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Abstract: It is well known that the methane hydrate dissociation process may lead to 

unstable behavior such as large ground deformations, uncontrollable gas production, etc.  

A linear instability analysis was performed in order to investigate which variables have a 

significant effect on the onset of the instability behavior of methane hydrate-bearing soils 

subjected to dissociation. In the analysis a simplified viscoplastic constitutive equation is 

used for the soil sediment. The stability analysis shows that the onset of instability of the 

material system mainly depends on the strain hardening-softening parameter, the degree of 

strain, and the permeability for water and gas. Then, we conducted a numerical analysis of 

gas hydrate-bearing soil considering hydrate dissociation in order to investigate the effect  

of the parameters on the system. The simulation method used in the present study can 

describe the chemo-thermo-mechanically coupled behaviors such as phase changes from 

hydrates to water and gas, temperature changes and ground deformation. From the numerical 

results, we found that basically the larger the permeability for water and gas is, the more 

stable the simulation results are. These results are consistent with those obtained from the 

linear stability analysis. 
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1. Introduction 

Recently, methane hydrates (MHs) have been viewed as a potential energy resource since a large 

amount of methane gas is trapped within ocean sediments and permafrost regions. A unit volume of 

methane hydrate dissociates into approximately 160–170 times the volume (at 0 °C and 1 atmosphere) 

of methane gas. However, we do not have enough knowledge about the behaviors of sediments caused 

by dissociation of hydrates in the ground. Some researchers have pointed out that gas hydrates may be a 

trigger of submarine geohazards which could impact global climate change. 

Kvenvolden [1] presented several examples of a possible connection between gas hydrate dissociation 

and submarine slides, and slump surfaces were recognized. Many of these slides are on gentle slopes 

which should be stable. Other authors have also reported that gas hydrates, mostly methane hydrates, 

might affect submarine slides due to dissociation [2–4]. Submarine landslides can be caused by an 

increase in applied shear stress or a reduction in the strength of the soil. When gas hydrates form in 

sediments, the pore spaces are occupied by the solid phase of gas hydrates, although the gas hydrates 

themselves can act as a cementation (bonding) agent between soil particles. The reduction in hydrostatic 

pressure of the hydrate reservoir, or increases in the temperature of the reservoir leads to the dissociation 

of the gas hydrates. The solid phase of the gas hydrates is lost and the hydrates change into the fluid 

phase, i.e., water and gas. When this released fluid pressure is trapped inside an area of low permeability, 

the effective stress, which is one of the factors of describing strength of the sediments, should be reduced 

and slope failure can be triggered, resulting in submarine landslides. The submarine landslides may lead 

to even worse situation, for example, cutting submarine cables, and tsunami disasters. Figure 1 shows a 

schematic view of possible hazards in marine sediments induced by gas hydrate dissociation.  

 

Figure 1. Schematic view of possible hazards in marine sediments induced by gas  

hydrates dissociation. 

Slope failure in marine sediments can cause enormous turbidity current, and it may generate a 

tsunami. The tsunami produced by slope failure will hit coastal areas and offshore structures, and in the 

worst scenario, many people might be killed by a tsunami.  
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Many experimental and numerical studies have been conducted on the deformation behavior 

associated with methane hydrate dissociation [5–10]. Nevertheless, the behavior of methane  

hydrate-bearing soils during dissociation is still a subject of active research, and theoretical analyses to 

investigate the onset of instability, such as linear stability analyses, have not been performed.  

It has been well recognized that strain localization in soil materials is closely related to the onset of 

material failure. Slope failure is one of the typical strain localization problems in which deformation 

occurs in a narrow area. Rice [11] indicated that the phenomena of this problem can be treated in a 

general framework of bifurcation problems. Rice [11] also indicated the importance of the influences of 

pore fluid on the instability, and investigated the stability of fluid-saturated porous material in  

quasi-static conditions. Anand et al. [12], and Zbib and Aifantis [13] conducted linear perturbation 

stability analyses for the onset of shear localization. Loret and Harireche [14] investigated the 

acceleration waves in inelastic porous media, and Benallal and Comi [15] showed material instabilities 

in saturated material under a dynamic state using a perturbation stability analysis. Oka et al. [16] have 

been dealing with the strain localization problem of water-saturated clay through the use of viscoplastic 

constitutive equations because of the rate-dependent nature of cohesive soil. Higo et al. [17] have studied 

the effect of permeability and initial heterogeneity on the strain localization of water-saturated soil. 

Kimoto et al. [18] have performed a linear instability analysis on the thermo-hydro-mechanical coupled 

material system, and have indicated that strain softening and temperature softening are the main reasons 

for the material instability. Recently, Garcia et al. [19] have performed a linear stability analysis in order 

to investigate which variables have a significant effect on the onset of the instability of an unsaturated 

viscoplastic material subjected to water infiltration. They have found that the onset of the growing 

instability of the material system mainly depends on the specific moisture capacity, the suction and the 

hardening parameter.  

In a similar manner to the past researches, we regard the slope failure and submarine landslides as 

instability problems induced by gas hydrate dissociation. In the first part of the present study, we conduct 

a linear stability analysis to investigate the onset of instability during the dissociation process. Then,  

in second part, a series of numerical analysis has been conducted in order to confirm the effect of  

the parameters detected by the linear stability analysis on the material instability. Figure 2 shows an 

illustration of the stable and unstable regions of methane hydrate-bearing sediments with and without 

hydrate dissociation. We discuss which parameters or variables have a significant effect on the  

instability of methane hydrate-bearing materials when they are subjected to a dissociation process.  

In the linear stability analysis, we extend the method by Oka et al. [16], and Garcia et al. [19] to a  

chemo-thermo-mechanically coupled material considering hydrate dissociation.  
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Figure 2. Illustrative view of stable and unstable regions of methane hydrate-bearing 

sediments with and without dissociation. 

2. One-Dimensional Instability Analysis of Methane Hydrate Bearing Viscoplastic Material 

In this section, the linear stability analysis of methane hydrate-bearing soil considering dissociation 

is shown. We follow the method by Garcia et al. [19], and extend the method by considering the energy 

balance and hydrate reaction process(es) in order to deal with the dissociation phenomenon.  

The governing equations for the chemo-thermo-mechanically coupled behavior are based on  

Kimoto et al. [9], and a viscoplastic constitutive model is used for the soil skeleton. The details of the 

governing equations for the stability analysis are shown in the following sections. 

2.1. Governing Equations  

2.1.1. General Settings 

The multiphase material Ψ is composed of four phases, namely, soil (S), water (W), gas (G), and 

hydrates (H) which are continuously distributed throughout space:  

 α

α

ψ ψ α S W G H      (1) 

in which S is soil phase, W is water phase, G is gas phase and H is hydrate phase, respectively.  

For simplicity, we assume that hydrates move with soil particles, in other words, the solid phase,  

denoted as SH, is composed of soil and hydrates which exist around the soil particles. Total volume V is 

obtained from the sum of the partial volumes of the constituents, namely: 

 α
α

αV V S ,W ,G,H   (2) 

The water phase and gas phase are expressed as the fluid phase, and the total volume of fluids VF is 

given by: 

 γ
γ

γFV V W G    
(3) 

The volume fraction nα is defined as the local ratio of the volume element with respect to the total  

volume given by: 

Stable Unstable

With dissociation

Without dissociation
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 α αα

α

, 1 α , , ,
V

n n S W G H
V

   　　  (4)

The volume fraction of the void, n, is written as: 

 β

β

1 β , ,SSV V
n n n W G H

V


      (5)

The volume fraction of the fluid, Fn , is given by: 

F W G Hn n n n n      (6)

In addition, the fluid saturation is given by: 

 γγ γ

γ

1 γ
F

V
s s W G

V
      (7)

Hereafter, the water saturation sW will be denoted as s: 

W
W

F
F

V n
s

V n
   (8)

Density of each material ρα, and the total phase ρ is denoted by: 

 
α

α α α

αα

ρ , ρ ρ α , , ,
M

n S W G H
V

     (9)

in which Mα is the mass of each phase α. 

2.1.2. Stress Variables 

The stress variables are defined in the following one-dimensional form. Total stress σ is obtained 

from the sum of the partial stresses, namely: 

σ σ σ σ σS H W G      (10) 

where superscripts S, H, W, G indicate the soil, hydrate, water, and gas phases, respectively. The partial 

stresses for the fluid phases can be written as: 

σW W Wn P  , σG G Gn P   (11) 

where PW and PG are the pore water pressure and the pore gas pressure, respectively. Tension is positive 

for the stresses. For simplicity, we assume that the soil phase and the hydrate phase are in the same 

phase, namely, the solid phase. Thus, the partial stress of the solid phase is defined as: 

σ σSH SH Fn P   (12)

σ σSH SH Fn P  , SH S Hn n n   (13)

where σ  is called the skeleton stress in the present study; it acts on the solid phase and is used as the 

stress variable in the constitutive equation. The terms nS and nH are the volume fractions of the soil phase 

and the hydrate phase, respectively, and PF is the average fluid pressure given by: 

 1F W GP sP s P     (14)
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where s is the water saturation. Substituting Equations (11)–(14) into Equation (10), the skeleton stress 

is obtained as: 

σ σ FP    (15)

Terzaghi [20] defined the effective stress for water-saturated soil. In the case of unsaturated soil, 

however, the effective stress needs to be considered in order to include a third phase, namely, the gas 

phase which is considered to be compressible. In general, we need the suction in the unsaturated soil 

model. Hence, we do not use the name of the effective stress. In the present formulation, the skeleton 

stress tensor σ  is used; Jommi [21] defined it as the average soil skeleton stress. 

2.1.3. Conservation of Mass 

The conservation of mass for the soil, the water, the gas, and the hydrate phases are given by the 

following equations: 

   
α α

α α α αρ ρ 0  α   
D v

n n m S,W ,G,H
Dt x

 
   


 , (16)

in which αρ  is the material density for α phase, αv  is the velocity vector of each phase, and αm  is the 

mass-increasing rate per unit volume due to hydrate dissociation. αD Dt  denotes the material time 

derivative following particles of α  phase. Assuming that the densities of the soil, the water and the 
hydrate are constant, that is, ρ ρ ρ 0S W H     , where the superimposed dot denotes the material time 

derivative, Equation (16) yields: 

ρ ρ 0 
S

S S S S v
n n

x


 


  (17)

ρ ρ 0 
W

W W W W Wv
n n m

x


  


   (18)

ρ ρ ρ 0
G

G G G G G G Gv
n n n m

x


   


   (19)

ρ ρ 0 
H

H H H H Hv
n n m

x


  


   (20)

in which the mass-increasing rate for the soil phase is zero, i.e., 0Sm  . We assume that the soil particles 

and hydrates move together, namely:  

S H SHv v v   (21)

Under the small strain condition, the spatial gradient of velocity for the solid phase is equal to the  

strain rate: 

ε
S H SHv v v

x x x

  
  

  
  (22)

According to Equation (5), the volume fraction of soil phase Sn  should be equal to  1 n , and the 

time derivative of Sn  can be written as follows: 
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Sn n    (23)

Substituting Equations (5) and (23) into Equation (17) provides: 

 ρ 1 ρ ε 0 S Sn n     (24)

From Equations (7) and (8), the volume fractions for the water phase and gas phase can be  

expressed as: 

 , 1W F G Fn n s n n s    (25)

Considering Equation (25), the time derivative of Wn  and Gn  are given by the following equations: 

W F Fn n s n s     (26)

 1G F Fn n s n s      (27)

Substituting Equations (25)–(27) into Equations (18) and (19) gives: 

ρ ρ ρ 0 
W

F W F W F W Wv
n s n s n s m

x


   


    (28)

     1 ρ ρ 1 ρ 1 ρ 0
G

F G F G F G F G Gv
n s n s n s n s m

x


       


    (29)

Dividing both sides of Equation (20) by ρH , and rearranging the equation, we obtain: 

ε
ρ

H
H H

H

m
n n 

    (30)

The apparent velocities of the water and the gas, with respect to the solid phase, are defined as: 

   β β β βSHV n v v , W ,G    (31)

In order to describe the changes in gas density, the equation for ideal gas is used, i.e.: 

ρ
G

G MP

R
 , 

2

θ
ρ

θ θ

G G
G M P P

R

 
  

 


   (32)

where M is the molar mass of gas and θ is the temperature. Multiplying Equation (24) by  ρ ρW Ss , 

adding Equation (28), and considering Equation (31), the continuity equation for the water phase can be 

written as: 

ε 0
ρ ρ

W H W
F

H W

V m m
s sn s

x

 
       

    (33)

Similarly, multiplying Equation (24) by   1 ρ ρG Ss , adding Equation (29), and considering  

Equation (31): 

     θ
1 ε 1 1 0

θ ρ ρ

G G H G
F F

G H G

V P m m
s sn s n s

x P

   
              

     (34)

 



Energies 2015, 8 5388 

 

2.1.4. Balance of Momentum 

The one-dimensional equilibrium equation can be written as: 
σ σ

ρ ρ 0
FP

F F
x x x

  
    

  
  (35)

in which the acceleration term is disregarded. 

2.1.5. Darcy Type of Law 

For gas-water-solid three phase materials, we adopt a Darcy type of law for the water and gas phases 

that can be obtained from the balance of linear momentum for each phase as described below. The Darcy 

type law for the flows of the water and the gas can be described as follows: 

ρ
γ

W W
W W

W

k P
V F

x

 
    

, γ ρW W g  (36)

ρ
γ

G G
G G

G

k P
V F

x

 
    

, γ ρG G g
 

(37)

It should be noted that the above equations are only valid for creeping flow which has a small 

Reynolds number (Re). Some researchers have pointed it out that ground water flow can be treated as a 

laminar flow at Re < 1–10 [22,23]. In the case that the velocity becomes very high, especially for the gas 

flow, e.g., the Forchheimer law may describe the flow motion. 

2.1.6. Conservation of Energy 

In the present study, we consider heat conductivity and the heat sink rate as being associated with the 

hydrate dissociation. The one-dimensional equation of energy conservation is written as: 

 ρ θ σ ε Hh
c Q

x

    


  ,  α α α

α

ρ ρ αc n c , S ,W ,G,H   (38)

where c  is the specific heat of phase α , θ  is temperature for all phases, and HQ  is time rate of 

dissociation heat per unit volume due to the hydrate dissociation. 

 θ ,   56599 16 744H HN
Q a b a ,b .

V
   

  (39)

where HN  is dissociation rate of hydrates. Heat flux  follows Fourier’s law as: 

θ θ
h k

x


 


 (40)

in which θk  is the thermal conductivity for all phases. Substituting Equations (39) and (40) into  

Equation (38), and assuming that the term σ ε , which is related to the viscoplastic work, is very small 

and negligible, Equation (38) can be rewritten as: 

 
2

θ
2

1 θ
θ θ

ρ
HN

k a b
c x V

 
    

   (41)

h
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2.1.7. Dissociation Rate of Methane Hydrates 

Methane hydrates dissociate into water and methane gas according to the reaction expressed in 

Equation (42): 

4 2 4 2CH H O(hydrate) CH (gas)+ H O(water)n n   (42)

where n is a hydrate number and that is assumed to be equal to 5.75 in natural hydrates. For the methane 
hydrate dissociation rate HN , we use Kim-Bishnoi’s equation [24], namely: 

 
1 2

123 3
0

9400
exp , 5.85 10    

θ
e F

H H H H HN D P P N N D
       
 

  (43)

where NH is the moles of hydrates in the volume V, NH0 is the moles of hydrates in the initial state,  

PF is the average pore pressure and Pe is an equilibrium pressure at temperature θ. When the dissociation 
occurs, the dissociation rate is negative, i.e., 0HN  . The rates of generation of water and gas are  

given by: 

5 75W H G HN . N , N N      (44)

The increasing mass rates for hydrates and the water and the gas phases, required in Equations (33)  

and (34), can be obtained from the above equations: 

5 75H W GH W H GH H . N M N MN M
m , m , m

V V V
    

 
    (45)

where MH, MW, and MG are the molar mass of the methane hydrates, the water, and the methane  

gas, respectively. 

2.1.8. Simplified Viscoplastic Constitutive Model 

In the analysis, a simplified viscoplastic constitutive model is used. The stress-strain relation can be 

expressed as: 

σ ε μεH     (46)

where ε is the strain, ε  is the strain rate, H is the strain hardening-softening parameter and μ  is the 

viscoplastic parameter. We ignore the dependency of the hardening-softening parameter H  on the 

skeleton stress σ , namely, we assume that the strain hardening-softening parameter H  is a function of 
suction CP  and hydrate saturation H

rS  for simplicity. Viscoplastic parameter μ  is a function of the 

temperature θ . 

   μ μ θC H
rH H P ,S ,    (47)

Suction and the hydrate saturation are defined as: 

C G WP P P   (48)

H H
H
r v

V n
S

V n
   (49)

where vV  is the volume of void. 
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2.2. Perturbed Governing Equations  

Next, in order to estimate the instability of the material system, we consider the equilibrium equation, 

the continuity equation, the energy balance equation, the constitutive equations, and the equation of 

hydrate dissociation rate in a perturbed configuration. In Equations (33)–(35), (41), (43), and (46), the 

unknowns are pore water pressure WP , pore gas pressure GP , strain ε , temperature θ , and moles of 
hydrate HN . For each unknown, we suppose that: 

 

 

 

 

 

0

0

0

0

0

ε ε ε

θ θ θ

W W W

G G G

H HH

P P P

P P P

N N N

  

  
  


 


 











 (50)

where the first terms on right side in Equation (50) indicate the values which satisfy the governing 

equations and the second terms are the perturbations of each variable. For the perturbations, we assume 

the following periodic form: 

 ε θ ε θ exp ω
T TW G W* G* * * *

H HP , P , , , N , P , P , , , N t iqx      
     (51)

where q  is the wave number  2π :/ l , l wavelength , ω  is the rate of the fluctuation growth, and 

superscript  *  indicates the amplitude of each variable.  

Disregarding the changes in material density and considering the body force as constant, the 

perturbation of the equilibrium equation, Equation (35), is expressed by:  

σ σ
0

FP

x x x

  
  

  

 
 (52)

where the perturbed variables are indicated by a tilde. From Equation (46), the perturbation of the 

skeleton stress σ  can be written as: 

σ ε ε ε εH H            (53)

Since the strain hardening-softening parameter H is a function of the suction and the hydrate saturation, 

and the viscoplastic parameter µ is a function of temperature, the perturbations of H and µ are given as: 

C H C H
r PC SH rC H

r

H H
H P S H P H S

P S

 
   
 

     (54)

μ

μ
μ θ α θ

θ


  

   (55)

WGC PPP
~~~  , 

2 2
ε

H H H
H H
r HH

Mn n n
S n N

n n n V n
   
    (56)

The parameter H  increases with an increase in the suction CP ; consequently, the slope of the 
CH P  curve is positive, i.e., 0PCH  . Similarly, H  increases with an increase in hydrate saturation 
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H
rS , i.e., 0SHH  . On the other hand, viscoplastic parameter μ  decreases with an increase in the 

temperature  due to thermo-viscoplasticity; hence, μ θ   is negative. Consequently, the term 

 μα μ θ    in Equation (55) is positive. Using Equation (51), and Equations (53)–(56), and 

considering ε ωε  , we obtain a spatial gradient of perturbed skeleton stress as: 

 

* * * * *
μ2

σ
ε ε μω ε ε α εθ ε

ρ

exp ω

H
W G H

PC PC SH SH HH

Mn
H P H P H H H N

x n n V

iq t iqx

                 





 
 (57)

Similarly, the perturbation of average pore pressure FP
~

 can be written as 

 1F W W G GP sP sP s P sP         (58)

In Equation (58), the degree of water saturation , is a function of the suction CP ; the perturbation 

of the saturation is given as: 

C C
CC

s
s P B P

P


 


   (59)

where  C
C PsB   indicates the slope of the CPs   curve. Using Equations (51), (58), and (59), we 

have a gradient of the perturbed average pore pressure as: 

      1 exp ω
F

C W* C G*
C C

P
B P s P s B P P iq t iqx

x


     




 (60)

By substituting Equations (57) and (58) into Equation (52) and rearranging the terms, we obtain: 

   * *

* * *
μ2

ε ε 1

μω ε ε α εθ ε 0
ρ

C W C G
PC C PC C

H
H

SH SH HH

H B P s P H B P s P

Mn
H H H N

n n V

      

 
      
 


 (61)

In a similar manner to the perturbed equation of the equilibrium equation, the continuity equations  

of water and gas, Equations (33) and (34), can be rewritten in the perturbed configuration as follows: 

2 5 75
ω ω ω ω 0

γ ρ ρ

W
F W* F G* * *W H

c c HW W H

. M Mk
B n q P B n P s s N

V V


   
         

  
 (62)

   

   

* 2 * *

* *

1
ω ω 1 ωε

1
ωθ 1 ω 0

θ ρ ρ

F G
F W F G

c c G G

F
G H

HG H

s n k
B n P B n q P s

P

s n M M
s N

V V



             
  

     
 

 (63)

Considering Equations (41) and (51) gives the perturbation of the conservation of energy as follows: 

θ
2 * *θ

ω θ ω 0
ρ ρ H

k a b
q N

c cV

  
   

 
 (64)



s
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Since the dissociation rate of the methane hydrates is a function of temperature θ  , average pore 

pressure FP , and the moles of hydrate HN  the perturbation of the dissociation rate can be written as: 

θ θ
θ

F FH H H
H H N N N HF

H

N N N
N P N A B P C N

P N

  
      

  

         (65)

  
1 2

23 3
0

9400
exp 9400 9400 θ

θθ
e FH

N H H H

N
A D e P P N N

          


 (66)

1 2

3 3
0

9400
expH

N H H HF

N
B D N N

P 
       


 (67)

  
1

3
0

2 9400
exp

3 θ
e FH

N H H H
H

N
C D P P N N

N

         


 (68)

By substituting Equations (51) and (58) into Equation (65), we obtain: 

     1 θ ω 0C W* C G* * *
N C N C N N HB B P s P B B P s P A C N          (69)

Finally, we rewrite the perturbed governing equations, Equations (61)–(64), and (69), in matrix  

form as: 

    0y A   (70)

   

 

        

 

θ
2

μ2

2

2

θ
0 0 0 ω ω

ρ ρ

1 0 ω

ε ε 1 μω ε α ε ε

1 1
ω ω 1 ω ω 1 ω

γ θ

ω ω ω 0 ω
γ

C C
N C N C N N

H
C C H

PC C PC C SH SH

F FG
F F

C C G HG G

W
F F

C C W HW

k a b
q

c cV

B B P s B B P s A C

mn
H B P s H B P s H H H

n n

n s n sk
B n B n q s m s m

P

k
B n q B n s m sm

 
 


     

  
               

  
        
 

  


A











 
 
 
 
 
 



 

(71)

   ε θ
TW* G* * * *

Hy P ,P , , ,N  (72)

For nonzero values of the amplitude of the perturbations, that is, W*P , G*P , ε* , θ* , and *
HN  in 

Equation (70), the determinant of the matrix  A  has to be equal to zero. Under the condition that 

 det A , we have a polynomial function of ω  as: 

5 4 3 2
5 4 3 2 1 0 0a a a a a a           (73)

The details of coefficients  5~0iai  are noted in Appendix A. Note that in Equation (71) the sign 

for q , s , n , Fn , Hn , μ , μα , PCH , SHH , Wk , Gk , k , γW , γG , ρc , Wm , Gm , Hm , NA , NB , NC , a , 

b , CP , GP , θ , V  are always positive, whereas the sign for CB  and HN  is negative. The sign for strain 

  is positive in expansion and negative in compression, and strain rate ε  can be positive or negative. 

The srain softening-hardening parameter H  is positive in viscoplastic hardening and negative in 
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viscoplastic softening. Considering that the sign of each term and Equation (A.1), the sign of 5a  is 

always positive. 

2.3. Conditions of Onset of Material Instability 

In the following, we discuss the instability of the material system. If the growth rate of the 

perturbations ω , which is the root of Equation (73), has a positive real part, the perturbation diverges, 

and finally, the material system is unstable. On the contrary, if the real part of ω  is negative, the material 

system is stable. The necessary and sufficient conditions that the all roots have negative real parts are 

given by the Routh-Hurwitz criteria. The necessary and sufficient conditions whereby the all the roots 

have negative real parts are given by the Routh-Hurwitz criteria. When the coefficient of the highest 
order of ω  is positive, that is, 5 0a  , the necessary and sufficient conditions that all the roots have 

negative real parts are to satisfy all the equations from (i) to (iv) expressed below. 

(i) 0,0,0,0,0 43210  aaaaa 　　　　  (74)

(ii) 0
35

24
1 

aa

aa
D  (75)

(iii) 0

0 24

135

024

2 
aa

aaa

aaa

D  (76)

(iv) 0

0

0

0

0

135

024

135

024

3 

aaa

aaa

aaa

aaa

D  (77)

Let us discuss the first condition (i), because the material system might be unstable if at least one of 

the conditions described above is not satisfied. As for the other conditions (ii)–(iv), the coefficients are 

quite complicated as shown in Appendix A, and hence we discuss Equation (74). 

2.3.1. Sign for the Coefficients 5a  and 0a  

First, we will compare the sign of coefficients 5a  and 0a , because it is relatively easy to compare the 

sign. Considering the sign for the terms described above, 5a  is always positive: 

 
5

1
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F
F

C G

s n
a B n

P


      (78)

Hence, when 0a  becomes negative, the first conditions of Routh-Hurwitz criteria is not satisfied, 

namely, the material system may become unstable:  

6
0 2 2

0 0
H W G H

N SH SHW G

n k k k n
a C H H q H H

n c n

 
           

 (79)
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From Equation (79), the material stability depends on strain hardening-softening parameter H , SHH  

strain ε , and the volume fraction of void n  and hydrate Hn . We will consider two cases; the first case 

is the compressive strain ε 0  and the second is the expansive strain ε 0 . 

(A) ε 0 : compressive strain 

(1) When parameter H  is positive, that is, the viscoplastic hardening, the term in 0a  is always 

positive. The sign for 0a  always becomes positive: 

00 0 0,H a       (80)

(2) When the parameter H  is negative, that is, the viscoplastic softening, 0a  becomes negative, if it 

satisfies the following inequality: 

0

0 0
0

0H
SH r

,H
a

nH H S

  
 

  
  (81)

The material instability might occur even if it is viscoplastic hardening material.  

(B) ε 0 : expansive strain 

(3) When parameter H  is positive, that is, the viscoplastic hardening, the term in 0a becomes 

negative, if it satisfies the following inequality: 

0

0 0
0

0 H
SH r

,H
a

nH H S

  
 

  
 (82)

(4) When parameter H  is negative, that is, viscoplastic softening, the term 2ε H
SHH H n n  is 

always negative. Thus, the sign for 0a  is always negative. This may lead to the material 

instability, because it does not satisfy the first condition of the Routh-Hurwitz criteria:  

0

ε 0 0
0

0 ε H
SH r

,H
a

nH H S

 
 

 
 (83)

If there are no hydrates in the material, namely, 0H
rS   , 0a  can be written as: 

 6
0 0

W G
H

N rW G

k k k
a C H q , S

c



 
  

 (84)

The sign of the coefficients 0a  depends on only whether the material is viscoplastic hardening  

or softening. 
In general, the material system is likely to be stable when it is in the viscoplastic hardening  

regions [18,19]. Of course, conditions of the onset of the material instability depends on not only the 

sign for 5a  and 0a  but also the other coefficients. The main point of this analysis is that the material 

instability may occur even in the viscoplastic hardening regions, in the case of the expansive strain. In 

other words, the expansive strain will make the material system unstable.  
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2.3.2. Sign for the Coefficients 5a  and 4a  

Next, we will discuss the sign for 4a . Coefficient 4a  is given in Equation (A.2), and it can be regarded 

as a second order polynomial of the wave number q : 

2 0
4 4 2 4 0, ,a a q a q    (85)

 
    2

4,2

1 1F FG W
F F F

c c cG G W G

s n s nk k k
a B n B n B n q

P P c

                
 (86)

where 4 2,a  and 4 0,a  indicate the coefficients associated with 2q  and 0q , respectively. The coefficient of 

the highest order term of 4a  always positive, that is, 4 2,a  is always positive. When the term 0
4 0,a q  is 

positive, the sign for 4a  becomes positive. It is difficult, however, to clarify the sign for 4 0,a  because of 

complexity. Even when 0
4 0,a q  is negative and the term 2

4 2,a q  is larger than 0
4 0,a q , 4a  becomes 

positive, that is: 
2 0

4 2 4 0 4 0, ,a q a q a    (87)

Considering Equations (86) and (87), the conditions for which 4a  can be positive are obtained  

as follows: 

 In the case of large values for Wk , Gk , and θk , 4a  can become positive more easily. In contrast, 

low permeabilities for water and gas make the material system unstable. 

In this section, we have discussed the conditions for the onset of the instability of methane  

hydrate-bearing sediments by means of an analytical method using a simplified viscoplastic model and 

linear instability analysis. From the analysis, we found that material instability may occur in the case of 
both viscoplastic hardening and softening, and that the parameters H , SHH , and the hydrate saturation 

H
rS  have a significant effect on the onset of the material instability. Furthermore, the sign for strain,  

that is, compression ε 0  or expansion ε 0  also has a significant effect on material instability,  

and expansive strain will make the material system unstable. The permeabilities for water Wk , and gas Gk  
are also essential parameters for material instability.  

Since it is rather difficult to discuss the sign of coefficients a1–a4 and the other conditions of  

Routh-Hurwitz criteria due to the complexity, the material instability will be studied numerically. In the 

next section, the results of various numerical simulations of the dissociation-deformation problem using 

the one-dimensional finite element mesh will be presented in order to study the material instability by 

using the chemo-thermo-mechanically coupled model proposed by Kimoto et al. [9,10]. The results will 

be compared to those of the instability analysis. 

3. Numerical Simulation of Instability Analysis by an Elasto-Viscoplastic Model Considering 

Methane Hydrate Dissociation 

The effect of material parameters, especially the permeability, should be investigated. This is because 

in the previous section it was found that larger permeability makes the material system more stable.  

In the linear stability analysis, only the first condition of Routh-Hurwitz criteria have been discussed, 
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because the other conditions are too complicated to be analyzed theoretically due to the complexity of 

the coefficients. In order to compensate insufficiency of the instability analysis and confirm the effect 

of permeability on the material instability, a series of parametric studies on the permeability is conducted 

in this part. The detailed conditions for the numerical simulation are described in the following section. 

3.1. One-Dimensional Finite Element Mesh and Boundary Conditions 

Figure 3 illustrates a schematic drawing of the target area of MH-bearing sediments for the numerical 

simulations, and the finite element meshes and boundary conditions used in the simulations are shown 

in Figure 4. The seabed ground, at a depth of about 350 m from the top of the seabed ground surface and 

at a water depth of 1010 m, is modeled. The MH-bearing layer lies at a depth of 290 m from the top of 

the ground surface with a thickness of 44 m. We assume the depressurization method for the hydrate 

dissociation, and the depressurizing source is set at the left boundary of the model from the surface of 

the seabed ground. For the finite element mesh, a homogeneous soil column in the horizontal direction 

with a thickness of 1 m is employed, as shown in Figure 4. The modelled seabed ground was just used 

to determine distributions of the initial stress, the initial temperature, and the initial pore pressure. The 

numerical simulations were performed to confirm the results of the linear stability analysis, not to fully 

simulate the real situation of the methane hydrate production. 

The linear stability analysis was conducted under one-dimensional conditions for simplicity. In the 

numerical simulations part we have solved a one-dimensional problem in order to confirm the 

consistency of the results between the linear stability analysis and the numerical analysis, while the 

program code is written in two-dimensional plane-strain conditions. Consequently, the water and gas 

flow is limited to the one-dimensional flow by setting the no-flow boundary on the top and bottom 

surface. The left boundary is set to be permeable for water and gas and the adiabatic boundary. The top 

and bottom boundaries are set to be impermeable boundary so that the water and gas flow are limited to 

one-dimensional flow. The right boundary is also set to be permeable; however, the boundary conditions 

of the right boundary are set to be isothermal, namely, the temperature is kept constant at 287 K.  

 

Figure 3. Schematic view of the target area of MH-bearing sediments for the numerical simulations. 

1000~1300m

200~300 m

MH-bering layer: 30~50m
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Figure 4. Simulation model and boundary conditions. 

3.2. Initial and Simulation Conditions 

The initial state of the pore pressure and temperature at the depressurization source are shown in 

Figure 5 with the methane hydrate equilibrium curve. The initial pore water pressure is 13 MPa for all 

elements, which is the hydrostatic pressure, and the pore water pressure at the depressurization source is 

linearly reduced to the target pressure. The target value varies with respect to the initial pore pressure at 

depressurization source Pini; the degree of depressurization ΔP varies from 20% to 80% with increments 

of 10%, as shown in Figure 5. By changing the magnitude of the depressurization, it becomes possible 

to control the MH dissociation. The depressurizing rate for each case is the same, that is 0.116 kPa/s  

(10 MPa/day); thus, the time when the pore pressure at the depressurization source reaches the target 

value is different for the different cases. The total time of the simulation is 100 h for each case. In the 

simulations, the total calculation time (100 h) is determined by considering the depressurization rate and 

depressurization level. The depressurization rate is 0.116 kPa/s (10 MPa/day), which is almost the same 

as that of offshore methane hydrate production trial conducted by Japan Oil, Gas, and Metals National 

Corporation (JOGMEC) in March 2013 [25]. According to the rate, the depressurization will finish at 

about 6.2 h in the case of 20% of depressurization level, and even in the case of the maximum 

depressurization level, i.e., 80%, it will end at about 25 h. Another reason is that in each case the 

computation time takes more than 10 h, and we need vast amounts of h to calculate total 42 cases and 

more. Thus, the total simulation time is set to be 100 h. 

 

Figure 5. Conditions of change in pore pressure change at the depressurization source. 
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The initial conditions and material parameters are listed in Tables 1 and 2, respectively. Initial void 
ratio 0e  is 1.00, and the initial hydrate saturation in the voids, 0

H
rS , is 0.51, where the void ratio e  is 

defined by: 

1
S

S

V V n
e

V n


 


  (88)

Table 1. Initial conditions of the soil material. 

Name  Paremeter Value 

Initial Void Ratio 0e  1.00 

Initial water saturation 0rs  1.0 

Initial hydrate saturation 0
H
rS  0.51 

Table 2. Material parameters for the constitutive equation. 

Name Parameter Value 

Compression Index λ 0.185 
Swelling index κ 0.012 

Initial shear elastic modulus (kPa) 0G  53,800 

Viscoplastic parameter (1/s) C  1.0 × 10−10 
Viscoplastic parameter m  23.0 

Stress ratio at critical state 
*
fM  1.09 

Compression yield stress (kPa) σmbi  1882 

Degradation parameter maf mai    1.0 

Degradation parameter β  0.0 

Parameter for suction effect (kPa) 
C

iP  100 

Parameter for suction effect IS  0.2 

Parameter for suction effect ds  0.25 

Parameter for hydrate effect 
H
riS  0.51 

Parameter for hydrate effect mn  0.6 

Parameter for hydrate effect dn  0.75 

Thermo-viscoplastic parameter α  0.15 

Permeability coefficient for water (m/s) 0
Wk  variable 

Permeability coefficient for gas (m/s) 0
Gk  010 Wk  

Permeability reduction parameter  N 7 

The material parameters for the constitutive model are summarized in Table 2. The material 

parameters for the constitutive equation are mainly determined from the results of triaxial tests and its 

parametric studies, whose samples were obtained from the seabed ground at the Nankai Trough [26]. 

Constitutive equations used in this simulation follow the equations presented by Kimoto et al. [9],  

and details can be obtained in their paper.  

In order to study the instability of the MH-bearing material system, different permeability values are 

considered as well as different levels of depressurization. The permeability for water changes from  
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1.0 × 10−3 to 1.0 × 10−8 (m/s), and the permeability for gas phases is set to 10 times the water 
permeability. The permeability coefficient for water 0

Wk  and gas 0
Gk  can be written as follows: 

 
α

α α
0 α α

μ
, , α ,

ρ

g
k K W G   


 (89)

where g is gravity acceleration, K  is intrinsic permeability, μW and μG are the viscosity for water and gas, 

ρW and ρG are the density of water and gas, respectively. In the simulation, the seabed ground at 1300 m 

water depth is modelled, and the pore pressure at the initial state is around 13 MPa. Considering that the 

gas is treated as an ideal gas, the dynamic viscosity for gas phase vG becomes about 0.1 times that of the 

water phase, although it varies depending on the temperature. Consequently, the permeability coefficient 

for the gas phase becomes about 10 times larger than that of the water phase.  

In addition, the permeability for water and gas depends on several parameters, i.e., phase saturation 
Ws  and  1G Ws s  , the void ratio e , the hydrate saturation H

rS , and temperature. In the simulation, 

however, we especially focused on the effect of the void ratio e  and the hydrate saturation H
rS , and we 

used the following equations for the permeability. This is due to the fact that we do not consider the 

interaction between the air and the water, we only consider the interactions between air and solid 

skeleton,and water and solid skeleton: 

     α α α0
00

1 1 exp , α ,
2

H
r

N NH H
r rS

e e
k S k S k W G



      
 

 (90)

The permeability ratio α α

0H
rS

k k


 can be defined as  1
NH

rS , and it varies from 1 to 0 with respect 

to the hydrate saturation as indicated in Figure 6.  

 

Figure 6. Relationship between  1
NH

rS  and the hydrate saturation with different values of N. 
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subject to clarify the initiation of the gas flow in water-saturated ground. It is one of the reasons why the 

effect of the phase saturation is not considered. 

The combinations of the permeability and the level of depressurization are listed in Table 3. The total 

number of cases is 42, that is, six permeability and seven depressurization levels. The case name  

“Case-i-j” indicates that the permeability for the water phase is 1.0 × 10−i (m/s) and the depressurization 

level is j (%). In the following section, the results of the numerical simulation and the discussion which 

intends to show a trend in the material instability will be presented. 

Table 3. Simulation conditions. 

Name Values 
Permeability 0

Wk  (m/s) 

1.0 × 10−3 1.0 × 10−4 1.0 × 10−5 1.0 × 10−6 1.0 × 10−7 1.0 × 10−8 

Degree of 
depressurization 

20% Case-3-20 Case-4-20 Case-5-20 Case-6-20 Case-7-20 Case-8-20 
30% Case-3-30 Case-4-30 Case-5-30 Case-6-30 Case-7-30 Case-8-30 
40% Case-3-40 Case-4-40 Case-5-40 Case-6-40 Case-7-40 Case-8-40 
50% Case-3-50 Case-4-50 Case-5-50 Case-6-50 Case-7-50 Case-8-50 
60% Case-3-60 Case-4-60 Case-5-60 Case-6-60 Case-7-60 Case-8-60 
70% Case-3-70 Case-4-70 Case-5-70 Case-6-70 Case-7-70 Case-8-70 
80% Case-3-80 Case-4-80 Case-5-80 Case-6-80 Case-7-80 Case-8-80 

3.3. Simulation Results 

Results of the Stable-Unstable Behavior during MH Dissociation 

Figure 7 shows the results of the simulation for different values of the permeability and the 

depressurization levels. In the figure, the solid circles (●) indicates stable simulation results, while the 

(×) marks indicates unstable simulation results. The judgment of unstable or stable is given according to 

whether at least one mechanical, thermal or chemical variable diverges or not. 

 

Figure 7. Stable and unstable regions of permeability and the depressurization level during 

the MH dissociation process. 

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2
10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e 

of
 d

ep
re

ss
ur

iz
at

io
n 

[%
]

Permeability kW [m/s]

Initial pore water pressure: 13MPa

Stable-unstable boundary

1010 [1/0 58 kPa s ]5 ecHD .  



Energies 2015, 8 5401 

 

From Figure 7, it can be said that the material system basically becomes stable with an increase in 

permeability. That is because a large permeability will make the dissipation of the fluid pressure 

produced by the MH dissociation easier, while a reduction in pore pressure will reach farther away from 

the depressurization source and more MHs will dissociate due to the large permeability. In the case of 

relatively lower permeability, that is, kW = 1.0 × 10−7 and kW = 1.0 × 10−8, it becomes more stable for the 

large depressurization levels than in the cases of kW = 1.0 × 10−5 and kW = 1.0 × 10−6. The reason why 

the lower permeability makes the material system more stable is that the low permeability may limit the 

spreading of the depressurization; consequently, the area where the MHs dissociates becomes smaller 

and the production of the pore gas pressure is reduced. The balance between the permeability and the 

depressurization is one of the important factors in material instability. In order to investigate the details 

for the onset of material instability, several cases are selected, namely, two stable cases and two unstable 

cases. For the stable cases, we choose Case-4-30 and Case-7-30, which have the same depressurized 

level and different permeabilities, and for the unstable cases, Case-4-40 and Case-7-40 are chosen.  

In Case-4-30 and Case-7-30, the depressurization finishes after about 9.4 h, while in Case-4-40 and 

Case-7-40, it ends after 12.5 h.  

Figure 8a–d shows the time profiles of pore gas pressure PG (MPa) in elements-1, 2, and 3 for each 

case. The pore gas pressure is calculated in the elements where the MHs begin to dissociate.  

In Case-4-30, which is illustrated in Figure 8a, the pore gas pressure decreases with the progress of the 

depressurization. The production of pore gas pressure in elements-2 and 3 is initiated soon after that in 

element-1. This is because the depressurization spreads to the next element easily due to the large 

permeability. After that, the pore gas pressure in each element becomes the same value, which is 

consistent with the depressurized one. In Case-4-40, on the other hand, the pore gas pressure diverges 

just after 9.4 h, and the calculation stops as shown in Figure 8b. The large depressurization level may 

enhance gas production, and the permeability is not enough for the pore gas pressure to be allowed to 

dissipate. The time profiles of the pore gas pressure are the same as Case-4-30 until 9.4 h; the pore gas 

pressure in each element consists of the depressurized value due to the larger permeability. 

The time profiles of the pore gas pressure in the case of low permeability, that is, Case-7-30 and  

Case-7-40, are different from those of larger permeability, as illustrated in Figure 8c,d. The pore gas 

pressure in both element-2 and element-3 is produced behind that of element-1, because it is difficult for 

the depressurization to spread due to the low permeability. In the case of large permeability, the pore gas 

pressure in each element decreased at the same level. In Case-7-30 and Case-7-40, however, the pore 

gas pressure becomes higher in the element farther away from the depressurization source. It sometimes 

increases rapidly, mainly because it is more difficult for the pore gas pressure to dissipate than in the 

case of large permeability. In Case-7-40, the pore gas pressure becomes the high pressure level after 

about 60 h. Finally, it diverges at 78 h and the calculation stops, as shown in Figure 8d. The behavior of 

the pore gas pressure is unstable. The large degree of the depressurization produces a larger amount of 

gas than in Case-7-30, and this makes the material unstable.  
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Figure 8. Time profiles of the pore gas pressure PG (MPa) (a) Case-4-30; (b) Case-4-40;  

(c) Case-7-30; (d) Case-7-40. 

From the pore pressure and pore gas pressure results we calculated the Reynolds number of the water 

and the gas flow in Element-1 in Case-4-30. First, the water velocity becomes 8.4 × 10−4 (m/s), which 

can be estimated from the gradient of the pore pressure and the permeability indicated in Equation (90). 
As for a diameter of the groundwater flow, an average grain size 50D  is often used in the geomechanics 

field. Therefore, we use 50 0.15 (mm)D  , which is the value of fine sand or silt. Dynamic viscosity νW  

for water is 1.52 × 10−6 (m2/s), at a temperature of 5 degrees. The Reynolds number parameters are listed 

in Table 4. Substituting those values into the Reynolds number equations, we obtain 
48 29 10 1 10waterRe . ~   for the water flow.  

Table 4. Parameters for calculating Reynolds number of water flow. 

Variable Value 

vW 8.4 × 10−6 m/s 

 0.15 mm 
vW (5 °C, 10 MPa) 1.52 × 10−6 m2/s 

As for the gas flow, we have also calculated Reynolds number in the same manner as the water  

flow. Table 5 indicates the parameters for calculating Re of the gas flow. Reynolds number of the gas 
flow becomes 27 3 10 13 10gasRe . ~  . For both the water and the gas flow, Reynolds number 

becomes less than 1–10, although it is a rough estimation. Consequently, Darcy’s law introduced in 

Equations (36) and (37) is valid to describe the fluid flow. 
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Table 5. Parameters for calculating Reynolds number of gas flow. 

Variable Value 

vG 8.4 × 10−5 m/s 

50D  0.15 mm 
vG (5 °C, 10 MPa) 1.72 × 10−7 m2/s 

In order to see the behavior of MH dissociation, the time profiles of the MH remaining ratio are 

illustrated in Figures 9a–d. The MH remaining ratio is defined as the percentage of the current moles of 

MHs with respect to the initial moles, that is: 

0

MH remaining ratio 100 (%)H

H

N

N
   (91)

 

Figure 9. Time profiles of the remaining MH ratio 0100 H HN N  (%). (a) Case-4-30;  

(b) Case-4-40; (c) Case-7-30; (d) Case-7-40. 

In the case of large permeability, the ratio decreases equally in each element. This means that the 

effect of the depressurization spreads to a similar extent because of the large permeability. When the 

depressurization stops at 9.4 h, the MH remaining ratio becomes almost constant in Case-4-30. In the 

case of lower permeability, on the other hand, the behavior of the ratio differs among the elements. As 

for the remaining MH ratio in element-2 and element-3, the dissociation starts behind that of element-1; 

the MH dissociation begins after 15 h in element-2 and after 24 h in element-3. This is because it is hard 

for the depressurized area to spread due to the low permeability and the amount of dissociated MHs is 

lowered. It may become evidence that the material system becomes more stable even in the case of  

the lower permeability. The reduction of the ratio continues moderately even after finishing the 
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depressurization at 9.4 h in Case-7-30, meanwhile it becomes constant after 9.4 h in Case-4-30. This 

indicates that a lower permeability can reduce the total amount of MH dissociation more than that of a 

higher permeability. However, the dissociation will continue for a long term. Both Case-4-40 and  

Case-7-40 are the unstable results; the calculation stops after 9.4 h in Case-4-40 and after 78 h in  

Case-7-40. It can be said that the material instability may occur in the short term, namely, during 

dissociation in the case of the larger permeability, and in the lower one, the material instability has to be 

considered over a long span, namely, even after the depressurization. Figures 10a–d and 11a–d show the 
time profiles of the average pore pressure FP  and the mean skeleton stress σm , respectively.  

 

Figure 10. Time profiles of the average pore pressure PF (MPa). (a) Case-4-30;  

(b) Case-4-40; (c) Case-7-30; (d) Case-7-40. 
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Figure 11. Time profiles of the mean skeleton stress σm (MPa). (a) Case-4-30;  

(b) Case-4-40; (c) Case-7-30; (d) Case-7-40. 

The average pore pressure PF is defined by Equation (14), and the mean skeleton stress σm  are defined 

as follows: 

1

3m kk     (92)

The average pore pressure decreases with increases in the depressurization in each case. In  

Case-4-30 and Case-4-40, it declines linearly, because the pore pressure at the depressurization source 

is reduced linearly. In Case-7-30 and Case-7-40, the average pore pressure in element-2 and element-3 

decreases behind element-1, and the pressure gradient increases between element-1 and element-2 or 

element-3. When the material instability occurs in Case-4-40 and Case7-40, the average pore pressure 

diverges in the same manner as the pore gas pressure shown in Figure 8. This abrupt increases in pore 

gas pressure GP  and average pore pressure FP  leads to a drastic decrease in the mean skeleton stress, 

as illustrated in Figure 11. The result whereby the large pore fluid pressure produces a great reduction 

in the mean skeleton stress is the same as that obtained from the experiments [27]. Figure 12 indicates 
the time profiles of total volumetric strain εv  for each element. It is worth noting that the volumetric 

strain is positive in expansion and negative in compression. In comparing Case-4-30 with Case-7-30, 

both cases are stable, and the total volumetric strain in Case-4-30 becomes larger than that in Case-7-30. 

This is because the amount of drained water in Case-4-30 is larger than that of Case-7-30 due to the large 

permeability. Finally, the total volumetric strain in elements-1, 2, and 3 become −2.0%, −1.7%, −1.5%, 

respectively in Case-4-30. In Case-7-30, the total volumetric strain in elements-1, 2, and 3 become 

−1.2%, −0.4%, and −0.5%, respectively. In Case-4-30, the depressurization stops at 9.4 h, and the 

changes in the average pore pressure and the mean skeleton stress are also small; however, the total 

volumetric strain keeps increasing until 100 h. The results indicate that the deformation is likely to 

continue increasing even after the changes in the pore pressure and the mean skeleton stress become 

small. In the unstable cases, that is, Case-4-40 and Case-7-40, the expansive volumetric strain is observed 

at the time the calculation stops. The large pore fluid pressure leads to the large expansive strain, and the 

material system becomes unstable. This results in the expansive strain making the material system more 

easily unstable, consistent with the results of the linear stability analysis. 
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Figure 12. Time profiles of the volumetric strain εv  (%). (a) Case-4-30; (b) Case-4-40;  

(c) Case-7-30; (d) Case-7-40. 

4. Conclusions  

In the first part of this paper, a linear stability analysis was performed in order to investigate the 

effects of the parameters on the onset of the instability of MH-bearing sediments induced by dissociation. 

The governing equations of the MH-bearing sediments used in the section are based on the  

chemo-thermo-mechanically coupled model proposed by Kimoto et al. [9] and for the constitutive 

equation for the soil skeleton, we used a simplified viscoplastic constitutive model. The main 

conclusions obtained in the stability analysis are listed as follows: 

1. The parameters which have a significant influence on the material instability are the viscoplastic 

hardening-softening parameter, its gradient with respect to hydrate saturation, the permeability 

of the water and the gas, and the strain. 

2. Material instability may occur in both the viscoplastic hardening region and the softening region 

regardless of whether the strain is compressive or expansive. However, when the strain is 

expansive, material instability can occur even if it is in the viscoplastic hardening region. The 

expansive strain makes the possibility of the instability higher in the model. 

3. Permeability is one of the most important parameters associated with material instability.  

The larger the permeability for the water and the gas become, the more stable the material  

system becomes. In other words, the lower the permeability is, the higher the possibility is for  

material instability to occur. These results are consistent with the results obtained from the 

experimental studies. 
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In the second part of the section, some examples of the numerical simulation of the  

dissociation-deformation problem using the one-dimensional finite element mesh were presented in 

order to study the material instability by using the chemo-thermo-mechanically coupled model. The 

effect of the material parameters, especially the permeability, was investigated. In order to clarify the 

relationship between the permeability and the degree of hydrate dissociation, a series of parametric 

studies on the permeability was conducted. For the dissociation method, we adopted the depressurization 

method. The main results of the numerical simulations are summarized as follows: 

4. Basically the simulation results become more stable with increases in permeability. However,  

they also become stable in the region of the lower permeability. This was because the 

depressurized area is limited due to the low permeability; and consequently, the amount of MH 

dissociation is also reduced.  

5. When the calculation became unstable, the pore gas pressure diverged, and then the mean 

skeleton stress was decreased drastically. The larger expansive volumetric strain was also 

observed. These results are consistent with those obtained from the linear stability analysis. 

6. In the case of a higher permeability and a larger depressurization level, the divergence occurred 

during depressurization and MH dissociation. On the other hand, in the case of the lower one,  

the instability was observed around the end part of the simulation when the MH dissociation 

almost converged. It is important to consider the material instability over the long term, that is, 

even after the dissociation calms down. 

7. The compressive volumetric strain kept increasing after the depressurization finished and the 

changes in the pore pressure and the mean skeleton stress became small. It also proves the 

importance of considering the long term stability. 
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Appendix A 

The coefficients of the polynomial, Equation (73), are written as follows: 
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Appendix B 

Routh-Hurwitz criteria of general n-th degree a polynomial equation is given by the  

following equation. Given an equation as shown below: 
1 2 0

0 1 2 1ω ω ω ω ω 0n n n
n na a a a a 
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where  1 2ia i , , ,n   is real, Routh-Hurwitz criteria can be written as follows: 
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where 0ja   if j n . Then, the roots of Equation (B.1) have negative real parts if Dk > 0,  

for k = 1, …, n. 
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