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Abstract: Accurate estimation of model parameters and state of charge (SoC) is crucial for 

the lithium-ion battery management system (BMS). In this paper, the stability of the model 

parameters and SoC estimation under measurement uncertainty is evaluated by three 

different factors: (i) sampling periods of 1/0.5/0.1 s; (ii) current sensor precisions of 

±5/±50/±500 mA; and (iii) voltage sensor precisions of ±1/±2.5/±5 mV. Firstly, the 

numerical model stability analysis and parametric sensitivity analysis for battery model 

parameters are conducted under sampling frequency of 1–50 Hz. The perturbation 

analysis is theoretically performed of current/voltage measurement uncertainty on model 

parameter variation. Secondly, the impact of three different factors on the model 

parameters and SoC estimation was evaluated with the federal urban driving sequence 

(FUDS) profile. The bias correction recursive least square (CRLS) and adaptive 

extended Kalman filter (AEKF) algorithm were adopted to estimate the model parameters 

and SoC jointly. Finally, the simulation results were compared and some insightful 

findings were concluded. For the given battery model and parameter estimation algorithm, 

the sampling period, and current/voltage sampling accuracy presented a non-negligible 

effect on the estimation results of model parameters. This research revealed the influence 

of the measurement uncertainty on the model parameter estimation, which will provide the 

guidelines to select a reasonable sampling period and the current/voltage sensor sampling 

precisions in engineering applications. 
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1. Introduction 

The lithium-ion battery has been widely utilized as a promising power source of hybrid-electric 

vehicles (HEVs) and pure electric vehicles (EVs) for its high energy and power density, no memory 

effect, and slow rate of self-discharge. Reduced safety hazards and an efficient Li-ion battery system 

can be achieved by developing an advanced battery management system (BMS). The model 

parameters and state of charge (SoC) are two critical indicators for an efficient BMS to operate the 

battery system safely and extend the cell life longevity. 

1.1. Literature Review 

Many studies have been performed in literature about the battery model parameters and SoC 

estimation. According to their highlights, these works can be classified around four categories:  

(I) operation environments; (II) varied aging states; (III) modeling and algorithm error; and  

(IV) measurement uncertainty. 

In Class I, He et al. [1] realized the influence different charging and discharging rates had on the 

cell capacity. They formulated the coulombic efficiency that related with the current rates (1/3C–3C) 

and flowing direction to achieve a more accurate SoC estimation. To improve the accuracy of the 

battery model further, the authors He et al. [2] and Xing et al. [3] considered the temperature effect 

with the range of −20–60 °C and 0–40 °C. In their research, the coulombic efficiency was expressed as 

the polynomial equation of temperature. Wang et al. [4] considered the current rates and temperature 

effect together to correct the coulombic efficiency by creating a table to achieve more precise estimation 

of SoC and energy. In contrast, Liu et al. [5] addressed this issue by using the back-propagation neural 

network (BPNN) model to manage the current rate and temperature effect, and their simulation results 

also presented great performance. In Class II, the authors [6,7] analyzed the aging effect in the SoC 

estimation for lithium-ion polymer battery (LiPB) by two methods: first, the cell nominal capacity was 

re-modified according to the actual health environments; second, the cell’s open circuit voltage (OCV) 

was re-expressed as a second order polynomial equation, which is related with the SoC and modified 

cell capacity. Based on the recursive least square (RLS) and adaptive Kalman filter algorithm, the SoC 

estimation could be maintained with high accuracy. Dai et al. [8] applied the SoC estimation on a 

Li-ion battery pack of multiple inconsistent cells with the averaged cell model. Then they attempted to 

estimate the SoC for each individual cell, and the simulation results indicated good performance for 

the model and algorithm. Zhong et al. [9] analyzed the difference between the cells and the impact of 

balance control to minimize the cell capacity variation. The battery pack in serial and parallel connections 

and the passive balance control effect were considered to evaluate the impact of cell uniformity 

and inconsistency. 

In Class III of the modeling and algorithm error, the battery model should first be established. 

In general, the battery model consists of model parameters and OCV in two parts. The two major 
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factors of parameters uncertainty in varying aging and temperature effects have been reviewed previously. 

This review will address the OCV variation and SoC estimation algorithm uncertainty under different 

environments. Liu et al. [10] conducted the OCV test from 0 °C to 45 °C, and compared the OCV 

variation with temperature effect by creating a table. Hu et al. [11] provided the OCV value for lithium 

nickel-manganese-cobalt oxide (LiNMC) and lithium iron phosphate (LiFePO4) cell by a series of 

polynomial functions with variables of temperature and SoC. Xiong et al. [12] presented the OCV 

functions for four different kinds of chemistry cells, such as carbon/lithium manganese oxide 

(C/LMO), lithium titanate oxide/nickel-manganese-cobalt-oxide (LTO/NMC), carbon/NMC (C/NMC) 

and carbon/lithium iron phosphate (C/LFP). Their simulation showed that the adaptive extended 

Kalman filter (AEKF) based SoC estimation method is suitable for multiple kinds of cells and obtained 

good estimation results with a maximum error being less than 3%. About the adaptive algorithm for 

SoC estimation, the extended Kalman filter (EKF) algorithm is firstly applied to the lithium ion 

polymer battery by Plett [13–15] in the work. Afterward, more extensive studies were conducted to assess 

the effect of the initial SoC creation, process covariance Rk, and measurement covariance Qk [16,17]. 

To overcome the uncertainty of measurement noise covariance and initial SoC creation, the unscented 

Kalman filter [2,18,19], the particle filter [9,20,21], the AEKF [1,7,12], and the adaptive observer [22,23] 

techniques are proposed for SoC estimation. In Class IV, the measurement uncertainty remains an 

emerging research field according to our knowledge. Liu et al. [10] analyzed the current measurement 

with drift noise effect on SoC estimation by a dual-particle-filter estimator. In their study, the drift 

current was considered as an undetermined static parameter in the battery model to eliminate the drift 

current effect. Xia et al. [24] conducted the SoC estimation under the measurement error of both 2.5% 

voltage noise and 5% current noise. The results showed the SoC estimation error would not exceed 4.5%. 

However, as stated in [25], the current sensors have a certain grade of measurement accuracy and 

resolution. The amplifier circuit also exhibited some accuracy issues with the adaptation of resistors, 

capacitors and power lines. The micro-control-unit (MCU) involved the rounding errors in the process 

of analogue to digital (A/D) conversion and calculation. The current signal with harmonics also caused 

measurement errors during the sampling process with the MCU. All these noises and uncertainties in 

the measurement loop will generate errors for model parameters and SoC estimation. The detailed 

information is summarized and listed in the following Table 1. 

Table 1. Factors influencing on the model parameters and state of charge (SoC) estimation. 

Attribution Item in detail Reference

I. Operation environments 
I.1. Current direction and rates 

[1–5] 
I.2. Temperature effect 

II. Varied aging states 

II.1. Battery capacity loss during aging cannot be counted in the 
SoC calculation 

[6,7] 

II.2. Cell inconsistency [8,9] 
II.3. Self-discharging cannot be counted for by the SoC algorithm unknown 
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Table 1. Cont. 

Attribution Item in detail Reference 

III. Modeling and algorithm error 

III.1. Parameters uncertainty due to varying aging [6,7] 
III.2. Parameters uncertainty due to varying temperature [2–5] 
III.3. OCV uncertainty due to varying aging [6] 
III.4. OCV uncertainty due to varying temperature [10] 
III.5. OCV uncertainty due to battery types [11] 
III.6. Different sampling rate Ts unknown 
III.7. Battery initial SoC remains unknown 

[16] 
III.8. Different noise covariance Rk, Qk 
III.9. Different model accuracy and adaptive algorithms [1] 

IV. Measurement uncertainty 

IV.1. Current measurement with drift noise [10] 
IV.2. Different sampling rate Ts unknown 
IV.3. Current sensor with different resolution unknown 
IV.4. Current sensor with different precision [24] 
IV.5. Voltage sensor with different resolution unknown 
IV.6. Voltage sensor with different precision [24] 
IV.7. Loading/excitation profile dependence unknown 

1.2. Motivations and Contributions 

The measuring system will inevitably bring in uncertainty and errors between measured signal and 

true signal from sampling aliases, conversion loss, and rounding calculation solutions. In this paper, 

the key innovation and contribution was to evaluate the effects of the measurement uncertainty on 

battery model parameter and SoC estimation both in theory and experiments. Different from other research, 

the measurement uncertainty is assumed from three different factors: (a) sampling periods of 1/0.5/0.1 s; 

(b) current sensor precisions of ±5/±50/±500 mA; and (c) voltage sensor precisions of ±1/±2.5/±5 mV. 

Afterward, the perturbation analysis of current and voltage measurement uncertainties, model stability 

analysis and parametric sensitivity analysis of model parameters were conducted respectively.  

The analytical result and conclusion provided guidelines that an engineer could use to choose the 

optimal sampling periods and current/voltage sensor precisions for improved estimation accuracy of 

model parameters and SoC. 

1.3. Organization of the Paper 

This paper will be organized as follows. In Section 2, the discrete battery model is given and the 

perturbation analysis of current/voltage measurement uncertainty, model stability analysis and 

parametric sensitivity analysis are conducted. In Section 3, the AEKF algorithm was adopted for the SoC 

estimation based on the auto regressive exogenous (ARX) battery model. In Section 4, the experiment 

setup is established, and the measured OCV-SoC curve is presented. In Section 5, the simulations were 

implemented upon three different factors. Then, the comparison is performed to analyze the weighted 

importance of factors on parameter and SoC estimation. Finally, the paper ends with a concluding remark. 
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2. Battery Model Analysis and Parameter Estimation 

2.1. Auto Regressive Exogenous (ARX) Battery Model 

As shown in Figure 1, the equivalent circuit model is employed to simulate the cell dynamic 

performance. It consists of an ohmic resistor Ro, open circuit voltage ୭ܸୡሺSoCሻ and one RpCp network 

connected in series. The resistor Ro represents the cell internal resistance. The RpCp network describes 

the electrochemical polarization dynamics. The electrical behavior of the lithium-ion battery can be 

expressed by the following equation: 

p p
p p p

t oc p o L

1 1

+ +          

LU U I
C R C

U V U R I

   

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
 (1)

where Up indicates the polarization voltage across the RC network. IL stands for the applied current 

and Ut stands for the terminal voltage. SoC is defined by current integration as: 
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where ηi is the coulombic efficiency, which is related with the current flow direction and magnitude, 

temperature, and the degradation/aging status. Herein, as the coulombic efficiency is not the priority in 

this research, the value of ηi is assumed to be 1. Ts is the sampling interval, and Qn is the nominal capacity. 
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Figure 1. The schematic diagram of the equivalent circuit model for lithium-ion battery. 

A bilinear transformation method ݏ ൌ ଶ

౩்

ଵି௭షభ

ଵା௭షభ
 is employed to discrete the battery model into z 

domain for a given sampling interval, and the discrete transfer function is given as Equation (3): 
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With the model parameters [a1, b0, b1] equated as: 
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It can be found the model parameters [a1, b0, b1] are not only subjected to Ro, Rp, Cp, but also related 

to the sampling period Ts. Ro, Rp, and Cp can be solved based on the inverse equations of a1, b0 and b1: 

   
 

2

1 0 1 10 1
o p p2

1 1 1 0 1

2 1
; ;

1 1 4

a b b T ab b
R R C

a a a b b

 
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  
 (5)

After discretization, Equation (3) can be rewritten in the form of ARX as follows: 

d 1 d 0 L 1 L( ) ( 1) ( ) ( 1)U k a U k b I k b I k      (6)

where k is the time point, k = 1,2,3,…. N. Since Ud = Ut − Voc: 
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The information vector is defined as the following Φሺ݇ሻ ൌ ሾ ௅ܷሺ݇ െ 1ሻ ௅ሺ݇ሻܫ ௅ሺ݇ܫ െ 1ሻ 1ሿ and 

the parameter vector is defined as Θሺ݇ሻ ൌ ሾܽଵ ܾ଴ ܾଵ ሺ1 െ ܽଵሻV୭ୡሿ், then they can be combined as 

the following: 

( ) ( ) ( )Y k k k   (8)

The RLS algorithm [26] is an effective method for online parameter identification. As an 

improved algorithm, the bias correction recursive least square (CRLS) technique [27] is used in this paper. 

The basic idea of CRLS is to eliminate the estimation bias by adding a correction term in the RLS 

estimation algorithm. Therefore, the performance and numerical convergence of the algorithm can be 

prompted to a higher level. The detailed implementation of CRLS algorithm could refer to our 

previous work [28]. 

2.2. Perturbation Analysis of Measurement Uncertainty 

In the literature, there are many adaptive methods for parameter identification, such as RLS, EKF, 

and adaptive observers. All these methods can give the recursive-identified value for model parameters. 

However, they cannot tell the parameter variation under current and voltage measurement uncertainty. 

In this section, the parameter variation is theoretically analyzed under the perturbation of current/voltage 

measurement uncertainty. Based on above Equations (4) and (7), the formula of parameters (Ro, Rp, Cp) 

can be deducted as follows: 
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These expressions can be used to analyze the impact of measurement errors (δIL, δUt) on the model 

parameters (Ro, Rp, Cp). Let’s take the ohmic resistance Ro, for an example, to illustrate how the current 
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sensor error δIL affects the estimated results of Ro. By incorporating the current error δIL, the new 

modified current (IL + δIL) will replace the IL in Equation (9) to achieve the new estimated ܴ୭ᇱ . 
Then, the relative error of Ro can be defined as: 

o o

o

ε 100%
R R

R

 
   (12)

By this method, the effect of current sensor error δIL on the parameter variation can be analyzed. 

Since the battery system is time-varying, the pulse current excitation (1.0C, 30 s) is chosen as a typical 

profile. In this research, the current sensor error δIL is assumed as ±5/±50/±500 mA. The calculation 

result is listed in Figure 2a–c. Similarly, the voltage sensor error δUt (±1/±2.5/±5 mV) effect on the 

parameter variation can be assessed in Figure 2d–f). 

 

Figure 2. Relative errors of model parameters: (a) Ro, (b) Rp, (c) Cp under current noises; 

and (d) Ro, (e) Rp, (f) Cp under voltage noises. 

Seen from Figure 2, the ohmic resistance Ro is more robust than the Rp and Cp. As the current noise 

and voltage noise enhanced, the relative error of parameters enlarged. The Rp and Cp are used to 

express the battery dynamic performance, and at the beginning of pulse current excitation, the load 

current flows mostly upon the capacitor. Therefore, the relative error of capacitor Cp is smaller at the 

beginning. In contrast, the relative error of resistance Rp is much larger at the beginning. The minimum 

values of relative error of model parameters (Ro, Rp, Cp) under current/voltage noises are summarized 

in Table 2. 
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Table 2. Minimum values of relative error of model parameters (Ro, Rp, Cp) under 

current/voltage noises. 

Item Magnitude of noise 
Parameter relative error (%) @ 0.2C Parameter relative error (%) @ 1.0C 

Ro Rp Cp Ro Rp Cp 

Current noise 

δIL = ±5 mA 0.0625 0.1513 0.1411 0.0125 0.0303 0.0282 

δIL = ±50 mA 0.6224 1.5058 1.4111 0.1249 0.3024 0.2822 

δIL = ±500 mA 6.000 14.407 14.111 1.2397 2.9966 2.8223 

Voltage noise 

δUt = ±1 mV 4.1667 8.5613 9.2046 0.8333 1.7123 1.8815 

δUt = ±2.5 mV 10.416 21.403 23.518 2.0833 4.2806 4.7038 

δUt = ±5 mV 20.833 42.806 47.037 4.1667 8.5613 9.4076 

2.3. Model Stability Analysis 

Model stability is critical to indicate the model stable and robust level under external perturbation. 

As the model stability is increased, the model output will be much stable; meanwhile the identification 

of model parameters will be much easier. The two key factors (poles and zeros) will be used to reveal 

the model stability level in a quantifiable form. A detailed process for poles and zeros calculation is in 

the author’s previous work [28]. 

To assess the model stability, the battery parameters are assumed as Ro = 0.002 Ω; Rp = 0.001 Ω; 

Cp = 8000 F; Ts = 1 s, 0.5 s, 0.2 s, 0.1 s, 0.02 s, and the parameter sets [a1, b0, b1] of the ARX model is 

calculated using Equation (4). Meanwhile, the model poles and zeros can be computed to present the 

model stability level and the result is listed in Table 3. 

From Table 3, the poles and zeros of the system increased as Ts decreased, which reveals the model 

stability is degraded. According to the Lyapunov’s first stability criterion, the model stability will 

become much poorer as the eigenvalues of the ARX model get close to one. That is, perturbations 

caused by noise and unmodeled dynamics could significantly influence the accuracy of model parameter 

identification. To this point, the sampling rate should be lower (i.e., sampling period should be higher), 

to improve the model stability and the robustness of parameter identification. From an engineering 

viewpoint, it is recommended to restrict the eigenvalues within a range of 0–0.95. In other words, 

Ts should be larger than one threshold, such as Ts ≥ 0.5 s. 

Table 3. Parameter variation and stability analysis for the auto regressive exogenous 

(ARX) model. 

Sampling Ts (s) 
Parameter variation Stability analysis 

a1 b0 b1 Pole Zero 

1 0.88235 0.00205 −0.00170 0.88235 0.82857 
0.5 0.93939 0.00203 −0.00184 0.93939 0.91044 
0.2 0.97530 0.00201 −0.00193 0.97530 0.96319 
0.1 0.98757 0.00200 −0.00196 0.98757 0.98142 

0.02 0.99750 0.00200 −0.00199 0.99750 0.99625 

In another way, the sampling period Ts should be chosen modestly enough to capture the significant 

variation or critical events of Li-ion cell dynamics. In the viewpoint of hardware runtime, the sampling 
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period Ts should be sufficient for the SoC calculation on the ECU platform with the discrete 

battery model, CRLS and AEKF algorithms. Therefore, the optimized time sampling period must be 

selected in a tradeoff way by considering the model stability, parametric sensitivity, system-sampling 

precision and the hardware runtime. 

2.4. Parametric Sensitivity Analysis 

In this research, the model parameters are identified online by CRLS. In other words, the variations 

of a0, b0, or b1 will affect the model parameter set P of Ro, Rp, and Cp. The sensitivity of the model 

parameters to the changes in variable α (such as a0, b0, or b1) is given by the partial differentiation of 

P(s) with respect to α and is denoted as: 

P P
S

P

 
 


 (13)

where P is the parameter set of Ro, Rp, and Cp as defined in Equation (5), and α is a0, b0, or b1. To be 

specific [28]: 
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Based on the sensitivity equation, the parametric sensitivity has been calculated at four sampling 

periods (Ts = 1 s, 0.5 s, 0.1 s and 0.02 s), and the results are listed in Table 4. 

Table 4. Parametric sensitivity analysis of the ARX model at four sample periods  

(Ts = 1/0.5/0.1/0.02 s). 

Item Sensitivity a1 b0 b1 

Sample @ Ts = 1 s 
Ro −0.4688 0.5469 0.4531 
Rp 23.4374 16.4062 −15.4062 
Cp −15.4688 −16.4063 15.4063 

Sample @ Ts = 0.5 s 
Ro −0.4844 0.5234 0.4766 
Rp 47.4687 32.4531 −31.4531 
Cp −31.4844 −32.4531 31.4531 

Sample @ Ts = 0.1 s 
Ro −0.4969 0.5047 0.4953 
Rp 239.4938 160.4906 −159.4906 
Cp −159.4969 −160.4906 159.4906 

Sample @ Ts = 0.02 s 
Ro −0.4994 0.5009 0.4991 
Rp 1199.5 800.4981 −799.4981 
Cp −799.4994 −800.4981 799.4981 

First, the sensitivity of Ro with respect to parameters [a0, b0, b1] was not great and always retained 

within [−0.45–0.54]. As the growth of Ts, the sensitivity of Ro on a0, b0, and b1 became more uniform. 

This illustrated that Ro was much more robust and more easily identifiable regardless of the sampling 

period Ts. This characteristic was confirmed in our later simulation. Second, the sensitivity of Rp and Cp 

increased quasi-linearly as Ts decreased. Specifically, a small disturbance in a0, b0, and b1 may cause 
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large fluctuations in Rp and Cp when Ts is much smaller; therefore, this feature will also increase the 

difficulty for real-time parameter identification. In practice, it is suggested to limit Ts to be greater than 

a certain level to maintain good stability for parameter identification. 

3. Adaptive Extended Kalman Filter Algorithm 

In this section, the model states and parameters are estimated jointly based on real measurements of 

the current, voltage and temperature. In theory, the joint state and parameter estimation algorithm 

could provide a more accurate estimation result for battery model parameters and SoC. The general 

working principle of the joint estimation algorithm is displayed as Figure 3. 
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Figure 3. General diagram of the battery model parameters and SoC joint estimation 

with adaptive extended Kalman filter (AEKF) and correction recursive least square 

(CRLS) algorithms. 

The AEKF [1,17,29] is an advanced method for system state estimation, especially when the system 

process and measurement noise are unknown. This algorithm can avoid the estimation error divergence 

effectively due to its robustness property. Furthermore, it can enhance the performance in the SoC 

estimation enormously. 

Firstly, the general form of state space representation is presented as: 

+1 ( , )

( , )

(0, ),   (0, )

k k k k

k k k k

k k k k

X f X u w

Y g X u v

w N Q v N R
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 

 (15)

where Xk is the model state, uk is the model input, k is the time index, ܎ሺ∙ሻ and ܏ሺ∙ሻ indicate the process 

equation and output equation of the battery model, respectively, ωk is a discrete time process white 

noise with a covariance matrix Qk, whose initial value can be chosen by the state Xk properties. 
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Similarly, υk is a discrete time measurement white noise with covariance matrix Rk, whose initial value 

can be determined according to the voltage sensor precision. 

The battery model Equations (1) and (2) can be transformed as state space form: 
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After several iterations, the estimated model voltage will converge to the truly measured value; 

meanwhile, the estimated SoC will converge to the true or optimal value. 

4. Experimental Setup 

The test bench setup is shown as Figure 4. It consists of a battery cycler, a thermal chamber for 

temperature control, and a computer for script programming and data storage. The battery testing 

system is responsible for loading the battery module with maximum charging/discharging current of 

±500 A. The measurement error of the current/voltage transducer inside the cycler is within 0.25%. 

The key specification of the LiFePO4 cell is listed in Table 5. 

 

Figure 4. Configuration of the battery test bench. 

Table 5. Main specifications of the test cell. 

Type 
Rated 

capacity 
Rated 
energy 

Maximum 
current 

Rated 
voltage 

Upper 
voltage 

Lower 
voltage 

LiFePO4 60 A h 192 W h 3C, 180 A 3.20 V 3.65 V 2.10 V 
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The LiFePO4 cell is cycled with the OCV test as stated in [16]. According to the emphasis and 

priority in this research, the averaged OCV is employed to simplify the hysteresis phenomena of the OCV 

under charging and discharging process. The computed result of averaged OCV is listed in Figure 5. 

The open circuit voltage Voc(SoC) can be expressed by a polynomial function as: 

  2 3 4
oc 0 1 2 3 4V SoC K K SoC K SoC K SoC K SoC          (18)

where Ki (i = 0, 1, …, 4) are the polynomial coefficients to fit the averaged OCV with respect to 

different SoC based on the least square techniques, and the specific values are 3.1292, 0.00025, 

0.00085, 0.0421, 0.0076, respectively. By incremental capacity analysis (ICA), the dSoC/dOCV 

reaches its upper limit of 0.0145 at the voltage of about 3.280 V, which means the 1 mV estimated 

error of OCV will result in about 1.45% for SoC estimation bias. 

 

Figure 5. (a) The open circuit voltage (OCV) test and (b) incremental capacity analysis 

(ICA) result at temperature 25 °C. 

5. Simulation and Discussion 

In this section, the effects of measurement uncertainty on battery model parameters and SoC estimation 

is evaluated in the following three aspects: (i) sampling periods of 1/0.5/0.1 s; (ii) current sensor 

accuracy of ±5/±50/±500 mA; and (iii) voltage sensor accuracy of ±1/±2.5/±5 mV. In Section 5.4, 

the simulations of these three different scenarios are compared to evaluate the impact of each factor on 

the model parameters and SoC estimation. The federal urban driving sequence (FUDS) profile is a 

typical experiment cycle to assess the model and algorithm performance. In this research, the parameter 

sets Θ = [Ro, Rp, Cp] = [0.002, 0.001, 8000] is adopted as a baseline. 
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5.1. Sampling Period Effect 

To evaluate the effect of the sampling periods on the battery model parameters and SoC estimation, 

three different sampling periods of 1/0.5/0.1 s are selected in the simulation with the CRLS and AEKF 

algorithm. The estimation results of the model parameters under the FUDS loading profiles are shown 

in Figure 6. 

 

Figure 6. Estimated model parameters: (a) Ro, (b) Rp, (c) Cp and (d) OCV at the sampling 

periods of 1/0.5/0.1 s. 

Figure 6a shows the estimated ohmic resistance Ro and the reference value. The maximum 

estimation error of Ro increases from 0.2408% to 1.9072% when the sampling rate increased from 1.0 s 

to 0.1 s. Figure 6b,c lists the estimated polarization resistance Rp and polarization capacitance Cp 

respectively. When the sampling period is 1 s, the maximum estimation errors of Rp and Cp are 3.3859% 

and 2.6605%. As the sampling period decreased to 0.1s, the maximum estimation errors of Rp and Cp 

increased hugely to 21.9172% and 23.81%. If three parameters (Ro, Rp and Cp) are compared together, 

it can be found the pair of Rp and Cp is much more sensitive to the noise. This conclusion can be verified 

by the previous model stability and parameter sensitivity analysis. As the sampling period declines 

from 1 s to 0.1 s, the model stability will degrade, and the parameter sensitivity will be intensified, 

which means the perturbation to the model parameters will be enhanced under the same noise 

excitation. Finally, the estimated OCV is plotted in Figure 6d. It reveals that the maximum estimation 

error of OCV remains nearly the same level. In other words, the sample period exhibits slighter effect 

on the OCV estimation. 
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Figure 7 is the estimation results of SoC and SoC error for three different sampling rates under the 

FUDS loading profiles. From Figure 7, we find that the SoC estimation errors for three different sampling 

rates are 1.432%, 1.536% and 1.729%. These results reveal that the effect of sampling rate on the SoC 

estimation accuracy is not significant. Through the comparison, it can infer that the sampling rate has 

more influence on the model parameters estimation than the SoC estimation. The statistical error 

analysis of model parameters and SoC, such as maximum error and root-mean-square error (RMSE) 

is shown in Table 6. 

 

Figure 7. SoC estimation results at the sampling periods of (a) 1 s, (b) 0.5 s, (c) 0.1 s; 

and the SoC error at the sampling periods of (d) 1 s, (e) 0.5 s, (f) 0.1 s. 

Table 6. The statistical error analysis of model parameters and SoC estimation error. 

RMSE: root-mean-square error. 

Item Sample @ 1.0s Sample @ 0.5s Sample @ 0.1s 

Parameters Ro Rp Cp SoC Ro Rp Cp SoC Ro Rp Cp SoC 
Maximum error (%) 0.24 3.38 2.66 1.43 0.38 7.33 5.09 1.53 1.90 21.9 23.8 1.72 

RMSE (%) 0.06 1.34 1.23 0.33 0.11 2.55 2.10 0.34 0.38 8.39 7.31 0.36 

5.2. Current Sensor Accuracy Effect 

In the engineering application, the accuracy of the current sensor/transformer is divided into six 

grades of 0.1, 0.2, 0.5, 1, 3, 5, according to China’s national standards GB 1208-1997. The number listed 

here indicates that the accuracy of the current sensor with the unit of the percentage. To be instinctive, 

some typical current transducers with detailed specification [30,31] are collected in the following Table 7. 

From the table, it can be found that the sensor accuracy is varied from ±50 mA to ±500 mA for 

different kinds of current transducers. 
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Table 7. The accuracy information comparison of three typical current sensors. 

Company and 
product name 

LEM DHAB S/25 
(Geneva, Switzerland) 

LEM LA100-P 
(Geneva, Switzerland) 

Allegro, ACS758  
LCB-100B-PSF-T 

(Worcester, MA, USA) 

Transducer type Open loop Closed loop Closed loop 

Supply voltage 5 V 5 V 3.3 V or 5 V 

Primary current Ip 
±25 A for ch1;  
±200 A for ch2 

±100 A ±100 A 

Output voltage Vsn 0.25–4.75 V - Vref ±2 V 

Overall accuracy @Ip,  
T = 25 °C 

±4%, ±500 mA ±0.45%, ±50 mA ±2.4%, ±150 mA 

Linearity error <±1% <±0.15% <±1.25% 

Operation temperance −40.125 °C −40.85 °C −40.150 °C 

Response time <25 ms <1 μs <4 μs 

In this research, three current precisions of ±5/±50/±500 mA are chosen to evaluate the effect of 

current sensor accuracy on the model parameters and SoC estimation. Figure 8 is the estimation results 

of the model parameters under the FUDS loading profiles. Figure 8a shows the estimated ohmic resistance 

Ro and the reference value. It reveals that the maximum estimation error of Ro increases from 0.0263% 

to 0.3921% with the current sensor accuracy increased from ±5 mA to ±500 mA. Figure 8b,c lists the 

estimated polarization resistance Rp and polarization capacitance Cp respectively. When the current 

sensor accuracy is ±5 mA, the maximum estimation errors of Rp and Cp are 0.7180% and 0.5015%. 

As the current sensor accuracy increased to ±500 mA, the maximum estimation errors of Rp and Cp 

also increased greatly to 3.5399% and 2.4398%. Finally, the estimated OCV is plotted in Figure 8d. 

It reveals that the maximum estimation error of OCV varies from 0.0433 mV to 1.9094 mV as the 

current accuracy increases from ±5 mA to ±500 mA. The statistical error analysis of model parameters, 

such as maximum error and RMSE is shown in Table 8. 

 

Figure 8. Estimated model parameters: (a) Ro, (b) Rp, (c) Cp, and (d) OCV at the current 

precisions of ±5/±50/±500 mA. 
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Table 8. The statistical error analysis of model parameters and SoC at the current sensor 

precisions of ±5/±50/±500 mA. 

Item Current accuracy: ±5 mA Current accuracy: ±50 mA Current accuracy: ±500 mA 

Parameters Ro Rp Cp SoC Ro Rp Cp SoC Ro Rp Cp SoC 

Maximum error (%) 0.02 0.71 0.50 0.06 0.04 0.69 0.45 0.26 0.39 3.53 2.43 2.76 

RMSE (%) 0.01 0.33 0.25 0.01 0.01 0.33 0.25 0.06 0.15 1.50 1.15 0.54 

Figure 9 is the estimation results of SoC and SoC error for three different current sensor precisions 

under the FUDS loading profiles. From Figure 9, we find that the SoC estimation errors for three different 

precisions are 0.0628%, 0.2607% and 2.7671%. These results reveal that the effect of current 

precisions on the SoC estimation accuracy is evident. 

 

Figure 9. SoC estimation results at the current sensor precisions of (a) ±5 mA, (b) ±50 mA, 

(c) ±500 mA; and the SoC error at the current sensor precisions of (d) ±5 mA, (e) ±50 mA, 

(f) ±500 mA. 

5.3. Voltage Sensor Accuracy Effect 

As for the voltage sensor, the accuracy issue will occur with the adaptation of analogue and digital 

elements, the rounding error of MCU, the sampling alias and harmonics or even electro-magnetic 

interference, etc. Some typical voltage sensor/transducers with detailed specification [32–34] are collected 

in the following Table 9. From the table, it can be found that the sensor accuracy is varied from ±1.2 mV to 

±12.5 mV for different kinds of voltage transducers. 
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Table 9. The accuracy information comparison of three typical voltage sensors. 

Company and  
product name 

Linear Technology Co. 
LTC6802  

(Milpitas, CA, USA) 

Texas Instrument Co. 
bq76PL536  

(Dallas, TX, USA) 

Maxim Co. 
MAX11068  

(San Jose, CA, USA) 

Voltage meas. channels 12 6 12 
AD resolution (Bit) 16 14 12 
AD conversion time 57 μs 6 μs 10 μs 

Typical voltage accuracy ±1.2 mV ±3.0 mV ±12.5 mV 
Maximum voltage accuracy ±8.3 mV ±18.0 mV ±50.0 mV 

Operating temp. range −40 °C to +85 °C −40 °C to +85 °C −40 °C to +105 °C 
Cell balancing 12 channels 6 channels 12 channels 

Input voltage range (V) 0–75 0–30 6–72 

To evaluate the effect of voltage precisions on model parameters and SoC estimation, three voltage 

accuracies of ±1/±2.5/±5 mV are adopted in the simulation. Figure 10 is the estimation results of the 

model parameters under the FUDS loading profiles. Figure 10a shows the estimated ohmic resistance 

Ro and its reference value. It indicates that the maximum estimation error of Ro increases from 0.3351% 

to 1.7986% with the voltage sensor accuracy increased from ±1 mV to ±5 mV. Figure 10b,c lists the 

estimated polarization resistance Rp and polarization capacitance Cp respectively. When the voltage 

sensor precision is ±1 mV, the maximum estimation errors of Rp and Cp are 2.5103% and 2.3691%. 

As the voltage sensor precision rises to ±5 mV, the maximum estimation errors of Rp and Cp ascends 

abundantly to 20.7418% and 15.9086%. Finally, the estimated OCV is plotted in Figure 10d. It reveals 

that the maximum estimation error of OCV varies from 0.7227 mV to 3.4698 mV, which is nearly in 

accordance with voltage precisions. The statistical error analysis of model parameters and SoC, such as 

maximum error and RMSE is shown in Table 10. 

 

Figure 10. Estimated parameters: (a) Ro, (b) Rp, (c) Cp, and (d) OCV at the voltage sensor 

precisions of ±1/±2.5/±5 mV. 
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Table 10. The statistical error analysis of model parameters and SoC at the voltage sensor 

precisions of ±1/±2.5/±5 mV. 

Item Voltage accuracy: ±1 mV Voltage accuracy: ±2.5 mV Voltage accuracy: ±5 mV 

Parameters Ro Rp Cp SoC Ro Rp Cp SoC Ro Rp Cp SoC 

Maximum error (%) 0.33 2.51 2.36 2.73 1.08 7.79 8.52 6.86 1.79 20.74 15.9 14.42 

RMSE (%) 0.11 1.08 1.07 0.54 0.34 3.64 2.88 1.64 0.51 12.01 10.11 3.54 

Figure 11 is the estimation results of SoC and SoC errors for three different voltage sensor 

precisions under the FUDS loading profiles. It shows that the maximum SoC estimation errors for 

three voltage accuracies are 2.7387%, 6.8638% and 14.4207%. This simulation reveals that there is an 

effect of current sensor precisions on the SoC estimation accuracy. In the engineering application, to 

achieve the higher precise estimation for SoC (<5%), the voltage sensor accuracy should be limited to 

less than ±2 mV. 

 

Figure 11. SoC estimation results at the voltage sensor precisions of (a) ±1 mV, (b) ±2.5 mV, 

(c) ±5 mV; and the SoC error at the voltage sensor precisions of (d) ±1 mV, (e) ±2.5 mV, 

(f) ±5 mV. 

5.4. Results Comparison and Discussion 

Through the comparison of the simulation results, as shown in Figure 12, four meaningful results 

can be drawn: 

(1) The variation of sampling periods (0.1–1 s) has a significant impact on parameter 

estimation accuracy. Specifically, the sampling time has a relatively small effect to estimate 

the ohmic resistance Ro, with the maximum error of 2%. However, the sampling time presents 

the significant influence for polarization resistance Rp and polarization capacitance Cp with the 

maximum error of 23%. This result is verification of the previous parameter sensitivity analysis, 

which means the raised parameter sensitivity of Rp and Cp will be more sensitive to external 

perturbations. Therefore, an accurate estimate of the Rp and Cp will encounter greater difficulty. 

On the other hand, the variation of sampling rate has a less significant effect on the SoC 
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estimation error. Therefore, changing the sampling time is not the optimal choice to obtain 

improved estimation accuracy of the SoC. 

(2) The variation of current sensor precisions (±5/±50/±500 mA) shows little influence for model 

parameters estimation. For instance, when the current sensor accuracy is ±500 mA, the maximum 

error of Rp and Cp is about 3.5% and the maximum error of SoC is about 2.76%. Therefore, 

to restrict the estimation accuracy of the model parameters and SoC, the current sensor 

accuracy is recommended to be lesser than ±50 mA. 

(3) The variation of voltage sensor precisions (±1/±2.5/±5 mV) has significant impact both on 

model parameter estimation and on SoC estimation. When the voltage accuracy is ±5 mV, 

the maximum estimation error of Ro, Rp and Cp is 1.79%, 20.74% and 15.90%, respectively. 

It reveals that the error of Ro is acceptable, while the error of Rp and Cp is hardly acceptable. 

As the voltage accuracy decreases to ±1 mV, the maximum estimation error of Ro, Rp and Cp is 

in the acceptable range of 0.33%, 2.51% and 2.36%. For the SoC estimation, the maximum 

SoC error increases from 2.73%, 6.86% to 14.42%, as the voltage sensor accuracy ascends 

from ±1 mV, ±2.5 mV to ±5 mV. Therefore, to ensure an accurate SoC estimation (<5%), 

the voltage sensor precision should be less than ±2 mV. This conclusion can also be drawn 

from the ICA result. 

(4) The weighted importance of factors on parameters and SoC estimation can be sorted as  

(by descending order): voltage sensor accuracy > sampling period > current sensor accuracy 

based on the above comparison. 

 

Figure 12. Comparison of three factors on the stability of model parameters and SoC 

estimation: (a) Ro, (b) Rp, (c) Cp, and (d) SoC. 
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In general, the optimal selection approach for time sampling period Ts, current/voltage sensor precisions, 

as shown in Figure 13, could be summarized as: 

(a) Firstly assess the parameters of battery system, such as Ro, Rp, Cp and capacity, then conduct 

the perturbation analysis with the Equations (9)–(11) according to the precision requirement of 

model parameters. The optimized current/voltage sensor precision could be computed. 

(b) About the given SoC precision requirement, the user can calculate the voltage precision with 

the ICA. Take this research for example: If the minimal SoC estimation precision is limited 

as 1.5%, our voltage sensor precision could be calculated as 1.034 mV with the ICA result in 

Figure 5. 

(c) Compare the voltage precision in Steps (a) and (b), then choose the minimized result. If the 

minimized result is from Step (a), re-compute Step (a) again to update the current sensor precision. 

(d) About the given model parameters, the user can conduct the model stability analysis and 

parametric sensitivity analysis. Then the threshold of time sampling period Ts could be gain. 

The optimized time sampling period Ts could be selected in a tradeoff way by considering the 

model stability, parametric sensitivity, system-sampling precision and the hardware runtime. 

 

Figure 13. The selection approach for sample period Ts, current/voltage sensor precisions. 

6. Conclusions 

In this paper, the stability of model parameters and SoC estimation have been analyzed and 

simulated with FUDS profiles. In summary, the main concluding remarks are given as follows: 

(1) The model stability and parametric sensitivity have been analyzed under different sampling 

periods Ts (0.02, 0.1, 0.2, 0.5 and 1 s). The results reveal that the increase of sampling 

period Ts will be beneficial to the model stability and parameter identifiability. From an 

engineering viewpoint, it is recommended to restrict the eigenvalues of the ARX model within 

a range of 0–0.95. That is, Ts should be larger than one threshold, such as Ts ≥ 0.5 s. 

(2) The variation of sampling periods (0.1–1 s), has a significant impact on parameter estimation 

accuracy but a less significant effect on the SoC estimation error. Therefore, to improve the 

estimation accuracy of the SoC, it is not optimal to change the sampling time. 
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(3) The variation of current sensor precision (±5/±50/±500 mA) shows little influence for model 

parameters and SoC estimation. To restrict the estimation accuracy of the model parameters 

and SoC, the current sensor accuracy is recommended to be less than ±50 mA. 

(4) The variation of voltage sensor precision (±1/±2.5/±5 mV) has significant impact on both the 

model parameter estimation and SoC estimation. To ensure the SoC estimation accuracy (<5%), 

the voltage sensor accuracy should be less than ±2 mV. 

(5) According to the parameter variation analysis under the perturbation of current/voltage 

measurement uncertainty, the weighted importance of factors on parameter and SoC estimation 

can be sorted as (by descending order): voltage sensor accuracy > sampling period > current 

sensor accuracy. 
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