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Abstract: A mathematical model of hourly solar radiation with weather variability is 

proposed based on the simple sky model. The model uses a superposition of trigonometric 

functions with short and long periods. We investigate the effects of the model variables on 

the clearness (kD) and the probability of persistence (POPD) indices and also evaluate the 

proposed model for all of the kD-POPD weather classes. A simple solar organic Rankine 

cycle (SORC) system with thermal storage is simulated using the actual weather conditions, 

and then, the results are compared with the simulation results using the proposed model and 

the simple sky model. The simulation results show that the proposed model provides more 

accurate system operation characteristics than the simple sky model. 

Keywords: sky condition; hourly solar radiation; sky clearness index; probability of 

persistence; solar organic Rankine cycle; dynamic simulation 
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1. Introduction 

As a result of recent strong interest in solar energy, experimental solar radiation data for potential 

areas of solar power generation were collected and used in a solar energy system design. However,  

in many cases, those radiation data are insufficient. The operating characteristics and the performance 

of solar energy systems are unstable, since the amount of solar radiation gain and its pattern vary due to 

the changing of the solar collector efficiency or the thermal storage heat loss of a solar thermal energy  

system [1,2]. The data of solar radiation change in a short time are not cumulated for most potential solar 

energy system installation areas. 

In general, solar systems use direct solar radiation observation, indirect solar radiation data, which 

are derived from observed temperature, humidity and other weather factors, or the averaged solar 

radiation data [3]. With observed solar radiation data, realistic system simulation and annual gain 

analysis are possible. Indirect solar energy estimate studies are conducted due to the lack of the actual 

solar radiation data [4–8]. Those estimations use observed weather variables, such as sunshine [9,10], 

temperature [11,12] or cloud [11,13–15]. Using direct and indirect weather data involves significant 

effort in choosing data from the large original dataset. Therefore, this approach is problematic, since 

there are no criteria for sampling. The solar energy system is normally turned off when solar irradiation 

goes below a certain level (for example, 400 W/m2), which means that the system is mainly operating 

during clear days. Freeman et al. [16] considered various ways of aggregating time-varying solar data 

and evaluated the energy output from a solar-thermal collector. They found that the extent of the error 

for the annual work output was caused by using averaged weather data. 

The aim of this study is to add weather variability to a simple averaged solar radiation model; it will 

serve as a basis for the future development of an accurate solar radiation model for use in the design and 

development of new solar energy systems. To evaluate the proposed model, dynamic simulations of a 

solar organic Rankine cycle (SORC) system were conducted using an actual distribution of daily solar 

radiation, the proposed model and the simple sky model. 

2. Numerical Modelling of Solar Radiation 

The solar radiation model for a cloudy sky proposed in this study is based on the simple sky 

model [3] that is generally used in solar energy simulations. The simple sky model is characterized 

by the parameters of the peak solar irradiance ( ), the sunrise time (  and the sunset time ( ) 

as follows: 

	

0 , t

sin , 	

0 , t

 (1) 

where  is time. The peak solar irradiance is derived as equal total daily solar exposures between the 

observed value and the value from the simple sky model. The cloudiness (M) is represented as the ratio 
of the peak solar irradiance ( ) to the daily maximum extraterrestrial irradiance ( , ) as follows: 

,  (2) 
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The extraterrestrial irradiance ( ) is defined as the product of the solar constant (I0, fixed as 1362), 

and the eccentricity correction factor (E0) that is usually represented using a simple correlation  

(see Equation (3)). Thus, the extraterrestrial irradiance is given by:  

1,362 1 0.033 cos
2
365

 (3) 

where  is the number of the day in the year and  is the zenith angle, which is calculated from the 

function of local time and location [3,17]. 

As shown in Equation (1), the simple sky model consists of a single sinusoidal wave and therefore 

does not include the effects of weather variability. 

To represent accurately the variation in the solar radiation due to weather changes, a superposition of 

multiple sinusoidal waves with different magnitudes and frequencies are considered. In this study,  

two sinusoidal waves are added to the simple sky model as follows: 

	 sin 1 ∗ sin ∗ 	

∗ sin ∗ , 	

(4) 

where a1 and a2 are the amount of solar irradiance variation; b1 and b2 are the frequency of the weather 

changes and c1 and c2 are the rate of change in weather. 

Thus, the proposed model includes long (subscript 1) and short (subscript 2) periods of weather 

variations. In order to see how model variables effect solar irradiance distribution, a case study was 

conducted, and Figure 1 shows the distribution of solar radiation Icloudy,sky for the various values of the 

parameters a1, b1, c1 and b2. The effect of variable a1 is shown in Figure 1a. A higher value of a1 increases 

the depth of fluctuations. Figure 1b shows the effect of the frequency of the long-term weather changes 

b1. The number of b1 indicates the number of fluctuations during a day. Figure 1c illustrates the effect 

of long-term weather change rate c1. An increase in c1 results in a clear increase in total daily solar 

irradiance. The effect of the short period weather changes b2 is shown in Figure 1d. Similar to the case 

of b1, b2 represents the number of short-term fluctuations during a day. 

(a) (b) 

Figure 1. Cont. 
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(c) (d) 

Figure 1. Solar radiation distributions obtained by the proposed model for the different values 

of the parameters in Equation (4): (a) M = 1, b1 = 5, c1 = 3, a2 = 0; (b) M = 1, a1 = 0.3, c1 = 3,  

a2 = 0; (c) M = 1, a1 = 0.3, b1 = 5, a2 = 0; (d) M = 1, a1 = 0.3, b1 = 5, c1 = 3, a2 = 0.1, c2 = 3. 

Statistical indices are generally used for the characterization of solar radiation. The sky clearness 

index k is defined as the ratio of the actual received irradiance (instant global horizontal irradiance, ) 

to the maximum theoretically possible extraterrestrial irradiance ( ): 

 (5) 

The daily sky clearness index k 	 is then derived from the integrals of the variables in  

Equation (5) [3]. 

 (6) 

Kang and Tam [18] proposed the daily probability of persistence (POPD) index that describes the 

stability of the daily solar irradiance for a fixed one-minute time interval. POPD calculates a possibility 

that adjacent instantaneous clearness indices are equal. POPD is derived from the following procedure. 

1. Calculate the instantaneous clearness index  for each time series. 

2. Round off the value of k at the first decimal place (e.g., 0.1, 0.3, etc.). 

3. Count the number of identical cases between adjacent time series. 

4. Divide the counting number by the number of time series (POPD). 

The higher value of POPD indicates smaller weather variability. They also suggested a classification 

method based on kD and POPD to describe the daily weather variability and showed that the observed 

daily weather could be categorized into ten classes, as shown in Table 1. 
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Table 1. Classification parameters of solar radiation with kD and POPD [18]. 

Class kD POPD Description 

1 kD > 0.6 POPD > 0.9 
High quantity and high quality;  

sunny and steady sky conditions for almost the entire day 

2 0.3 < kD < 0.6 POPD > 0.9 
Medium quantity and high quality; partly cloudy,  

but sky conditions are relatively steady for most of the day 

3 kD < 0.3 POPD > 0.9 
Low quantity and high quality; overcast,  

but sky conditions are relatively steady for most of the day 

4 kD > 0.6 0.7 < POPD < 0.9 
High quantity and medium quality; sunny,  

but the sky conditions vary for part of the day 

5 0.3 < kD < 0.6 0.7 < POPD < 0.9 
Medium quantity and medium quality;  

partly cloudy and the sky conditions vary for part of the day 

6 kD < 0.3 0.7 < POPD < 0.9 Low quantity and medium quality; cloudy and the sky conditions vary 

7 kD > 0.6 0.5 < POPD < 0.7 
High quantity and low quality; partly sunny with sky conditions 

varying significantly for most of the day 

8 0.3 < kD < 0.6 0.5 < POPD < 0.7 
Medium quantity and low quality; various degrees of cloudiness and 

the sky conditions varying significantly for most of the day 

9 kD < 0.3 0.5 < POPD < 0.7 
Low quantity and low quality; various degrees of cloudiness,  

but high levels of fluctuations for the entire day 

10 - POPD < 0.5 Very low quality 

In order to examine the feasibility of the proposed model, four cases of the observed hourly solar 

irradiance samples are simulated. The solar radiation data are given by the National Renewable Energy 

Laboratory (http://www.nrel.gov/midc/) [19,20]. Each simulation curve is modelled according to the 

amount of solar irradiance (kD) and the characteristics of long- and short-term fluctuations. First, model 

shape variables of a1, a2, b1, b2, c1 and c2 are selected to implement the fluctuation pattern, and then, the 

amount of solar irradiance is matched by varying the value of cloudiness M. Solar radiation simulation 

variables and indices are shown in Table 2, and the corresponding irradiance distributions are shown in 

Figure 2. Figure 2a shows the irradiance distribution of the observed data and the simple model for a 

sunny day. During the daytime, the simple model returns relatively higher value of irradiance than the 

observed data, which make the thermal system warm-up faster during simulation. Figure 2b illustrates 

the irradiance distributions for a cloudy day. It is obvious that the proposed model does not match with 

fluctuations in various frequencies and intensities compared to the curves by the observed data exactly, 

but follows the tendency of the irradiance distribution. Meanwhile, similar to sunny day results, the 

simple model and the proposed model show larger irradiance during daytime. Figure 2c,d shows that the 

irradiance distribution of cloudy days is overcast, which is common. In this case, the proposed model 

does not fit well (Figure 2c). These kinds of weather changes can be simply implemented by removing 

fluctuation terms during, before or after a certain time (Figure 2d). Figure 2e,f illustrates the irradiance 

distribution of long-term large weather change conditions with short-term small fluctuations. Major 

differences between the cases are in the long term, such as the amount of solar irradiance (a1) being 0.3 

and 0.6 and the frequency of the weather changes being six and seven. In all cases, the simulated curves 

match with the observed one within a specific period of time. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 2. Solar radiation distributions for the actual weather data, the simple sky model and 

the proposed model as shown in Table 2. Data (a–d) observed in Anatolia-Rancho Cordova, 

California (latitude: 38.546° N; longitude: 121.24° W; elevation: 51 m; PST) [20].  

Data (e,f) observed in Golden, Colorado (latitude: 39.742° N; longitude: 105.18° W; 

elevation: 1828.8 m; MST) [19]. 
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Table 2. Solar radiation simulation variables and indices. 

Data Model 
Variables Indices 

M a1 b1 c1 a2 b2 c2 kD POPD Class 

Case 1 Observed        0.67 0.98 1 
 Simple 0.67       0.67 0.99 1 

Case 2 Observed        0.48 0.67 8 
 Simple 0.46       0.48 0.99 2 
 Model 0.81 0.2 8 3 0.6 60 3 0.48 0.67 8 

Case 3 Observed        0.61 0.69 7 
 Simple 0.61       0.61 0.99 1 
 Model 3-1 0.81 0.1 7 1 0.5 40 2 0.61 0.67 7 
 Model 3-2 * 0.76 0.1 7 1 0.5 40 2 0.61 0.79 4 

Case 4 Observed        0.72 0.78 4 
 Simple 0.73       0.72 0.99 1 
 Model 4-1 0.86 0.3 6 2 0.1 64 2 0.72 0.90 1 
 Model 4-2 1.01 0.6 6 2 0.1 64 2 0.72 0.84 4 
 Model 4-3 0.86 0.3 7 2 0.1 64 2 0.72 0.89 4 
 Model 4-4 1.01 0.6 7 2 0.1 64 2 0.72 0.81 4 

Note: * short-term fluctuation design at time 10:32 AM. 

We investigate how different values of model parameters impact on the kD and POPD, and we evaluate 

the proposed model by comparing its results with weather conditions in the kD-POPD classes. Figure 3 

shows the dependence of kD, POPD and kD-POPD classes on the parameters of the variable weather model 

given by Equation (4). The values of kD are strongly affected by the changes in the M, a1 and c1 values, 

while the values of POPD are mainly affected by the changes in the b1 parameter. Thus, the results 

presented in Figure 3 show that the proposed model can realize a wide range of weather changes for 

solar energy system simulations. Although the kD-POPD Classes 6, 7 and 9 do not appear in the figure, 

the solar radiation distributions in those classes can be easily obtained by simultaneously changing two 

or more variables in Equation (4). 

(a) (b) 

Figure 3. Cont. 

Class 3 Class 2 Class 5
Class 1 Class 4

Class 5
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(c) (d) 

Figure 3. Effects of the changes in (a) M, (b) a1, (c) b1 and (d) c1 on kD, POPD and the  

kD-POPD class for the base model with M = 1, a1 = 0.5, a2 = 0, b1 = 5, b2 = 0, c1 = 3 and c2 = 3. 

The weather simulation results show that the proposed model implements actual weather conditions 

to limited extent. In spite of these limitations, the proposed model could be applied to thermal system 

simulation, since the proposed model provides a tool for case studies beyond the intrinsic 

randomness of weather. 

3. Application: Dynamic Simulation of SORC 

In this chapter, a dynamic simulation of a solar organic Rankine cycle (SORC) system is conducted 

to figure out the differences between the simple model and the proposed model. The schematics of the 

SORC system is shown in Figure 4. The ORC system is a type of Rankine cycle system that uses organic 

refrigerant as the working fluid. The change of the solar irradiance influences the operating 

characteristics of the SORC system, such as solar collector efficiency, thermal efficiency and system 

on/off frequency. 

 

Figure 4. Schematic diagram of the solar organic Rankine cycle (SORC) model. 

Class 10

Class 2
Class 5

Class 8
Class 4Class 5 Class 1
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A lumped SORC model designed by Twomey et al. for studying the relationship between the solar 

radiation pattern and the SORC response [21] was adopted in this simulation. In this study, thermal 

storage is adopted, and it stabilizes the system operation from weather variability. Such an effect is 

studied by Wang et al. [22]. The SORC model expressed is as energy balance between solar cycle,  

ORC and heat losses as follows: 

 (7)

where  is the thermal storage internal energy,  is the useful heat gain from solar collector,  

is the heat transfer to the ORC and  is the standing heat losses (for a more detailed description of 

the modelling, see Twomey et al. [21]). Considering solar collector performances, the SORC system 

was designed to be activated at a storage temperature of 120 °C and deactivated at 85 °C. Small-scale 

SORC system studies [22,23] show that R245fa (1,1,1,3,3-pentafluoropropane) refrigerant has good 

performance in low and medium heat source temperatures; therefore, R245fa refrigerant was selected as 

the working fluid. For stable and continuous system operation, the pressure ratio of three was applied 

(the adopted pressure ratio is relatively low compared to other small-scale SORC studies [22–25]). The 

remaining thermal energy in the thermal storage after sunset was used for additional power generation. 
The shaft power ( ) is calculated by the product of working fluid mass flow rate ( ) and the enthalpy 

difference between expander inlet ( , ) and outlet ( , ) as follows: 

, ,  (8)

To figure out the weather variability effect on the SORC system, long-term large weather changing 

conditions with short-term small fluctuations in Case 4 of Table 2 are simulated. The amount of the  

total daily solar irradiance kD for all model distributions was identical to the value for the actual  

distribution. Thus, system operation characteristics and power output are changed by the difference of 

solar irradiance distributions. 

Figure 5 shows the simulation results for the thermal storage temperature and the shaft power. The 

results of storage temperature obtained both using the actual weather data and as predicted by the 

proposed model exhibit large variations and local overshoots, while the storage temperature predicted 

by the simple sky model shows a smooth behavior with significantly less variation. Thus, the temperature 

and shaft power results show that the proposed model provides better system operation characterization, 

including operation mode changes, than the simple sky model. In all cases, the amount of daily total 

solar irradiances is the same; however, the operating characteristics are dramatically changed according 

to the shape of solar irradiance distributions. In Cases 4-2 and Case 4-4, the system is turned off around 

noon, while in Cases 4-1 and 4-3, the model is not turned off, as an illustration of simple cases. Table 3 

lists the daily work total and its differences compared with the results of the observed data. In Case 4-4, 

weather variability does not match the observation when clouds appear, which results in different 

operating characteristics and the largest difference in daily work total. The case study results show that 

the proposed model does not perfectly express the actual observed weather condition and its system 

responses. However, it is possible to test a variety of weather conditions according to the study object. 
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(a) 

(b) 

Figure 5. (a) Thermal storage temperature and (b) shaft power for the actual weather 

conditions, the simple sky model and the proposed model. 

Table 3. Daily work total and its differences between the results of observed data and the others. 

Parameters Observed Simple Case 4-1 Case 4-2 Case 4-3 Case 4-4 

Work Total (kWh) 6.68 6.81 6.88 6.71 6.89 6.89 
Difference (%) 0.00 1.92 2.93 0.43 3.04 3.04 

4. Conclusions 

A mathematical model of the hourly solar radiation for a cloudy sky was proposed and evaluated 

using the clearness index kD and the probability of persistence POPD. We found that the proposed model 

could realize all classes of the kD-POPD classification scheme suggested by Kang and Tam [18]. Thus, 

the proposed model can treat a wide range of weather changes in simulations of solar energy systems. 

As an illustration, the proposed model was applied to the dynamic simulation of a SORC. The simulation 

results showed that the proposed model could provide better system operation characteristics than the 

simple sky model for significant variations in weather conditions. The proposed model in this study is 

the first model of weather variability; we expect that further investigations will improve the model and 

enable more effective design and development of solar energy systems. 
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