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Abstract: The conventional control paradigm for a heat pump with a less efficient auxiliary
heating element is to keep its temperature set point constant during the day. This constant
temperature set point ensures that the heat pump operates in its more efficient heat-pump
mode and minimizes the risk of activating the less efficient auxiliary heating element.
As an alternative to a constant set-point strategy, this paper proposes a learning agent for a
thermostat with a set-back strategy. This set-back strategy relaxes the set-point temperature
during convenient moments, e.g., when the occupants are not at home. Finding an optimal
set-back strategy requires solving a sequential decision-making process under uncertainty,
which presents two challenges. The first challenge is that for most residential buildings,
a description of the thermal characteristics of the building is unavailable and challenging
to obtain. The second challenge is that the relevant information on the state, i.e., the
building envelope, cannot be measured by the learning agent. In order to overcome these
two challenges, our paper proposes an auto-encoder coupled with a batch reinforcement
learning technique. The proposed approach is validated for two building types with different
thermal characteristics for heating in the winter and cooling in the summer. The simulation
results indicate that the proposed learning agent can reduce the energy consumption by
4%–9% during 100 winter days and by 9%–11% during 80 summer days compared to the
conventional constant set-point strategy.
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1. Introduction

Residential and commercial buildings use about 20%–40% of the global energy consumption [1].
Half of this energy is consumed by heating, ventilation and air conditioning (HVAC) systems.
About two-thirds of these HVAC systems use fossil fuel sources, such as oil, coal and natural gas.
Replacing this large share of fossil-fueled HVAC systems with more energy-efficient heat pumps can
play an important role in reducing greenhouse gasses [2–4]. For instance, in [5], Bayer et al. report
that replacing fossil fuel-based HVAC systems with electric heat pumps can help reduce greenhouse
gasses in space heating by 30%–80% in different European countries. The cardinal factors that influence
this reduction are the substituted fuel type, the energy efficiency of the heat pump and the electricity
generation mix of the country.

This paper focuses on residential heat pumps equipped with an auxiliary heating element. This heating
element can be a less efficient electric furnace or a gas- or oil-fired furnace. In its regular operation, a heat
pump runs in its more energy-efficient heat-pump mode; however, when the temperature drops too low,
both the heat pump and the auxiliary heating element are activated. Since most heat pumps are equipped
with an electric auxiliary heating element, which can be four-times less efficient, the U.S. Department of
Energy recommends to operate the thermostat with a constant target temperature during the day, even
when the inhabitants are not at home [6].

As an alternative to the constant temperature set-point strategy, this paper presents a set-back method,
in which the temperature set point is relaxed during convenient times, for example during the night
or when the inhabitants are not at home. Such a set-back method can reduce the energy consumption
compared to the constant set-point strategy under the condition that it can avoid the auxiliary heating to
activate [7].

The remainder of this paper is organized as follows. Section 2 gives on overview of existing literature
on heat-pump thermostats and their application to demand response. Section 3 addresses the challenges
of developing a successful set-back strategy to reduce the energy consumption of a heat pump. Section 4
formulates the sequential decision-making problem of a thermostat agent as a stochastic Markov decision
process. Section 5 proposes an approach based on an auto-encoder and fitted Q-iteration. The simulation
results are given in Section 6, and finally, Section 7 summarizes the general conclusion of this work.

2. Literature Review

Driven by the potential of heat pumps to reduce greenhouse gasses, heat-pump thermostats have
attracted attention from researchers [8,9] and commercial companies [10–14]. A popular control
paradigm in the literature on the optimal control of heat-pump thermostats is a model-based approach.
Within this paradigm, the first type of model-based controller uses a model predictive control
approach [2,15]. At each decision step, the controller defines a control action by solving a fixed-horizon
optimization problem, starting from the current time step and using a calibrated model of its environment.
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For example, the authors of [9] use a mixed-integer quadratic programming solution to minimize
the electricity cost and carbon output of a home heating system. However, the performance of
these model-based approaches depends on the quality of the model and the availability of expert
knowledge. Model-based approaches can achieve very good results within a reasonable learning period,
but typically, they have to be tailored for their application, and they have difficulties with stochastic
environments [16]. A second type of model-based controller formulates the control problem as a Markov
decision problem and solves the corresponding problem using techniques from approximate dynamic
programming [17,18]. For example, in [8], Urieli et al. use a linear regression model to fit the model
of the building and then apply a tree-search algorithm for finding an intelligent set-back strategy for a
heat-pump thermostat. Alternatively, in [19], Morel et al. propose an adaptive building controller that
makes use of artificial neural networks and dynamic programming. Similarly, the authors of [20] propose
a combined neuro-fuzzy model for dynamic and automatic regulation of indoor temperature. They use
an artificial neural network to forecast the indoor temperature, which is then used as the input of a fuzzy
logic control unit in order to manage energy consumption of the HVAC system. In addition, the authors
of [21] report that an artificial neural network-based model can adapt to changing building background
conditions, such as the building configuration, without the need for additional intervention by an expert.

An alternative control paradigm makes use of model-free reinforcement learning techniques in order
to avoid the system identification step of model-based controllers. For example, the authors of [22]
propose a Q-learning approach to minimize the electricity cost of a thermal storage. In [23], Zheng et al.
show how a Q-learning approach can be used for residential and commercial buildings by decomposing
it over different device clusters. However, a main drawback of classic reinforcement learning algorithms,
such as Q-learning and SARSA, is that they discard observations after each interaction with their
environment. In contrast, batch reinforcement learning techniques do not require many interactions
until convergence to obtain reasonable policies [24–26], since they store and reuse past observations. As
a result, they have a shorter learning period, which makes them an attractive technique for real-world
applications, such as a heat-pump thermostat. In both [27] and [28], the authors use a bath reinforcement
learning technique, fitted Q-iteration, in combination with a market-based multi-agent system, in order
to control a cluster of flexible devices, such as electric vehicles and electric water heaters.

This work contributes to the application of batch reinforcement learning to the problem of finding a
successful set-back strategy for a heat-pump thermostat. This problem was previously addressed by
the work of Urieli et al. in [8]. The main difference with their work is that our work proposes a
model-free approach that can intrinsically capture the stochastic nature of the problem. The authors
build on the existing literature on batch reinforcement learning, in particular fitted Q-iteration [24] and
auto-encoders [29].

3. Problem Statement

The main objective of this paper is to develop a model-free learning agent for a heat pump with an
auxiliary heating element in order to overcome the following two challenges. The first challenge is that
the auxiliary heating element activates when the indoor temperature reaches a predefined temperature
threshold. The operation of the thermostat is given by Algorithm 2 and can be found in Appendix A.
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More information in the temperature settings of the thermostat can be found in Table A2 of Appendix B.
In order to illustrate the activation of the auxiliary heating element, two thermostat agents are depicted
in Figure 1. Our set-back strategy relaxes the indoor temperature during working hours, i.e., 7–17 h
(Figure 1). It can be seen that the first agent correctly anticipates the comfort bounds at 17 h and
begins to heat the building in normal heat-pump operating mode (Point A). The second agent postpones
heating until Point B and triggers the electric auxiliary heating to switch on at Point C. As a result of the
activation of the less efficient auxiliary heating element, the second agent consumes more energy than
the recommended constant temperature set-point strategy.
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Figure 1. Indoor temperature of two thermostat agents with a set-back strategy (7–17 h).
Agent 1 operates in normal heat-pump mode, and Agent 2 activates the less efficient
auxiliary heating.

A second important challenge when developing an intelligent set-back strategy is that the moment
of activating the heat pump does not only depend on the weather conditions, but also on the thermal
characteristics of the building. This challenge is illustrated by a second example, where a successful
set-back strategy is depicted for two building types. Both building types have identical outside
temperatures and inner disturbances. Figure 2a depicts the indoor temperature of a building with a high
insulation level, whereas Figure 2b depicts the indoor temperature of a building with a low insulation
level. It can be seen that the thermal characteristics of the building can have a significant impact on the
operation of the thermostat agent. For instance, the set-back thermostat in Figure 2a can postpone its
heating action until Quarter 68, while the set-back thermostat in Figure 2b needs to start heating around
Quarter 60 in order to avoid the activation of the auxiliary heating.



Energies 2015, 8 8304

16 32 48 64 80 96
10

15

20

25

30

TimeI[h/4]

T
em

pe
ra

tu
re

I[
°C

]

SetIpointItemperature
IndoorItemperature
lower/upperIbuffer
AuxiliaryIthreshold

16 32 48 64 80 96
10

15

20

25

30

TimeI[h/4]

T
em

pe
ra

tu
re

I[
°C

]

SetIpointItemperature
IndoorItemperature
lower/upperIbuffer
AuxiliaryIthreshold

sa)

sb)

Figure 2. Indoor temperature of two buildings with different thermal insulation. (a) Building
with a high thermal insulation level; (b) building with a low thermal insulation level.

4. Markov Decision Process

Motivated by the challenges presented in Section 3 and driven by recent advances in reinforcement
learning [24,30,31], our paper introduces a model-free learning agent. In order to use reinforcement
learning techniques, the sequential decision-making problem of a heat-pump thermostat with a set-back
strategy is formulated as a stochastic Markov decision process [18,32].

At every decision step k, the thermostat agent chooses a control action uk ∈ U ⊂ �, and the state of
its environment xk ∈ X ⊂ �d evolves according to the transition function f :

xk+1 = f (xk, uk,wk) ∀k ∈ {1, ...,T − 1}, (1)

with wk a realization of a random process drawn from a conditional probability distribution pW(·|xk).
After the transition to the next state xk+1, the agent receives an immediate cost ck provided by:

ck = ρ(xk, uk,wk) ∀k ∈ {1, ...,T }, (2)

where ρ is the cost function. The goal of the thermostat agent is to find a control policy h∗ : X → U that
minimizes the expected T -stage return for any state in the state space. The expected T -stage return Jh∗

T

starting from x1 and following h∗ is defined as follows:

Jh∗
T (x1) = E

wk∼pW(·|xk)

 T∑
k=1

ρ(xk, h∗(xk),wk)

 , (3)
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where E denotes the expectation operator. A more convenient way to characterize the policy h∗ is by
using a state-action value function or Q-function:

Qh∗(x, u) = E
w∼pW(·|x)

[
ρ(x, u,w) + Jh∗

T ( f (x, h(x),w))
]
. (4)

The Q-value is the cumulative return starting from state x, taking action u and following h∗ thereafter.
Starting from a Q-function for every state-action pair, the policy is calculated as follows:

h∗(x) ∈ arg min
u∈U

Qh∗(x, u), (5)

where h∗ satisfies the Bellman optimality equation [33]:

Jh∗(x) = min
u∈U

E
w∼pW(·|x)

[
ρ(x, h(x),w) + Jh∗

T ( f (x, h(x),w))
]
. (6)

The central idea behind batch reinforcement learning is to estimate the state-action value function
Qh∗ based on a set of past observations (or batch) of the state, control action and reward. Note that this
approach does not require a model of the environment f or the disturbances w. As a result, no system
identification step is needed. The following five paragraphs give a tailored definition of the state, action,
cost function and transition function of a heat-pump thermostat agent.

4.1. Observable State

At each time step k, the thermostat agent can measure the following state information:

xk = (d, t,Tin,k,Tout,k, S k), (7)

where d ∈ {1, . . . , 7} represents the current day in the week and t ∈ {1, . . . , 96} the current quarter of
the hour. The observable state information related to the physical state of the building is given by a
measurement of the indoor temperature Tin,k. The observable exogenous state information is defined
by Tout,k and S k, which are the outdoor temperature and solar irradiance at time step k. Note that by
including the measurements of Tout,k and S k at time step k, our approach captures a first-order correlation
of these stochastic variables.

4.2. Thermostat Function

In order to guarantee the comfort of the end-user, the heat pump is equipped with a thermostat
mechanism (Algorithm 2). The thermostat logic maps the requested control action uk taken in state
xk to a physical control action uph

k :
uph

k = T (xk, uk). (8)

As such, the thermostat function T maps the requested control action to a physical quantity, which is
required to calculate the cost value.
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4.3. Augmented State

As previously stated, this paper assumes that the temperature of the building envelope cannot be
measured. It is important to realize that the temperature of the building envelope contains essential
information to accurately capture the transient response of the indoor air temperature. Moreover, the
temperature of the building envelope represents information on the amount of thermal energy stored in
the thermal mass of the building. A possible strategy is to represent the temperature of the building
envelope by a handcrafted feature based on expert knowledge, which can be difficult to obtain for
residential buildings. However, a more generic strategy is to include past observations of the state and
action in the state variable [30,34]:

xaug,k = (d, t,Tin,k, zk,Tout,k, S k), (9)

with:
zk = (Tin,k−1, ...,Tin,k−n, u

ph
k−1, ..., u

ph
k−n), (10)

where n denotes the number of past observations of the indoor temperatures and physical actions.
Note that the physical control actions have been included in the state, since they give an indication of
the amount of energy added to the system. In the next section, a feature extraction technique is proposed
to mitigate the “curse of dimensionality” [33] and to find a compact representation of the augmented
state vector.

4.4. Transition Function

A detailed description of the transition function f that models the temperature dynamics of the
building is given in Appendix B. This paper proposes a model-free approach and makes no assumption
of the model type or its parameters.

4.5. Cost Function

The cost function ρ : X × U → �, associated with a single transition, is given by:

ck = uph
k ∆t + αk, (11)

where the parameter αk represents a penalty for violating the comfort constraints and ∆t represent the
time interval of one control period. When the indoor air temperature Tin is lower than

¯
Ts or higher than

T̄s, αk is set to 105 and otherwise zero.

5. Model-Free Batch Reinforcement Learning Approach

Given full knowledge of the transition function, it can be possible to find an optimal policy by
solving the Bellman Equation (6) for every state-action pair using techniques from approximate dynamic
programming [17,33]. This paper, however, applies a model-free batch reinforcement learning technique,
where the sole information available to solve the problem is the one obtained from daily observations of
the following one-step transitions:

F = {(xaug,l, ul, x′aug,l, u
ph
l )}#Fl=1, (12)
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where each tuple is made up of the augmented state xaug,l, the control action ul, physical control action uph
l

and its successor state x′aug,l. Figure 3 outlines the building blocks of the model-free batch reinforcement
learning method, which consists of two interconnected loops.

Thermostat
  Feature 
extraction

Compute 
Q-function Extra TreesE

Fitted 
Q-function

FeaturesBatch

Boltzmann 
Exploration

Figure 3. Online and offline loop of our proposed approach, which consists of a feature
extraction (offline), fitted Q-iteration (offline) and Boltzmann exploration (online).

5.1. Offline Loop

The offline loop contains a feature extraction technique and a batch reinforcement learning method.

5.1.1. Feature Extraction

This paper proposes a feature extraction technique to find a low dimensional representation of the
augmented state xaug,k = (d, t,Tin,k, zk,Tout,k, S k), by reducing the dimensionality of the state information
corresponding to past observations:

ze,k = Φ(zk,W), (13)

where Φ : Z → Ze is a feature extraction function that maps z ∈ Z ⊂ �p to the encoded state
ze ∈ Ze ⊂ �

q, with q < p and where W contains the parameters corresponding to Φ.
This work introduces a feature extraction technique based on an auto-encoder. An auto-encoder or

auto-associative neural network is an artificial neural network, with the same number of input as output
neurons and a smaller number of hidden feature neurons. These hidden feature neurons function as a
bottleneck and can be seen as a reduced representation of zk. During training of the auto-encoder, the
output data are set to be equal to the input data. The weights of the network are then trained to minimize
the squared error between the inputs and its reconstruction. Different training methods to find W can be
found in the literature [35–37]. However, comparing the performance of these training methods is out
of the scope of this paper. This work uses a hierarchical training strategy that uses a conjugate gradient
descent method [38].

The next paragraph explains how a popular batch reinforcement learning technique, i.e., fitted
Q-iteration, can be used, given:

FR = {(x̂aug,l, ul, x̂aug,l+1, u
ph
l )}#Fl=1, (14)

with:
x̂aug,l = (d, t,Tin,l,Φ(zl,W),Tout,l, S l). (15)
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where x̂aug,l denotes the reduced augmented state, and Φ(zl,W) denotes the encoded state information of
the past observations zl.

5.1.2. Fitted Q-Iteration

Although other batch reinforcement learning techniques can be used, this work contributes to the
application of fitted Q-iteration [24]. Fitted Q-iteration makes efficient use of gathered data and can be
combined with different regression methods. In contrast to standard Q-learning [32], fitted Q-iteration
computes the Q-function offline and makes use of the whole batch. An overview of the fitted Q-iteration
algorithm is given in Algorithm 1. The algorithm iteratively builds a training set with all state-action
pairs in FR as the input. The target values consist of the corresponding cost values and the optimal
Q-value, based on the approximation of the previous iteration, for the next state. This works uses an
extremely randomized tree ensemble method [39] to find an approximation Q̂ of the Q-function. The
ensemble was set to 60 trees and a minimum of three samples for splitting a node. The number of
samples selected at each node was set to the input dimension of the input space. More information on
the regression method can be found in [39].

Algorithm 1 Fitted Q-iteration [24].

Input: FR = {(x̂aug,l, ul, x̂aug,l+1, u
ph
l )}#Fl=1

1: Initialize Q̂0 to zero
2: for N = 1, . . . ,T do
3: for l = 1, . . . , #F do
4: cl = ρ(x̂aug,l, u

ph
l )

5: QN,l ← cl + min
u∈U

Q̂N−1,l(x̂aug,l+1, u)
6: end for
7: use regression to obtain Q̂N from

{(
(x̂aug,l, ul),QN,l

)
, l = 1, . . . , #F

}
8: end for

Output: Q∗ = Q̂N

5.2. Online Loop

A Boltzmann exploration strategy [40] is used at each decision step to find the probability of selecting
an action:

P
(
u|x̂aug,k

)
=

eQ∗(x̂aug,k ,u)/τd

Σu′∈UeQ∗(x̂aug,k ,u′)/τd
, (16)

where the parameter τd controls the amount of exploration and Q∗ is the Q-function obtained with
Algorithm 1. The parameter τd is decreased during the simulation following a harmonic sequence [17]:

τd =
1

(d)n , (17)

where d denotes the current day and n is set to 0.7. Note that, if τd = 0, than the policy becomes greedy,
and the best action is chosen.



Energies 2015, 8 8309

6. Simulation Results

This section compares the performance of our learning agent to a default constant set-point strategy
and a prescient set-back strategy.

6.1. Simulation Setup

The simulations use a second-order equivalent thermal parameter model to calculate the indoor air
temperature and the envelope temperature of the building [41]. The parameters correspond to a building
with a floor area of 200 m2 and a window-to-floor ratio of 30%. The model equations and parameters
are presented in Appendix B. The building is equipped with a heat pump to satisfy the heating or cooling
demand of the inhabitants. The heat pump can change its power set point every 15 min with 10 discrete
heating or cooling actions. This paper considers two comfort settings, i.e., the default strategy and
the set-back strategy. The default strategy has a constant temperature set point of 20.5 ◦C during the
entire day. In contrast, the set-back strategy relaxes the set-point temperature from 7 to 17 h when the
inhabitants are not present in the building.

The heat-pump thermostat is equipped with sensors to measure the outside temperature and solar
irradiation, which are measurements obtained from a location in Belgium [42]. This work assumes that
the heat-pump thermostat is provided with a forecast of the outside temperature and solar irradiation.
However, internal heat gains caused by the inhabitants and electrical appliances cannot be measured or
forecasted and are obtained from [43].

6.2. Learning Agent

The weights of the auto-encoder network are calculated at the beginning of each day and are used
to calculate FR. The state information corresponding to the past observations consists of the previous
10 indoor temperatures and the previous 10 control actions. The number of hidden neurons of the
auto-encoder network is set to six. Given the batch FR, the fitted Q-iteration algorithm constructs a
Q-function for the next day (see Algorithm 1). This Q-function is then used online by the Boltzmann
exploration strategy. Note that each simulation run begins with an empty batch of tuples and that
observations of the previous day are daily added to FR.

6.3. Prescient Method

The prescient set-back strategy assumes that the model parameters are known, and it has prescient
knowledge on the outside temperature, solar irradiation and internal heat gains. A detailed description
of the prescient method can be found in Appendix C. The outcome of the prescient set-back strategy is
used to evaluate the performance of the learning agent and can be seen as an absolute lower-bound.

6.4. Simulation Results

The experiments compare the energy consumption and temperature violations of the learning agent
with a set-back strategy, conventional constant set-point strategy and prescient set-back strategy.
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Note that the conventional constant temperature set point is the recommended strategy by the U.S.
Department of Energy [6]. In order to examine the adaptability of the learning agent, an identical learning
agent is applied to two building types, with a high and low thermal insulation level. The evaluation is
repeated for 100 winter days (heating mode) and 80 summer days (cooling mode). Figure 4 depicts the
cumulative energy consumption of the default controller, prescient controller and learning agent. As can
be seen in Figure 4, the learning agent is able to reduce the total energy consumption compared to the
default strategy for both building types. The simulation results indicate that the learning agent was able
to reduce the energy consumption by 4%–9% during the winter and by 7%–11% during the summer.
It should be noted, however, that the total energy consumption does not give a complete picture, as it
does not consider the temperature violations. Remember that a comfort violation in the heating mode
resulted in the activation of the less efficient auxiliary heating element. However, in the cooling mode,
no auxiliary cooling is available. For this reason, Figure 5 shows the daily performance metric Md and
the daily deviation Dd between the temperature set point and the indoor temperature at 17 hour, which is
the end of the set-back period. The daily deviation is calculated as follows:

Dd = max(Tin,17 − T̄s,17, 0) + max(
¯
Ts,17 − Tin,17, 0), (18)

where Tin,17 is the indoor temperature at 17 h, and where
¯
Ts,17 and T̄s,17 are the minimum and maximum

temperature set point at 17 h. The daily performance metric Md is calculated as follows:

Md =
el − ed

ep − ed
, (19)

where el denotes the daily energy consumption of the learning agent, ed denotes the the daily energy
consumption of the default strategy and ep denotes the daily energy consumption of the prescient
controller. As such, the metric M corresponds to zero if the learning agent obtains the same performance
as the default strategy and corresponds to one if the learning agent obtains the same performance as the
prescient controller. These figures show that the comfort violations decrease over the simulation horizon.
At the same time, the performance metric M increases.

The results obtained with a mature controller (a batch size of 30 days) are depicted in Figure 6.
Figure 6a and Figure 6b depict the indoor temperature and power consumption profile during seven
winter days. Similarly, Figure 6c and Figure 6d depict the indoor temperature and power consumption
during seven summer days. The simulation results indicate that the proposed learning agent can adapt
itself to different building types and outside temperatures. In addition, the learning agent with a set-back
strategy can reduce the energy consumption of a heat pump compared to the conventional constant
temperature set-point strategy.
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Figure 4. Cumulative energy plot of the default constant set-point strategy, our learning
agent with a set-back strategy and a prescient set-back strategy.
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Figure 6. Indoor temperature and power consumption of the learning agent with set-back
strategy during seven winter (a,b) and summer days (c,d).

7. Conclusions and Future Work

This work addressed the challenge of developing a learning agent for a heat pump with a set-back
strategy that saves energy compared to a constant temperature set-point strategy, which is recommended
by the U.S. Department of Energy. To this end, this paper proposed an approach based on an
auto-encoder and a popular model-free batch reinforcement learning technique, i.e., fitted Q-iteration.
The auto-encoder is used to reduce the dimensionality of the state vector, which contains past
observations of the indoor temperatures and energy consumptions. The performance of the set-back
strategy has been evaluated for heating in the winter and cooling in the summer for two building types
with different thermal characteristics. An equivalent thermal parameter model has been used to simulate
the temperature dynamics of the indoor air temperature and the temperature of the building envelope.
During the winter period, the set-back strategy was able to reduce the energy consumption 4%–9%
compared to the default strategy. During the summer period, the set-back strategy saved 7%–11%
compared to the default strategy. The results indicated that the proposed learning agent can adapt itself
to different building types and weather conditions. The proposed learning agent obtained these results
without making assumptions on the model or its parameters. As a result, the learning agents can be
applied to virtually any building type.
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With this work, we intended to show that model-free batch reinforcement learning techniques can
provide a valuable alternative to model-based controllers. In our future work, we plan to focus on
including real-time electricity prices in the objective and on implementing the presented approach in a
lab environment.
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Appendix A: Thermostat Logic

Algorithm 2 illustrates the working of the heat-pump thermostat. The lower and upper temperature
set points are given by

¯
Ts (20 ◦C) and T̄s (22.5 ◦C). When the indoor temperature Tin drops below

¯
Ts − T a

b (18.5 ◦C), the auxiliary heating element is activated in addition to the heat pump until the indoor
temperature reaches

¯
Ts + Tb (20.5 ◦C). The activation of the auxiliary heating is independent of the

requested control action and can be seen as an overrule mechanism that guarantees the comfort of the
end-user. If the indoor temperature Tin is between

¯
Ts + Tb and T̄s, the thermostat controller follows the

requested control action. When the indoor temperature Tin rises above T̄s, the cooling mode is activated
until T̄s − Tb (19.5 ◦C). In cooling mode, no cooling element is used.

Algorithm 2 Thermostat of a heat pump with auxiliary heating.
1: Measure Tin

2: Initialize
¯
Ts,Tb,T a

b , T̄s

3: if Tin < ¯
Ts − T a

b

uph = Ph + Pa until Tin ≥ ¯
Ts + Tb

4: elseif
¯
Ts − T a

b ≤ Tin ≤ ¯
Ts + Tb

uph = Ph

5: elseif
¯
Ts + Tb < Tin < T̄s

uph = u
6: elseif Tin ≥ T̄s

uph = Pc until Tin ≤ T̄s − Tb

7: end if
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Appendix B: Model Equations

In order to obtain system trajectories of the indoor air temperature, an equivalent thermal parameter
model is used to calculate the indoor air temperature Tin and envelope temperature Tm of a residential
building [41,44]:

Ṫi = 1
Ca

(TmHm − Tin(Ua + Hm) + Qi + ToutUa)
Ṫm = 1

Cm
(Hm (Tin − Tm) + Qm),

(A1)

where Hm is the thermal conductance of the building envelope, Ua is the thermal conductance between
air and mass, Ca is the thermal mass of the air and Cm is the thermal mass of the building and its contents.
The heat added to the interior air mass Qi is given by a fraction α of the internal heat gains Qg, a fraction
β of the solar heat gains Qs and the heat gains generated by the heat pump Qh. The heat added to the
interior solid mass Qm is given by the other fractions of Qs and Qg:

Qi = αQg + βQs + Qh

Qm = (1 − α)Qg + (1 − β)Qs.
(A2)

Tables A1 and A2 give the parameters used in the simulations. The outside temperature Tout and solar
irradiance were obtained from a location in Belgium [42]. Although more detailed building models exist
in the literature [45], the authors believe that the model used is accurate enough to illustrate the working
of the proposed model-free approach and, at the same time, flexible enough in terms of parameters and
computational speed.

Table A1. Lumped parameters.

Parameters Low Thermal High Thermal Unit

Ua 1154 272 W/◦ C
Hm 6863 6863 W/◦ C
Ca 2.441 2.441 MJ/◦ C
Cm 9.896 9.896 MJ/◦ C

Table A2. Heat-pump parameters and thermostat settings.

Parameters Value

Ph/ Pc 2500 W
Pa 3000 W

¯
Ts 20 ◦C
T̄s 22.5 ◦C
Tb 0.5 ◦C
T a

b 1.5 ◦C
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Appendix C: Prescient Method

The optimization problem of the prescient method is formulated as follows:

minimize ΣT
k=1uph

subject to f (xk, uk,w) = xk+1.

uph = T (xk, uk),

(A3)

where the plant model f is defined by Equation (A1) and thermostat T by Algorithm 2. In contrast to our
model-free approach, the prescient method knows the plant model and future disturbances. An optimal
solution of this optimization problem was found by applying a mixed-integer linear programming solver
using Gurobi [46] and YALMIP [47].
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