermal environment for the cell itself as described in Tables 2 and 3. To estimate 

the hold time at certain temperature in the chamber, a Yokogawa MV2000 temperature-inspecting 
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instrument (Yokogawa Electric Corp., Tokyo, Japan) was applied to measure the cell surface temperature 

via two thermocouples (type K). After the measured surface temperature reached the setting 

temperature, a period of 0.5 h would be allowed for temperature equilibration inside the Li-ion cell. 

Finally, subsequent data processing and image reconstruction can be achieved further by the upper 

computer, where 2D and 3D geo-electrical imaging software Res2dinv distributed by Geotomo Software 

(Penang, Malaysia) can accomplish the function of image reconstruction. 

4.2. Feasibility Analysis 

In order to validate the feasibility of ERT method, preparatory work was carried out on side A of a 

10 Ah battery. Repetitive measurements were performed at three different temperatures, namely 0, 25 

and 50 °C. Since not all the resistivity values were reproduced here, one representative set of data was 

chosen for analysis, and three inversion images of resistivity distribution were reconstructed by the 

upper computer. As shown in Figure 6, a significant discrepancy of color ribbons can be found in the 

same region of the three images. This indicates that the temperature has a great influence on internal 

cell resistivity and local temperature can be further determined by resistivity. Therefore, the dependence 

of the resistivity on temperature needs to be investigated by future experiments. 

 

Figure 6. Inversion images of the observed apparent resistivity for side A on 10 Ah battery 

under three different temperatures (a) 0 °C; (b) 25 °C; and (c) 50 °C. The images reflect 

the changes of resistivity pseudosection with temperatures. 

4.3. Experimental Method 

To investigate the relationship among the resistivity, the local cell temperature, and the SOC,  

the entire process was divided into three independent experiments. In addition, repetitive measurements 

were carried out in each experiment. 
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4.3.1. Effect of Homogeneous Temperature on Resistivity 

At first, the resistivity was measured with a homogeneous temperature distribution. In order to 

check the reproducibility, the entire procedure was independently carried out on two cells with 

different capacity, a 10 Ah cell at SOC of 5% and a 4.5 Ah cell at SOC of 100%. The climate chamber 

adjusted the temperature stepwise from −20 to 80 °C according to Table 2. ∆T is the difference of two 

adjacent temperature adjusted by the climate chamber. Resistivity measurements were performed at each 

temperature after equilibrium time. When the surface temperature reached a setting value monitored 

with calibrated thermocouples (K type) from the temperature inspection instrument, the cell stepped into 

the temperature equilibration period. After this period of time, resistivity measurements were performed 

on sides A and B independently (only side A for the 4.5 Ah cell). 

Table 2. Inhomogeneous temperature distribution. 

∆T (K) - 10 10 10 5 5 5 5 5 5 5 5 10 10 10 

T (°C) −20 −10 0 10 15 20 25 30 35 40 45 50 60 70 80 

4.3.2. Effect of SOC on Resistivity 

In this experiment, the effect of SOC on resistivity was investigated on 4.5 Ah battery cell.  

All resistivity measurements were implemented on the same battery cell to eliminate interference resulted 

from individual difference. The state of SOC was set from 90% to 10% with a decrement of 20% by 

DC discharge, and at each SOC the climate chamber adjusted the temperature, respectively, to three 

temperatures 0, 25 and 50 °C. After the temperature equilibration period, the resistivity was measured. 

This work facilitates the evaluation of the dependence of the resistivity on SOC. 

4.3.3. Effect of Transient Temperature on Resistivity 

Finally, the development of the internal temperature during a cool down process was investigated 

on the 10 Ah cell at a 100% charge. The number of electrodes decreased to eight to ensure the stability 

of resistivity, according to Section 5.1. During this experiment the surface temperatures were 

determined with type K thermocouples at three different positions (see Figure 5), corresponding to 

blocks 3, 7 and 9 at different levels. The chamber temperature 𝑇𝑎𝑚𝑏 was set to 0 °C and a constant 

electronic load was imposed on the 10 Ah cell with a larger discharge current at an amplitude of 20 A. 

After half an hour, the cell surface temperature reached the thermal steady state with a temperature of 

approximately 42 °C and the SOC of the cell reduced to nearly 10% of full charge. To simulate the real 

cool process, the climate chamber was switched off after discharge, and the resistivity measurements 

were promptly performed at periodic intervals. The surface temperature Tsurf was recorded  

by thermocouple. 

5. Results and Discussion 

The conducted experiments focus on the correlation among the local temperature T, SOC and the 

apparent resistivity ρ for the steel shell Li-ion cells. In addition, the analyses of the two different cells 

helps to validate the relation as proposed below, and further reinforce the link between ρ and 𝑇. 
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5.1. Effect of Constant Temperature on Resistivity 

Just as shown in Figure 2, the resistivity values of 25 blocks in five levels were measured for the  

10 Ah cell. Not all the resistivity values are reproduced here. One representative set of data for each 

level in sides A and B is shown in Figures 7 and 8. It is evident from the data of side A in Figure 7 that 

the temperature (x-axis) greatly impacted the resistivity (y-axis). In addition, the variations of 

resistivity value with temperature were similar for all 25 blocks. As to the side B in Figure 8, it is seen 

that the dependence of the resistivity on temperature is also similar to the side A. Except for levels 4 

and 5, the values of the resistivity in side B are slightly smaller. One possible reason is the 

concentration difference of the internal ionic conducting liquid. However, this doesn’t affect the main 

trend. Thus, the linear relation assumed in Section 3.3 is adequately refuted by the nonlinear growth 

relationship between the resistivity and temperature seen in Figures 7 and 8. 

 

Figure 7. Variations of block resistivity ρ with temperature 𝑇 in side A for 10 Ah cell  

with SOC of 5%. All data in the graphs are the average of ten independent measurements. 

The dotted lines are the logistical fit to the representative blocks discussed in Section 5.2. 
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Figure 8. Variations of block resistivity ρ with temperature 𝑇 on side B of 10 Ah cell with 

SOC of 5%. All data in the graphs are the average of ten independent measurements.  

Some unstable data regions are magnified for discussion in the graphs. The dotted lines are 

the logistical fit of all the representative blocks discussed in Section 5.2. 

To better analyze the experiment’s results, the entire temperature range is divided into three 

sections: dormant region (−20–0 °C), exponential region (0–50 °C) and exhausted region (50–80 °C).  

In the first dormant region, the resistivity value seems to have a weak correlation with temperature. 

The same results have been achieved in repeated measurements. This indicates that low temperature 

environments reduce the performance of the materials inside a cell [33], which produces an 

inconspicuous variation in resistivity. Then, in the exponential region (0–50 °C), the material activity is 

revived as the temperature gradually rises. Here, we believe that the required performance of most  

Li-ion cells can be achieved, and a suitable temperature environment will benefit the health of a battery 

cell. Finally, in the exhausted region (50–80 °C), higher temperatures abruptly hinder the rise of the 

resistivity. In this serious situation, it seems easy to cause the breakdown of a battery cell: changes in 

app:ds:temperature
app:ds:environment
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the properties of the anode occur at temperatures well below 55 °C [34] and the surface film on the 

graphite in contact with electrolyte indicates that reactions occur at temperature as low as 60 °C [35]. 

However, due to the proprietary aspects of these two commercial products, this information was not 

available for our experiments. 

Note that both in the dormant region (−20–0 °C) and the exhausted region (50–80 °C), the 

resistivity value changes slightly but unsteadily. Especially for the side B in Figure 8, some amplified 

details of the data distributions in these two regions have described the unstable circumstance. At this 

point, it is generally hard to distinguish the local temperature via the block resistivity. The main cause 

lies in the extreme temperature environment, which has a great influence on the material properties [33]. 

Additionally, by comparing other blocks in Figure 8, the resistivity values of block 9 drift greatly at 

low temperatures. While the baseline of the curve shifts, there isn’t a corresponding shift in the high 

temperature behavior, lining up with the other data. As block 9 is too close to the edge and corner of 

the cell, we preliminarily consider this result may be attributed to material conditions to a large degree, 

such as lower electrolyte concentrations, which show a poor low temperature characteristic. 

The instabilities and variances discussed above are indicators for the good reproducibility of the 

ERT method according to the influence of measurement errors and environment system errors. However, 

two main questions need to be resolved in this experiment. One is whether the relationship between the 

block resistivity and the temperature is consistent in other cells with different capacity. Another is how 

to improve the stability of resistivity data. Thus, another 4.5 Ah battery cell was examined only on side A, 

and we tentatively decreased the number of electrodes to seven. Figure 9 shows the scatter plot of the 

resistivity versus the temperature and provides key clues to answer these questions. 

 

Figure 9. Variations of block resistivity ρ with temperature 𝑇 on side A of 4.5 Ah cell with 

nearly SOC of 100%. All data in the graphs are the average of ten independent 

measurements. The dotted lines are the logistical fit to the representative blocks discussed 

in Section 5.2. 

Firstly it is obvious that similar correlations do exist in the 4.5 Ah cell at the same temperatures  

(−20–80 °C), so it can be concluded that a unique correlation between the temperature and the 

resistivity exists at least in all cells of the same type. Secondly, it has also been found that the apparent 

resistivity data becomes more stable as the number of electrodes decreases to seven, especially in the 

dormant region (−20–0 °C) and the exhausted region (50–80 °C). According to Equation (7),  

the survey depth reaches 17 mm with only six blocks in two levels, 41.2% deeper than that in the first 
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two levels in a 10 Ah cell, which means the block size is amplified. In other words, it is implied that 

the data sensitivity can be improved at the cost of decreasing the local temperature resolution. 

So far, the correlation between the temperature and the resistivity has been confirmed by the  

two experiments. Then the next task is to evaluate this relationship using a suitable fitting equation,  

as will be demonstrated in the next section. 

5.2. Determination of Local Cell Temperature 

In Section 3.3, it has been shown that the apparent resistivity ρ not only depends on the material 

properties but also temperature. In a small temperature range, the resistivity of most metal conductors 

can be deduced by a linear equation (Equation (8)): 

ρ = ρ𝑡(1 + β𝑇𝐶) (8) 

where 𝑇𝐶 is the current temperature, and ρ𝑡 presents the resistivity value at 0 °C, and β denotes the 

temperature coefficient of resistivity. Although Equation (8) is unsuitable to derive the temperature 

with the resistivity value in Figures 7–9, it is found that the dependence of the resistivity on 

temperature is approximated with a conventional logistical behavior of (see Figure 10): 

𝐿(𝑥) = 𝐴2 +
𝐴1−𝐴2

1+(
𝑥

𝑥0
)
α 

(9) 

with 𝐴1, 𝐴2, 𝑥0 and α being constant coefficients. 

 

Figure 10. The simplified curve of the logistical fit function 𝐿(𝑥). The parameters have 

been defined as constant values in the graph. 

Considering the correlations between the resistivity and the temperature in the two battery cells 

have a high resemblance, several representative blocks from each level (see Figures 7–9) are chosen to 

fit in the light of Tables 3 and 4. Furthermore, the modified Equation (10) is used for fitting the block 

resistivity, where ρ(𝑇) is plotted versus the temperature T (−20–80 °C): 

ρ(𝑇) = ρmax +
ρmin−ρmax

1+(
𝑇+20

𝑇0
)
α  

(10) 
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where ρmax and ρmin are the maximum and minimum values of the measured resistivities, and 𝑇0 and 

α are the fitted parameters. Tables 3 and 4 show the values of these parameters. By comparing the 

fitting results of each block, a good relevancy can be seen with the fitting correlation coefficient 𝑅2 

above 0.97. 

Table 3. Fitted parameters of representative blocks of sides A and B on 10 Ah cell. 

Cell Type 10 Ah 

Side A B 

Block 5 10 19 22 25 1 11 20 23 25 

ρmax 0.1513 0.4650 0.9110 1.5280 2.2893 0.1517 0.459 0.9105 1.4741 2.2751 

ρmin 0.1332 0.4015 0.8460 1.4607 2.1404 0.1324 0.3996 0.8420 1.3938 2.0783 

T0 45 40 40 43 45 40 42 49 42 48 

α 6.5 6.4 6.5 6.8 8.0 6.0 8.0 7.0 6.0 6.0 

Table 4. Fitted parameters of representative blocks of side A on 4.5 Ah cell. 

Cell Type 4.5 Ah 

Side A 

Block 2 6 

ρmax 0.2562 0.7630 

ρmin 0.2376 0.7150 

T0 40 44 

α 6.5 9.0 

In general, a unified equation can be established based on the discussion on the physical definition 

of the four fitted parameters. A2 and A1 in Figure 10 indicate that the parameters ρmax and ρmin can be, 

respectively, defined as the resistivity value at the highest and lowest temperatures, which represent 

the extensibility of the cell material resistivity. Considering that the coefficient T0 is defined as a 

saturation value in species and shows a range from 40 to 50 in Tables 3 and 4, the range can be further 

defined as a critical temperature region with the growth rate of the resistivity slowing down rapidly at the 

temperatures between 40 and 50 °C (see Figures 7–9). Therefore, T0 is regarded as the specific critical 

temperature varying in different cells. Moreover, Figure 11a implies that the saturation characteristic 

of material resistivity versus temperature can be determined by the critical temperature T0. Thus, it is 

concluded that the higher T0 value the battery has, the better performance it will have. The final 

parameter α also plays a critical role in Equation (10). Just as described in Figure 11b, the steeper trend 

of the resistivity can be determined by the larger α value in the exponential region, approaching a 

vertical line when α = 10 or more. Consequently, the α can be defined as the growth factor of 

resistivity, determining the variation width of resistivity in x-axis direction. 

As discussed above, the larger span between ρmax  and ρmin , the greater 𝑇0  and the smaller α 

indicate an optimum condition of the resistivity versus temperature characteristic for Li-ion cells and a 

low damage probability resulting from thermal shock. This is a great, meaningful finding for ensuring 

security and prolonging the service life for Li-ion cells. Furthermore, by comparing the resistivity 

values of all blocks in the same levels (all in Figures 7–9), no significant discrepancy can be seen.  

For all data, ρmin and ρmax can be simplified as: 
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where 𝐴𝑖
𝑗
 and 𝐵𝑖

𝑗
 represent the resistivity value of block 𝑖 in level 𝑗 at 0 and 50 °C, respectively. Using 

the algebraic mean value of the block resistivities in the same level can be a valid substitute for these 

two parameters. However, a remarkable discrepancy of the resistivity values among different levels is 

observed. Nevertheless, according to the definition of the geometrical factor 𝐺  in Equation (1),  

an implicit similar relation exists in Equation (12): 

{
𝐴𝑗 =

1

2
𝑗(𝑗 + 1)𝐴1

𝐵𝑗 =
1

2
𝑗(𝑗 + 1)𝐵0

 (12) 

 

Figure 11. (a) Comparative analysis of T0 at different values; (b) Comparative analysis of 

α at different values. The values are selected from Tables 3 and 4. The logistical fit line of 

the block 25 in Figure 7 is chosen as the reference line. 

Therefore, ρmax and ρmin in different levels can be determined uniformly by Equations (11) and (12). 

Considering the complex structure inside Li-ion cells, currently there is no valid evaluation for 𝑇0 and 

α, but a measured range has been achieved, namely 𝑇0 ∈ (40, 50), α ∈ (6, 10). Additionally within 

the temperature range from 0 to 50 °C, the local temperature could be more recognizable. So the 

dependence of the resistivity on the temperature (0–50 °C) will be utilized in the presented method to 

determine the local cell temperature using the inverse function (13) in ERT: 

𝑇 = 𝑓−1(ρ, 𝑗) = T0 (
ρ−𝐴𝑗

𝐵𝑗−ρ
)
1/α

 (13) 

Note that Equation (13) is developed for the first time through a careful and painstaking analysis.  

The parameters are interpreted physically and the improved logistical approach already describes the 

measurement results accurately in temperature range from 0 to 50 °C. As HEV/EV cell packs usually 

operate at a higher temperature than 50 °C, the challenging improvements on accuracy of this method 

in extreme temperature will have to be the subject of future work, and further applications in onboard 

equipment will be a key trend. 
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5.3. Effect of SOC on Resistivity 

At different SOCs, the concentrations of Li+ and electrolyte vary significantly. This is quantified by 

the resistivities using the 4.5 Ah cell as an example in Figure 12, where the ρ is plotted versus the SOC 

for varying temperatures. The colored lines are fitted by the attenuation index function (14): 

ρ = ρ𝑠 + 𝑐𝑒
−𝑠/𝑡 (14) 

where ρs is the measured resistivity value when SOC 𝑠 = 0, 𝑐 and 𝑡 are the fitted coefficients. Figure 12 

illustrates the correlation between the SOC and the resistivity at 0, 25 and 50 °C. Without exceptions at 

a certain constant temperature, the resistivity decreases with the increase of SOC. Meanwhile,  

affected by three different temperatures, the spans of the characteristic SOC-ρ curves are obvious.  

As the temperature rises up, the SOC-ρ curve is more like a straight line, which means a weak 

correlation exists between SOC and ρ at higher temperatures. 

More specifically, by comparing the downward trend of all SOC-ρ  curves at the first level, no 

significant discrepancy can be seen except the effect of temperatures. Similarly, the resistivity at level 2 

also has a slow and linear downtrend in the SOC ranging from 0% to 70%. However, in contrast, when 

the SOC is higher than 70%, the resistivities reduce substantially, especially at 50 °C or higher.  

We believe that two main factors determine this difference, namely the investigated depth and the 

material characteristic in corresponding level. In the superficial layer, the concentrations of Li+ and 

electrolyte are relatively low and the influence of SOC and temperature on resistivity will be not 

notable. As the depth increases, the distribution of electrolyte is homogeneous, but the state of Li+ will 

change due to the cell charge and discharge process. Therefore, at a constant temperature, the effect of 

SOC on resistivity will be enhanced prominently in deeper or central regions of the cell body. 

Here, block 2 and block 6 in different depths of the 4.5 Ah cell have been chosen to further analyze 

the effects of SOC in Figure 13. The lines depict the logistic fit according to Equation (10). Here the 𝑇0 

and α values remain at SOC of 100% fitted in Tables 3 and 4, the ρmax and ρmin are the resistivity 

values at 0 and 50 °C, respectively, varying with the different SOCs. 

Throughout there is no obvious intersection among those five characteristic ρ-SOC curves, which 

means that the SOC generates a vertical drift effect on the ρ-𝑇 curves in Figures 7–9. As shown in  

Figure 13a, the ρ-SOC curves for the block 2 at different SOCs drift slightly and evenly, and the 

maximum offset is only 0.00246 ohm·m at a temperature of 0 °C. In contrast, a drastic drift exists in 

the curves of block 6 (see Figure 13b), where the maximum span reaches 0.01927 ohm·m at 0 °C while 

0.00402 ohm·m at 50 °C. Furthermore, the drift increases when the temperature decreases in accordance 

with Equation (14). 

Furthermore, Figure 13b also illustrates that the effects of the SOC on resistivity at lower 

temperatures will be stronger than that at higher temperatures. In addition, those prominent effects 

only exist in the SOC ranging from 70% to 100%. In general, at least at 80% operating range is 

typically used for Li-ion batteries and high-energy applications push that even higher. Therefore, the 

SOC factor should be considered necessarily if the cell local temperature distribution is obtained from 

the method as described. Here, two levels of the cell have been studied in this experiment. If the 

method is to be applied in practice, it is necessary to perform complete experiments in follow-up 

works, e.g., three-dimensional resistivity measurements on broad side of the cell to learn more about 
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the effects in deeper regions. Even so, the local temperatures for the investigated regions in 

experiments can still be determined according to the Equations (13) and (14). 

 

Figure 12. Variations of apparent resistivity ρ with SOC 𝑠 in side A of 4.5 Ah battery. 

Each block in graph is the average of ten independent measurements made at 0, 25 and 50 °C. 

The dotted lines are the exponential decay fit to all the blocks. 
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Figure 13. Modified logistical plot of apparent resistivity for a 4.5 Ah battery considering 

the effect of different SOCs. (a) The logistical curves of the block 2; (b) the logistical 

curves of the block 6. The two blocks are chosen in Figure 9 as the reference lines,  

the other four logistical curves for the two blocks are deduced with different ρmax and ρmin 

at 10%, 50%, 70%, and 90% SOCs. 

5.4. Effect of Transient Temperature on Resistivity 

Resistivity measurements performed in electrochemical equilibrium are commonly suggested, 

which is similar to the impedance measurement described in Ref. [15]. Meanwhile, resistivity 

measurements under an active load are also allowed in operation. However, a built-in electric field will 

emerge inside the cell during charge and discharge. This will cripple the imposed electric field 

intensity produced by the bi-directional pulse current signal, and the measurement quality of the 

resistivity will decrease. Hence, we first concentrate on the influence of the temperature transient on ρ as 

proof of principle: local temperature, determined as introduced above, is compared with external 

measurements during a cool down of a previously heated cell. 

As described in Section 5.1, decreasing the number of electrodes does improve the stability of the 

resistivity data, and only eight electrodes are left on the 10 Ah cell in Figure 5. Based on the results,  

a total of three levels and nine blocks can be obtained according to Section 3.1. The cell operates with  

a 20 A discharge current, and finally the SOC only remains at 10% of full charge. After switching off 

the electronic load and climate chamber, the resistivity is directly and repeatedly measured for five 

minutes during the thermal relaxation phase. From these measured resistivity data, the local 

temperatures inside the cell are determined under the effect of SOC as demonstrated. Here, the local 

temperatures of three blocks in different levels (see Figure 5) are chosen to compare with the measured 

surface temperature 𝑇𝑠𝑢𝑟𝑓 from the temperature sensors versus time in Figure 14. 

As shown in Figure 14, the measured values 𝑇𝑠𝑢𝑟𝑓 drop down normally but do not coincide with the 

calculated values in the beginning. Meanwhile, three local temperature values determined by resistivity 

are also not equal to each other. For the block 9 in the third level, the temperature reaches 47.6 °C,  

at its highest. The next lower temperature represents the block 7 at 46.5 °C. The block 3 in superficial 

layer is another 0.9 K below this temperature. It is clear that three levels only occupy, at most, 30% of 

the cell regions according to Section 3.2. However, the temperature difference reaches to 2 K in this 

regions and it may be greater in deeper regions. In addition, the measured surface temperature of the 

cell is 42.7 °C at the lowest. The difference between the surface temperature and local cell temperature 
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is 4.9 K or more in deeper regions. To some degree, this is approximate to the results from a similar 

experiment conducted by Schmidt [15]. However, the local temperature measurements instead of the 

whole mean internal cell temperature measurements will be more meaningful in the future, as already 

described in the Introduction. 

 

Figure 14. Measured temperatures after switching off the electronic load for thermal relaxation 

of the cell in an initial ambient temperature of 0 °C, for three measurement positions of the 

different local temperatures referred to in Figure 5. 

On the other hand, the ambient temperature 𝑇𝑎𝑚𝑏 rises up gradually under a continuous thermal  

shock in Figure 14. After some time, the whole space and the battery cell reach a thermal equilibrium 

state at nearly 10 °C. In other words, a large amount of heat, emanating from the 10 Ah cell at almost  

48 °C, spontaneously heats an enclosed space from 0 to 10 °C. This effect will be strengthened for 

Hybrid Energy Vehicle (HEV/EV) battery packs, which are usually assembled in a narrow space and 

operate at a high temperature. In reality, however, it is difficult to reach a heat balance between the 

packs and the environment under charge and discharge. As a result, the cell internal temperature 

distribution will become more complex inside the packs, which may cause a series of thermal safety 

problems. This further underlines the importance of local temperature measurements. 

In summary, the preliminary evaluation of the resistivity measurements in ERT based on local cell 

temperature distribution has been demonstrated above. However, applications of this method under  

an active load in thermal environment need to be addressed in follow-up study. 

6. Conclusions and Future Work 

This article aims to measure the local temperature inside battery cells by investigating the 

dependence of resistivity on temperature and SOC. A non-destructive evaluation method using 

Electrical Resistance Tomography technology was proposed in the battery field. The method was 

experimentally demonstrated on two steel shell Li-ion battery cells with different capacities  

(10 and 4.5 Ah), and the four-point Schlumberger configuration was applied in three experiments. 

This work demonstrates that the measured resistivities for different blocks in all levels of the two cells 

correlate well with the local cell temperature. A lesser number of electrodes can enhance the stability 

of resistivity data but decrease the sensitivity of the method, accordingly. By contrast, all ρ-𝑇 curves 

show a similar rise-up trend from 0 to 50 °C, and there is no obvious difference at low or high 
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temperatures. Moreover, the correlation between ρ and 𝑇 (0–50 °C) defined by the logistic fit can be used 

to determine the local temperature. 

Furthermore, the SOC was considered as the second factor. The test results from the 4.5 Ah cell 

indicate that the SOC has a strong effect on resistivity. All ρ values have an approximate linear decay 

as the SOC increases from 0% to 70%. Meanwhile, the shift downward of resistivity in deeper levels is 

more marked than that in superficial levels in the SOC: 70%–100% range, especially at low temperatures. 

The proposed method is capable of monitoring the local cell temperature during a cool down process. 

For 10 Ah cell, the local cell temperatures deviate significantly (in this experimental study 4.9 K for  

only 30% regions) from the surface temperature measured by external sensors. More importantly, the 

temperatures of some local areas inside the cell do present an obvious difference of 2 K in experiments. 

So far, the proposed method can be realized for other cell sizes by changing the number of probes 

and the spacing of adjacent electrodes. Moreover, a miniature sensor is quite possible and is the goal of 

our future work. Meanwhile, the application of ERT method is only suitable for cells with metal shells, 

such as steel and aluminum. For the cell with non-conductive surfaces, such as the polymer lithium 

battery, another similar method of Electrical Capacitance Tomography (ECT) technique is being 

studied in our groups, which focuses on the correlation between the capacitance and the internal cell 

temperature. In a word, the ERT can be described as a potential and valuable method for local 

temperature monitoring especially for large-sized battery cell. As the study of ERT technique 

progressing, a three-dimensional temperature field image for battery cell packs will be developed in 

the on-board equipment in the near future. 
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