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Abstract: The location of ground faults in railway electric lines in 2 × 5 kV railway power 

supply systems is a difficult task. In both 1 × 25 kV and transmission power systems it is 

common practice to use distance protection relays to clear ground faults and localize their 

positions. However, in the particular case of this 2 × 25 kV system, due to the widespread 

use of autotransformers, the relation between the distance and the impedance seen by the 

distance protection relays is not linear and therefore the location is not accurate enough. 

This paper presents a simple and economical method to identify the subsection between 

autotransformers and the conductor (catenary or feeder) where the ground fault is 

happening. This method is based on the comparison of the angle between the current and 

the voltage of the positive terminal in each autotransformer. Consequently, after the 

identification of the subsection and the conductor with the ground defect, only the 

subsection where the ground fault is present will be quickly removed from service, with the 

minimum effect on rail traffic. This method has been validated through computer 

simulations and laboratory tests with positive results. 
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1. Introduction 

High-speed trains demand a power of about 12–16 MW to be able to reach speeds over 300 km/h. 

The normal method to provide such high levels of power comprises two power supply conductors and 

a grounded return one, which is called a 2 × 25 kV traction system, although there are other power 

supply systems with differently rated voltages [1]. 

This power supply system has a positive conductor (usually called catenary) at 25 kV AC voltage 

with a positive polarity with respect to ground, and a negative voltage conductor (usually called feeder) 

at 25 kV AC voltage with a negative polarity with respect to ground. The supply to the trains employs 

the catenary and the grounded rail. 

In these power systems, the complete traction line is supplied by several traction substations (TS). 

Each traction substation supplies two sections. Moreover, in each section, there are several subsections 

at regular intervals which are delimited by stations with power autotransformers (ATS). The 

autotransformer terminals are connected to the catenary and feeder, whereas its middle winding point 

is connected to the rail. At the end of each section another autotransformer station (SATS) is installed, 

where an autotransformer is connected in a similar way. In Figure 1, a traction line section with three 

sub-sections is shown, as well as the theoretical current distribution. 
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Figure 1. Simplified diagram of a 2 × 25 kV power system and current distribution in  

a section comprising three subsections. 

In 2 × 25 kV power systems, the traction power demanded is delivered at 50 kV while it is used at  

25 kV. This fact reduces the current needed to supply the power required by high-speed trains [2].  

In consequence, as this configuration presents lower losses and voltage drops along the line in 

comparison to 1 × 25 kV substation topologies, the length of the sections can be greater and the 

number of traction substations lower. 

Another remarkable advantage of the 2 × 25 kV traction systems is the great reduction of 

electromagnetic interference on communication facilities and railway signalling circuits (signalling 

track circuits) as well as in nearby telecommunication lines [3,4]. 
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Protection systems are essential to ensure the safe and efficient operation of any electrical  

installation [5,6]. Also, the proper management of these systems is an important factor to take into 

account in the profitability of these facilities [7]. 

All electrical systems, especially railway traction systems, can have internal failures of their 

equipment and external faults caused by accidental events. Furthermore, in the traditional 1 × 25 kV 

power supply systems, most faults are caused by outdoor short circuits between the catenary and 

ground, while in the 2 × 25 kV power systems most of them are caused by outdoor short circuits 

between the catenary or the feeder to ground [8,9]. However, the detection and location of ground 

faults in the 2 × 25 kV lines are much more complex than in 1 × 25 kV lines, mainly because of the use 

of autotransformers [10] in the ATS substations to which the catenary, feeder and rails are connected. 

The complexity of the detection and location of ground faults in the 2 × 25 kV lines means that the 

identification of the subsection and the conductor where the ground fault has happened [11,12] is the 

main task of the protection systems in order to disconnect immediately the conductor with the ground 

fault in the corresponding subsection [13]. This means only trains running in the subsection with the 

ground fault, in the case that the fault is in the catenary, will be disconnected from the power supply. 

This paper describes a new method for identifying the subsection and the conductor (catenary or 

feeder) in which there is a ground fault in an easy and economical way. As the identification is done 

immediately, the subsection and conductor can be disconnected while keeping the rest of the power 

system in service. Another important advantage is that most of the elements that this method needs to 

be operative are already installed in any 2 × 25 kV power supply system, and consequently little new 

investment is required. 

This new method has been validated through numerous computer simulations and experimental 

laboratory tests, obtaining excellent results. This paper first presents in Section 2 an overview of the 

problem of ground fault location in 2 × 25 kV power systems and a brief description of the current 

methods. Then, Section 3 details the principles of the proposed method, and Section 4 presents an 

analysis of the simulations developed with MATLAB® software. Section 5 presents the results of 

experimental tests carried out in a laboratory set-up. Finally, Section 6 concludes with the main 

contributions of the proposed new technique. 

2. Ground Fault Location in 2 × 25 kV Power Systems: Description of the Problem 

In traction power systems with ATS’s (2 × 25 kV), whose electrical scheme and current distribution 

are represented in Figure 1, as well as in single-phase (1 × 25 kV) power systems, the main protection 

system is normally based on distance protection relays [14]. These protection relays are usually 

installed at the traction substations and measure the impedance as the ratio between the voltage of the 

catenary and the difference of the catenary and feeder currents. 

However, such traction power systems with ATSs (2 × 25 kV) do not make use of ground fault 

location based on the linear ratio between the impedance (Z) seen from the traction substation and the 

distance to the ground fault. This linear ratio, represented in Figure 2, does, however, allow the 

distance protection relays to detect the ground fault and calculate the distance to the defect [15–17] in 

one-conductor power systems (1 × 25 kV). 
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Figure 2. Modulus of the fault impedance (Z) seen from the traction substation as a 

function of the distance in 1 × 25 kV traction power systems. 

However, in traction power systems with ATSs (2 × 25 kV), the variation of the impedance value  

measured as a function of the distance to the ground fault is non-linear [11,16]. Figure 3 shows the real 

values of the fault impedance measured, where it can be seen that the ratio is non-linear in every 

subsection between two ATSs. The minimum values of the impedance measured correspond to the 

ATS’s emplacements. 

 

Figure 3. Modulus of the fault impedance seen from the traction substation in function of 

the distance in 2 × 25 kV traction power systems. 

Figure 3 reveals clearly that only measuring the modulus of the impedance to the ground fault in a 

subsection does not allow the location of the fault to be identified. Even when the modulus of the 

impedance is known, it is not possible to define in which subsection between two ATSs the ground 

fault has occurred, because the same value of measured impedance can be obtained from different 

subsections. As a result, it is standard practice at railway facilities to follow the protocol described in 

the following paragraphs. 
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When a ground fault happens, the distance protection relays register an impedance value lower than 

their settings values and a tripping command is released to the normally used double pole circuit-breakers 

in the substation, with a consequent interruption of the power supply in all subsections and ATS’s of 

the section with the defect. 

After a pre-set time, the distance protection relays conduct automatic reclosing manoeuvres and 

again feed the subsections and ATSs, checking that the defect is not permanent. If the ground fault is 

still active, the distance protection relays switch off the circuit-breakers again and open the  

motor-driven disconnectors installed at the ATS’s substations. The next step is to switch on the  

circuit-breakers again. Now, as the catenary and feeder conductors are electrically isolated (the system 

operates as 1 × 25 kV), the distance protection relays will allow the conductor where the ground fault 

took place to be identified, as well as the relatively accurate identification of the subsection [18]. 

To isolate the subsection with the ground fault, the information provided by the distance protection 

relay is used. As the circuits of the two conductors are now totally independent, the distance from the 

substation to the ground fault is obtained from the impedance measured by the distance protection 

relay. Once the subsection is isolated through its corresponding motor-driven disconnectors, the rest of 

the subsections without a ground fault are powered again. In the case of a lack of accuracy in the 

determination of the distance to the ground fault, a subsection which is closer to or farther away from 

the real distance to the fault may remain without power supply for an unacceptable time [19]. 

To avoid this delay in the isolation of the true subsection with the ground fault, it is very useful to 

know, as soon as the ground fault has been detected, in which subsection between ATSs this has taken 

place and if it happened in the catenary or feeder conductor. The new system presented in this paper 

allows us to know just after the ground fault which subsection has the ground defect and if the fault is 

located between the catenary and rail or between the feeder and rail conductors. As this information is 

sent to the control centre immediately, automatic or manual decisions can be taken to restore the power 

supply to the subsections without any ground fault. 

3. Principles of the New Ground Fault Subsection Identification Method 

According to the theoretical current distribution of 2 × 25 kV power system (Figure 1), the phase 

angle between voltage and current in the autotransformer is close to 180° in case of resistive load 

(Figure 4a). In this case, the catenary inductance (XL) can be neglected. 

On the other hand, in case of an inductive load the phase angle between voltage and current in the 

autotransformer is close to 90°, as shown in the Figure 4b. 

The power factor of the high-speed trains is close to the unit; therefore, the current distribution 

under normal operation of a 2 × 25 kV power system is similar to the resistive load case shown in  

Figure 4a. 

The catenary short-circuit current is similar to the inductive load case, as the impedance seen from 

the autotransformer is the catenary inductance XL. (Figure 4c). 

Finally in the Figure 4d the feeder short-circuit case is represented, and it is symmetrical to the 

above case. 
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(a) (b) 

(c) (d) 

Figure 4. 2 × 25 kV theoretical currents distribution in case of resistive load (a);  

inductive load (b); short-circuit (catenary) (c); and short-circuit (negative feeder) (d). 

When there is a ground fault on a line between the catenary and rail or between the feeder and rail 

in a 2 × 25 kV traction power system, there is a substantial increase in the current circulating through 

the windings of the ATSs closest to the defect location. This current increase can be detected easily by 

measuring the currents in the windings of the ATSs. Furthermore, when the fault happens, the angles 

between the currents and voltages change in the ATSs closest to the fault location. 

In normal operation, these angles between the currents and voltages in the autotransformers are 

close to 180°, as shown in Figure 5. On the other hand, in the case of a ground fault, the phase angle 

between the voltage and current in the autotransformers will shift by 90°, as will be shown later. 

As an example, we can consider a ground fault in subsection C as shown in Figure 6, where the 

modulus of the currents IA2 and IA3 increase their value by a great deal, whereas the current IA1 does 

not undergo any remarkable change in its value. 
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Figure 5. 2 × 25 kV power system currents (IA) and voltages (VC) distribution in normal operation. 

 

Figure 6. 2 × 25 kV power system currents (IA) and voltages (VC) distribution with a 

ground fault in the catenary in Subsection C. 

Furthermore, the angles between such currents IA2 and IA3 and the respective catenary to rail 

voltages VC2 and VC3 will change dramatically. In this case, as the fault is between the catenary and the 

rail in Subsection C, the angle between IA2 and VC2 changes in value from approximately 180° to 90° 

(see Figures 5 and 6). 

The angle between IA3 and VC3 is also reduced from close to 180° to near 90°. As indicated before, 

the angle between IA1 and VC1 remains stable with almost no variation, as can be seen in Figure 6. 

Now, if the ground fault happens in the same Subsection C but between the feeder and rail, the angle 

between IA2 and VC2 changes from 180° to 270° (see Figures 5 and 7). There is also the same angle 

change between IA3 and VC3. Again, there is no significant change in the angle between IA1 and VC1. 
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If the ground fault happens in Subsection B, the current increase will affect only currents IA1 and IA2 

and there will be no remarkable change in current IA3. The angles between IA1 and VC1, and IA2 and VC2 

respectively will change, but not the angle between IA3 and VC3. These phase angle changes will also 

be from 180° to 90° in the case of a fault between the catenary and rail (see Figures 5 and 8), and from 

180° to 270° if the fault is between the feeder and rail. 

 

Figure 7. 2 × 25 kV power system current (IA) and voltage (VC) distribution with a ground 

fault in the feeder in subsection C. 

 

Figure 8. 2 × 25 kV power system currents (IA) and voltages (VC) distribution with a 

ground fault in the catenary in subsection B. 
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However, if there is a ground fault in Subsection A, only the current IA1 increases in value, while 

currents IA2 and IA3 remain stable with no significant changes in their values. Therefore, the change in 

the phase angle only affects the current IA1 and voltage VC1, but not the currents and voltages in the 

ATS2 and SATS. This variation in the phase angle between the current and voltage in the ATS1 

installed at the end of the first subsection indicates that the ground fault is located in the first 

Subsection A. 

In fact, in facilities whose sections have more than two subsections, it is possible to avoid taking 

measurements at the station with ATS situated at the end of the last subsection (SATS). This is 

because when there is a current increase and a variation of the angle between the current and voltage 

only in the previous ATS (ATSN-1), the ground fault is located in the last subsection N. Figure 9 

represents a section formed by N subsections (with N > 2) with measuring devices for current and 

voltage in all stations with ATSs except in the last one (SATS). 

 

Figure 9. Section with N subsections supplied from the traction substation (TS) with N-1 

measurement devices for current and voltage. 

The changes of the angle between the currents and voltages when there is a ground fault in the 

system represented in Figure 9 are listed in Table 1. 

Table 1. Angle variation between IA and VC as a function of the subsection with the 

ground fault. 

Fault location ATS1 ATS2 ATS3 ATSN-3 ATSN-2 ATSN-1 

Fault at catenary in Subsection 1 90° 180° 180° 180° 180° 180° 
Fault at feeder in Subsection 1 270° 180° 180° 180° 180° 180° 
Fault at catenary in Subsection 2 90° 90° 180° 180° 180° 180° 
Fault at feeder in Subsection 2 270° 270° 180° 180° 180° 180° 
Fault at catenary in Subsection 3 180° 90° 90° 180° 180° 180° 
Fault at feeder in Subsection 3 180° 270° 270° 180° 180° 180° 
Fault at catenary in Subsection N-3 180° 180° 180° 90° 180° 180° 
Fault at feeder in Subsection N-3 180° 180° 180° 270° 180° 180° 
Fault at catenary in Subsection N-2 180° 180° 180° 90° 90° 180° 
Fault at feeder in Subsection N-2 180° 180° 180° 270° 270° 180° 
Fault at catenary in Subsection N-1 180° 180° 180° 180° 90° 90° 
Fault at feeder in Subsection N-1 180° 180° 180° 180° 270° 270° 
Fault at catenary in Subsection N 180° 180° 180° 180° 180° 90° 
Fault at feeder in Subsection N 180° 180° 180° 180° 180° 270° 

TS ATS 1 ATS 3ATS 2

Subsection 1 Subsection 2 Subsection 3

ATS N-2 SATSATS N-1

Subsection N-2 Subsection N-1 Subsection N

67 67 6767 67
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If the variation of the phase angle between the current and voltage only takes place at the ATSN-1 

installed between Subsections N and N-1, the ground fault is located in Subsection N. It is also 

observed that if the variation of such angle only happens in ATS1, the ground fault is in Subsection 1. 

Therefore, if variation of the angles between currents and voltages occurs in two ATS’s, the ground 

fault is in the subsection delimited by those ATS’s. 

In the case that a section only has two subsections, it is also necessary to measure the currents and 

voltages at the installed end autotransformer SATS. If so, when there is only a variation in the angle 

between the current and voltage in ATS1, the ground fault is in the first subsection, and if the fault 

occurs in the second subsection, the angle variation happens at both ATS1 and SATS. 

If the angle is measured between the incoming current from the feeder in the winding of each ATS 

and catenary voltage VC, in the case of a fault between the catenary and rail, this angle will be 270°, 

whereas if the fault is located between the feeder and rail, this angle will now be 90°. This angle 

situation is exactly the opposite when the incoming current in the winding of each ATS from the catenary 

is measured. 

4. Experimental Simulations 

In order to check the validity of the fundamentals of the proposed new method, numerous simulations 

were carried out using MATLAB® software. For this purpose, the circuit shown in Figure 10 was 

programmed using the modified nodal circuit analysis method [20]. The experimental circuit is 

supplied from one end with two 25 kV AC sources with reverse polarity in each one. This circuit has 

three parts, A, B and C, each with a length of 10 km 

 

Figure 10. Simulated power supply system with two conductors and return grounded wire 2 × 25 kV. 

To obtain the self-impedance values per length unit of the catenary ZC, the feeder ZF and rail 

connected to ground ZR, as well as the mutual impedances between the conductors ZCR, ZFR and ZCF,  

a new ATP software model was developed, including the geometry of the railway with five 

conductors. This ATP software model is shown in Figure 11 and uses resistance values per length unit 

as listed in Table 2. With such data incorporated into the ATP model, the impedance values obtained 

are given in Table 3. 
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Table 2. Resistance values of the railway per length unit. 

Conductor Resistance Ω/km 

Contact wire (C.W.) 0.115 
Messenger wire (M.W.) 0.172 
Negative feeder (N.F.) 0.062 
Aerial ground conductor (A.G.C) 0.119 
Rails 0.026 

Table 3. Self and mutual impedances values of the railway conductors. 

Conductor Impedance Ω/km

Catenary ZC 0.1197 + j0.6224 
Feeder ZF 0.1114 + j0.7389 
Rail ZR 0.0637 + j0.5209 

Conductors Impedance Ω/km

Catenary-Feeder ZCF 0.0480 + j0.3401 
Catenary-Rail ZCR 0.0491 + j0.3222 
Feeder-Rail ZFR 0.0488 + j0.2988 

 

Figure 11. Railway geometry used for the model developed in ATP software (distances in mm). 

These data obtained from the ATP railway model were implemented in the circuit shown in Figure 10. 

Employing this circuit, different MATLAB® simulations were developed, performing short-circuits 

between the catenary and rail, and between the feeder and rail. These short-circuits were simulated at 

all the points along the three Subsections A, B and C of the 30 km section. The phase angles between 

the currents IA1-IA2-IA3 and the voltages VC1-VC2-VC3 in the autotransformers ATS1, ATS2 and SATS, 
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as a function of the distance from the traction substation where the fault has happened between the 

catenary and rail, are represented in Figure 12. The axes used in Figure 12 are scaled from 0 to 30 km 

and from 0° to 360°. It can be observed that if the fault happens in Subsection A along the first 10 km, 

the angle between the current IA1 and voltage VC1 in the ATS1 is about 90°. However, such angles at 

ATS2 and SATS are 180°. Likewise, if the fault is in Subsection B (between 10 and 20 km) the phase 

angles between the current IA1 and the voltage VC1, and between the current IA2 and the voltage VC2, 

will be about 90° at both ATS1 and ATS2, while at SATS this angle is close to 180°. It can also be 

seen that if the fault is in Subsection C (between 20 and 30 km), the angle is about 90° at ATS2 and 

SATS but 180° at ATS1. 

 
(a) 

 
(b) 

 
(c) 

Figure 12. Phase angles between IA and VC at different ATSs as a function of the distance 

to the fault from the substation. Fault considered between catenary and rail. ATS1 (a); 

ATS2 (b) and SATS (c). 
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In the case that the fault happens between the feeder and rail, as expected in the theoretical research, 

the results obtained are similar when the fault takes place between the catenary and rail, except that 

now the angles between the currents IA1-IA2-IA3 and the voltages VC1-VC2-VC3 are 270° instead of 90°. 

Figure 13 shows how the variations of these phase angles as a function of the distance to the fault from 

the substation follow the same pattern as in the case of a fault between the catenary and rail, but now 

with values close to 270°. 

 
(a) 

 
(b) 

 
(c) 

Figure 13. Phase angles between IA and VC at different ATS’s as a function of the distance 

to the fault from the substation. Fault considered between feeder and rail. ATS1 (a);  

ATS2 (b) and SATS (c). 

The results obtained from all the simulations developed confirm the theoretical values listed in 

Table 1, and therefore the identification of the conductor and subsection with the ground fault is  

totally successful. 
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5. Experimental Laboratory Tests 

Besides the computer simulations, multiple tests were performed in the laboratory with the aim of 

getting, in a practical way, results that allow the identification of the conductor and subsection with the 

ground fault. These tests followed the circuit configuration indicated in Figure 14. 

 

Figure 14. 2 × 25 kV experimental set-up of simplified circuit (one section with three subsections). 

 

Figure 15. Experimental set-up circuit to simulate ground faults in laboratory. 

The distributed impedance of the catenary and feeder was achieved using inductive impedances Z 

and two voltage sources, V1 and V2, supplying 100 V. 

The section was divided into three Subsections A, B and C through ATS’s. At the intermediate 

ATS’s only (ATS1 and ATS2), measurement and control devices were installed: voltage transformers 

(VT1C and VT2C) were connected between the catenary and the 0 V conductor, current transformers 
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(CT1C and CT2C) were installed in the winding of the ATSs connected to the catenary, current 

transformers (CT1F and CT2F) were installed in the winding of the ATSs connected to the feeder, and 

directional overcurrent relays (P127) were included to register the current and voltage measurements. 

Figure 15 shows the experimental set-up. 

The directional overcurrent relays (P127) are MiCom P127 type with analogue inputs for the 

current and voltage signals obtained from the VT’s and CT’s. Current transformers CT1C and CT2C 

measure the currents IA1 and IA2 that enter from the positive terminals in ATS1 and ATS2. Voltage 

transformers VT1C and VT2C measure the voltage VC at the connection points of each ATS to the 

catenary. Current transformers CT1F and CT2F measure the currents that enter the ATS1 and ATS2 

from the connection point to the feeder. Such currents and voltages are driven to the protection relay 

P127. In the protection relay P127, at ATS1, the current input assigned to phase A is connected to the 

current transformer CT1C, the current input assigned to phase B is not used, and the current input 

assigned to phase C is connected to current transformer CT1F. Voltage inputs for phases A and C are 

connected to the 0 V conductor, whereas the voltage input for phase B is connected to the voltage 

transformer VT1C. The same connections are used for ATS2 measurements. 

The protection relay P127 was set to release a tripping command when the currents measured had 

values over the previous adjusted setting and when the angle between the voltage VC and the currents 

measured by CTCs or CTFs is approximately 90°. To guarantee the correct operation of the directional 

overcurrent relays (P127), a range in the angle setting is required. After analysis of the experimental 

results, we find that an angle setting range from 60° to 120° (90° ± 30°) is appropriate. This angle 

range should be adapted for a particular 2 × 25 kV supply system. 

When the tripping command given by the protection relay P127 is in response to the currents 

provided by CT1C or CT2C, the output free of potential contact RLP1 or RLP2 is activated at the 

corresponding P127 protection relay. This situation corresponds to a fault between the catenary and 

rail with high current circulating from the catenary and with an angle of about 90° between the 

corresponding current and voltage. 

Another option for tripping commands given by the protection relay P127 is in response to the 

currents provided by CT1F or CT2F. Now the output free of potential contact RLN1 or RLN2 is 

activated. This situation corresponds to a fault between the feeder and rail with high current circulating 

from the feeder and an angle between such currents and the voltage VC also close to 90°. 

Figure 16 shows, as an example of one of the tests performed, a disturbance record provided by the 

protection relay P127 when a fault has happened between the catenary and the 0 V rail conductors.  

The tripping command is sent through the output contact RLP as the angle between the incoming 

current from the catenary and the voltage is close to 90°. 

If the fault happens in the first Subsection A, the tripping command will be delivered by output 

contacts RLP1 or RLN1 only in the first protection relay. If the fault is located in Subsection B, 

protection relays 1 and 2 will activate their corresponding output contacts for tripping. Finally, if the 

fault is in Subsection C, only the output contacts for tripping in relay 2 will be activated. These options 

are listed in Table 4, where SA indicates any output that has been activated. Any output contact which 

is not activated is represented in Table 4 as NO. 
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Figure 16. Disturbance record from the protection relay P127. Current and voltage in ATS 

during a fault between catenary and 0 V conductor. 

Table 4. Activation of the output contacts of the protection relays as a function of the 

subsection and conductor with fault. 

Fault location RLP1 RLN1 RLP2 RLN2 

Fault at catenary in Subsection A SA NO NO NO 
Fault at feeder in Subsection A NO SA NO NO 
Fault at catenary in Subsection B SA NO SA NO 
Fault at feeder in Subsection B NO SA NO SA 
Fault at catenary in Subsection C NO NO SA NO 
Fault at feeder in Subsection C NO NO NO SA 

Both RLP and PLN output contacts of every directional protection relay are connected to a 

programmable logic controller (PLC). This PLC evaluates all RLP and RLN inputs and, following the 

protocol described in Table 4, a signalizing message specifying which conductor and subsection have 

suffered the fault is sent to a PC for visualization. 

6. Conclusions 

A new method for identification of the subsection and conductor with a ground fault has been 

presented in this paper. It is suitable for 2 × 25 kV railway supply networks when the use of 

autotransformers makes location of the ground fault a very complex task. 

This new method is based on comparison of the phase angle between currents and voltages in the 

catenary of each autotransformer. Depending on the value of these phase angles, it is possible to 

identify the subsection and the conductor with the ground fault. In other words, it is possible to know 

between which autotransformers the fault has occurred and if the ground fault involves the catenary or 

the feeder conductor. 

I

I

V
V
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Numerous experimental laboratory tests and MATLAB® simulations were performed, with different 

ground faults in all the subsections of a 2 × 25 kV model. 

The results show that the phase angles between currents and voltages change in the adjacent 

autotransformers when a ground fault takes place between them. In the case of a ground fault on the 

catenary, the angle changes to 90°, and in the case of ground fault in the feeder, the angle changes to 

270°. On the other hand, in the remaining autotransformers the angle remains close to 180°. In both 

computer simulations and laboratory tests, the results were totally satisfactory, verifying the successful 

operation of the method. 

This new identification method, compared to traditional ground fault location methods, has the 

following advantages: 

• It can distinguish the subsection directly after the ground fault occurs. 

• No additional tests are required to locate the subsection with the ground defect. 

• The feeder and the subsection affected by the ground fault can be disconnected in a short time, 

keeping the rest of the power system in service. 

• The method is based on phase comparison, so a standard directional overcurrent relay can be 

used, which represents an economic advantage. 
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Nomenclature 

AC: Alternating current. 

ATS: Auto-transformer station. 

ATSN: Auto-transformer station at the end of Subsection N. 

CT1C: Catenary current transformer in autotransformer 1. 
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CT2C: Catenary current transformer in autotransformer 2. 

CT1F: Feeder current transformer in autotransformer 1. 

CT2F: Feeder current transformer in autotransformer 2. 

I: Autotransformer number: 1, 2, 3,…N. 

IAi: Current input from catenary in autotransformer “i”. 

NO: Output not activated in protection relay. 

P127: Directional overcurrent protection relay. 

PC: Personal computer. 

PLC: Programmable logic controller. 

RLN1: Output contact in protection relay of autotransformer 1 for ground fault indication in feeder. 

RLN2: Output contact in protection relay of autotransformer 2 for ground fault indication in feeder. 

RLP1: Output contact in protection relay of autotransformer 1 for ground fault indication in catenary. 

RLP2: Output contact in protection relay of autotransformer 2 for ground fault indication in catenary. 

SA: Output activated in the protection relay. 

SATS: Autotransformer station at the end of the section. 

V1: Voltage source 1. 

V2: Voltage source 2. 

VCi: Catenary voltage in autotransformer “i”. 

VT1C: Voltage transformer in autotransformer 1. 

VT2C: Voltage transformer in autotransformer 2. 

XL: Theoretical catenary inductance. 

Z: Inductive impedance. 

ZC: Catenary self-impedance value per length unit. 

ZF: Feeder self-impedance value per length unit. 

ZR: Rail self-impedance value per length unit. 

ZCF: Mutual impedance Catenary-Feeder value per length unit. 

ZCR: Mutual impedance Catenary-Rail value per length unit. 

ZFR: Mutual impedance Feeder-Rail value per length unit. 
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