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Abstract: This paper presents the analysis of the importance of a set of explanatory (input) 

variables for the day-ahead price forecast in the Iberian Electricity Market (MIBEL). The 

available input variables include extensive hourly time series records of weather forecasts, 

previous prices, and regional aggregation of power generations and power demands. The 

paper presents the comparisons of the forecasting results achieved with a model which 

includes all these available input variables (EMPF model) with respect to those obtained by 

other forecasting models containing a reduced set of input variables. These comparisons 

identify the most important variables for forecasting purposes. In addition, a novel Reference 

Explanatory Model for Price Estimations (REMPE) that achieves hourly price estimations 

by using actual power generations and power demands of such day is described in the paper, 

which offers the lowest limit for the forecasting error of the EMPF model. All the models 

have been implemented using the same technique (artificial neural networks) and have been 

satisfactorily applied to the real-world case study of the Iberian Electricity Market (MIBEL). 

The relative importance of each explanatory variable is identified for the day-ahead price 

forecasts in the MIBEL. The comparisons also allow outlining guidelines of the value of the 

different types of input information.  

OPEN ACCESS



Energies 2015, 8 10465 

 

 

Keywords: short-term forecasting; market prices; Iberian electricity market; electricity prices 

 

1. Introduction 

Electricity price forecasting has been a very active research field in the last 15 years because the 

hourly price for the electric energy that will be settled in the pool constitutes very valuable information 

if it could be known in advance: any agent involved in the electricity market would use this information 

to prepare his/her bids strategically in order to obtain the maximum profit. An accurate price forecast for 

an electricity market has a definitive impact on the bidding strategies and even on the price negotiation 

of bilateral contracts [1]. Furthermore, an accurate price forecast has direct consequences on the 

producers’ electric energy management, and it could also influence the consumers’ demand response [2]. 

An excellent state-of-the-art review about electricity price forecasting can be found in Ref. [3]. The 

development of short-term electricity price forecasting (STEPF) models has received all the attention 

because of their immediate application in biddings strategies in the daily market. Basically, for the 

STEPF problem, two main modelling approaches can be identified in literature: classical models [1,4–14] 

and computational intelligence models [15–34]. Some published works present two or more models for 

comparative purposes with the two approaches [7,8,12], and others present models with a hybrid,  

thus combining both of them [35–38].  

Classical STEPF models described in literature apply techniques as the conventional multiple 

regression [4], time-varying regression [4–6], ARIMA (Auto-Regressive Integrated Moving  

Average) [1,5–12] and GARCH (Generalized Auto-Regressive Conditional Heteroskedasticity) [13]. 

These models usually use diverse physical data, especially if explanatory variables are needed. In this 

sense, models based on ARX (Auto-Regressive with eXogenous variables) and ARMAX (Auto-Regressive 

Moving Average with eXogenous variables) structures [4,7,10–12] use variables such as power demand 

and wind power production, trying to represent relationships which affect to the trading of electricity; 

sometimes the forecasts for these variables are obtained from other forecasting models [6,8,23]. Some models 

utilize the wavelet decomposition to improve the forecasting results [7,13] or decomposition in 

deterministic and stochastic components to provide spot and interval forecasts using a recursive dynamic 

factor analysis [14]. 

Computational intelligence STEPF models are based principally on artificial neural  

networks [7,8,12,15–29] and fuzzy systems [15,16,30–34]. Similarly to classic models, besides past 

values of the hourly electricity price, some of the proposed models use forecasts of the power  

demand [23,24,31] and the wind power production as input [8,27]. In addition, the wavelet 

decomposition is used to pre-process input data and get better forecasts [20,28,32,34]. More advanced 

computational techniques such as optimization methods (genetic algorithms and particle swarm 

intelligence) are proposed to improve the learning process for a neural network based model [21], and 

to find the optimal structure (membership functions) for a neuro-fuzzy model [33,34]; or as new learning 

algorithms such as the Extreme Learning Machine method for single hidden layer feed-forward neural 

networks [24,28] or as enhanced capabilities to obtain not only point forecasts but also prediction 

intervals [17,24]. 
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The combination of classical and computational intelligence approaches has allowed the development 

of some STEPF models with hybrid approaches such as a support vector regression model combined 

with an ARIMA model [35]; a wavelet decomposition pre-process, an ARIMA model and a radial basis 

function neural network whose structure is chosen by means of a particle swarm optimization [36];  

an auto-regressive fractionally integrated moving average model in parallel with a multilayer perceptron 

neural network (MLP) [37]; or a wavelet decomposition pre-process, ARIMA models combined with 

MLPs [38]. The most recent works describe probabilistic models that aim to overcome the limitations 

of point forecasts [39,40].  

In general, most of the published papers are focused on the description of the forecasting technique: 

there are advanced versatile techniques with small differences concerning accuracy when they are 

applied to a given STEPF case (same variables and same time period). Some authors compare the results 

obtained with their models with respect to those reported in other works, using the same data and the 

same period. In [15], the forecasting results obtained with different models using different input variables 

were compared. Just the selection of the input variables has been appointed as one of the directions that 

the STEPF problem will or should take over the next decade [3]. 

This paper is not concentrated on forecasting techniques, but it is focused on the “forecasting 

modelling”, that is, on the analysis of extensive sets of explanatory variables and their influence in price 

forecasts. This forecasting modelling also allows the identification of input data and processing 

structures suitable to be applied to specific electricity markets, that is, to other electricity markets 

different from the Iberian Electricity Market (MIBEL).  

This paper presents mainly two models related to the MIBEL:  

 An Explanatory Model for Price Forecast (EMPF model) for day-ahead hourly price forecasts, 

at a regional level, which integrates a wide set of explanatory variables, which include regional 

aggregation of power multi-generations and power demands, recent prices, broad hourly time 

series records of weather forecasts as well as other chronological information. This EMPF 

model constitutes, as shown later (Sections 2 and 4), the best explanatory model for 

forecasting purposes from point of view of including the most complete and suitable set of 

explanatory input variables. 

 An innovative Reference Explanatory Model for Price Estimation (REMPE model) for hourly 

price estimations based on actual power multi-generations and actual power demands of such 

day, that is, based on real data of explanatory variables. It allows the calculation of the best 

hourly price estimations and the corresponding error that represents the lowest limit of forecast 

error values reachable with the used explanatory variables. It should be noticed that the 

REMPE model is not a forecasting model because actual information of multi-generations and 

power demands are not available for day-ahead hourly price forecasting. As shown later 

(Section 3), this REMPE model will determine the lowest limit of the forecasting error than 

the EMPF model could achieve what will allow evaluating the quality of the forecasting 

performance of the EMPF model. 

The MIBEL, which covers the mainland of Portugal and Spain, has been used for testing the 

explanatory models in this paper. The building of the extensive data set, used for this real-life case, 

needed to overcome difficulties to gather such data as well as to join synchronized information from 
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both countries. Different combinations of explanatory input variables of the EMPF model have been 

developed to determine which are the most important among the total set of such variables for the hourly 

price forecasts of the studied electricity market. 

Lastly, other explanatory models (SEMPF models), which are simpler than the EMPF model, have 

been built by considering only some of the types of input information, and they have been also applied 

to the MIBEL, what allows the analysis of the value of the different types of input data for purposes of 

price forecasts. 

The evaluation of forecasting performances of the explanatory models presented in this paper and the 

analysis of influences of their explanatory variables in price forecasts constitute valuable information 

for MIBEL market agents and for the electric energy industry. 

The structure of this paper is as follows: Section 2 contains a description of the time framework for 

the day-ahead electricity price forecasting and the data characterization corresponding to the MIBEL for 

hourly price forecast purposes. Section 3 describes the Reference Explanatory Model for Price 

Estimation (REMPE model) for hourly price estimation, utilizing actual power generations and power 

demands of such day. Section 4 presents an Explanatory Model for Price Forecast (EMPF model) for 

day-ahead hourly price forecasts, at a regional level, using hourly time series records of weather 

forecasts, previous prices and regional aggregation of power generations and power demands. Section 5 

contains a comparison among other Simpler Explanatory Models for Price Forecast (SEMPF models) 

showing advantages and disadvantages of such models. Lastly, the conclusions of this paper are 

presented in Section 6. 

2. Time Framework and Data Characterization for Explanatory Models 

The time framework in this paper for the day-ahead MIBEL price forecasting is described in  

sub-Section 2.1. Afterwards, sub-Section 2.2 presents the data characterization corresponding to the 

MIBEL for the hourly price forecasting purposes of the explanatory models of this paper. 

2.1. Time Framework 

In this context, short-term forecasting models provide the hourly prices of the day-ahead, allowing 

the preparation of bidding offers to the electricity market and the implementation of other power system 

operation functions.  

The general time framework of the EMPF model for day-ahead price forecasts is illustrated in Figure 1. 

The price forecast tDhDp ,,1
ˆ

  is obtained, at hour t of the day D, for each hour h of the 24 h in day D + 1. 

In most of the European markets, the hourly market price for day D + 1 is calculated at 12:00 of day D 

and electricity market biddings have to be created at least one hour before. The price forecast must be 

delivered some hours before the bidding limit hour. For our case, we assume a delivery of the price 

forecast in the first hour t = 0 of day D; however, in practical applications, the price forecasts are 

delivered in the first hours of day D.  

In the moment when the forecasting process is carried out, at hour t = 0 of day D, the price for each 

hour h of the 24 h in day D, pD,h, is known and it can be used as input to achieve the value of tDhDp ,,1
ˆ

 . 

The day of the week 1Dw  and hour h of the day D + 1 are also possible inputs for short-term forecasting 
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models. The weather forecasts at time t = 0 of day D, for the geographical region corresponding to the 

electricity market and for hour h of day D + 1, are also potential inputs. In fact, regional weighted 

forecasted hourly wind speeds tDhDv ,,1
ˆ

 , regional weighted forecasted hourly temperatures tDhDT ,,1
ˆ

 , and 

regional weighted forecasted hourly irradiations tDhDI ,,1
ˆ

  are possible explanatory variables with 

valuable forecasting information.  

 

Figure 1. Time framework for price forecasts of the EMPF model. 

In the work described in this paper, for the Iberian Peninsula (mainland of Spain and Portugal), more 

than 750 mesoscale geographical points located in areas with installed wind farm capacity were used to 

obtain the forecasts of regional weighted hourly wind speed. The resulting forecasts were calculated as 

a weighted average of the regional wind speed forecasts; the weighting factors were proportional to the 

installed regional wind power capacity. A similar approach were used to obtain weighted forecasted 

hourly irradiation values with weighting factors proportional to the installed regional aggregated solar 

plants capacity. Analogously, the final weighted forecasted hourly temperature was computed based on 

regional hourly temperature forecasts obtained from 250 geographical points, corresponding to power 

demand centres (towns and very populated areas); the weighting factors were proportional to the 

aggregated power demands associated with such regions. 

From the recorded information of explanatory variables, hourly values of actual Iberian aggregated 

power demand and generation of different types of power plants, and by applying a time series 

autocorrelation analysis of these variables [41], some explanatory information was identified for lags of 

48 and 168 h; thus, in accordance with such analysis, in Figure 1, several variables for hour h of day D – 1 

and for hour h of day D – 6 were included: power demand (LD), hydropower generation (HG), solar 

power generation and power cogeneration (SG), coal power generation (CG), combined cycle power 
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generation (CCG), and nuclear power generation (NG). It should be noticed that information for a lag of 

24 h was not included since those generation variables were not available for day D. Similarly, from 

time series analysis, the price pD,h, at hour h of day D and the price pD – 6,h of day D – 6 were included; 

in this case, the prices for all the hours of day D were known because they were fixed in day D – 1. 

Lastly, from the results of the autocorrelation analysis, wind power generations (WG) from day D – 6 to day 

D – 1 were not considered in the time framework of the EMPF model.  

The time framework for price estimation of the REMPE model is given in Figure 2, showing the 

major differences between this model and the EMPF model. A part of the input variables of the REMPE 

model (mainly actual power generations and power demands of day D + 1) as well as its output variable 

(price estimation hDp ,1 ), are different from the input variables of the EMPF model (principally actual 

power generations and power demands of day D – 1 and the ones of day D – 6), as well as its output 

variable (price forecast tDhDp ,,1
ˆ

 ). Thus, the REMPE model is not a forecasting model but a model for 

hourly price estimation. Lastly, notice that the wind power generation (WG) of day D + 1 is an input of 

the REMPE model. 

 

Figure 2. Time framework for price estimation of the REMPE model. 

2.2. Data Characterization 

The day-ahead hourly price forecasting can be influenced by different kinds of explanatory variables: 

(a) Actual recorded hourly data electricity prices, that is, real information known up to day D. 

This information is generally available for free from the market operator for the day-ahead 

and intraday markets. In this paper, we will use the day-ahead hourly market price available 

up to the hour 23 of day D from the website of the market operator OMIE (Market operator of 

the Iberian Electricity Market) [42]. 
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(b) Chronological variables: hour, week day, holiday, week number and month number. It is 

naturally known information for past and future periods. However, we only included the 

“hour” and “week day” variables, including a value to identify holidays in the “week day” 

variable. The “week number” or “month number” variables were not used because they would 

lead to a large set of cases for the training and testing of the explanatory models.  

(c) Actual recorded hourly power system data, mainly regional aggregated hourly power demands 

and regional hourly power generations aggregated by generation type. It is a very large set of 

information and is frequently difficult to obtain. We used information extracted from the 

websites of REN day by day, the Portuguese Transmission System Operator (TSO) [43] and 

REE, the Spanish TSO [44]. It should be noticed that the collection process of this set of real 

hourly information for research works was not easy. In both websites the information was 

aggregated by source of generation, although it is not exactly the same kind of generation in 

both TSOs. With these data, it was possible to aggregate the Iberian hourly power data in the 

following data series: load (power demand), wind power generation, hydropower generation, 

cogeneration and solar power generation (only available aggregated in REE at the time of this 

research, which included all cogeneration plants, photovoltaic plants and concentrated solar 

power plants), nuclear power generation, coal power generation, combined cycle power 

generation, and power exchanged with France.  

(d) Hourly weather forecasts, including wind speed, solar irradiance and temperature. We achieved 

hourly weather forecasts from the NWP (Numerical Weather Prediction) mesoscale model WRF 

NMM [45], initialized with the forecasts provided by the global NWP model GFS [46]. The NWP 

mesoscale model was run by the company Smartwatt for weather forecasts at geographic 

points in Portugal, and by the University of La Rioja for forecasts at geographic points in 

Spain. The different hourly weather forecasting variables were calculated by the weighting 

process described before in sub-Section 2.1. 

(e) Power system hourly variable forecasts: power demand forecasts, wind power forecasts, solar 

power forecasts, hydropower forecasts, independent cogeneration forecasts, thermal power 

forecasts, etc. This kind of information is difficult to obtain from a TSO for research works; 

furthermore, it is also complex to aggregate the forecast information from several TSOs. This 

kind of information, with high value but restricted to some actors, was not used in this paper. 

Alternatively, it was used the hourly weather forecast information previously described in 

paragraph (d), since such information is related partially to some of the power system hourly 

variable forecasts.  

(f) Power market restriction variables: unavailable capacity for power generation, reserves of 

power generation and interconnection, volume of electric energy allocated in other electricity 

markets, and electricity futures market and bilateral contracts. This is inside information, 

whose usefulness and usability have not been studied yet and it was therefore beyond the scope 

of this paper.  

From the set of the abovementioned variables, our explanatory models in Sections 3–5 utilized the 

types of data (a), (b), (c), (d), with hourly values corresponding to recorded values in years 2012 and 

2013. The recorded data were divided into an in-sample data set used for training, and an out-sample 



Energies 2015, 8 10471 

 

 

data set used for testing such explanatory models. The out-sample data set is composed by complete 

weeks extracted along the two years of data in order to have a good representation of the different price 

behaviours along the year. The in-sample and out-sample data sets are defined as follows: 

 In-sample data set: all the hours of the days in 2012 and 2013, except those included in the 

out-sample data set, totalizing 14184 cases (hours).  

 Out-sample data set: all the hours of the weeks with number 5, 10, 15, 20, 25, 30, 35, 40, 45, 

50 in 2012, and weeks number 2, 7, 12, 17, 22, 27, 32, 37, 42, 47 in 2013, totalizing 3360 

cases (hours). 

Prices for the MIBEL are mostly influenced by explanatory variables aggregated at the Iberian 

regional level, integrating the Portuguese and Spanish power systems. Additional to the weather 

forecasted variables, previously presented, the power generation variables are potentially important as 

explanatory variables. Annual-average hourly price behaviours could change from year to year, 

depending on diverse type of causes; for example, they can change due to variations in the electric 

production caused by the competitiveness between coal and natural gas power plants and by the 

renewable power generation available in each time period.  

The daily average power demand was quite similar in 2012 and 2013, but there were slight changes 

in the generation-mix production. The year 2013 was a year with more renewable power generation. 

This higher renewable proportion of power generation in 2013 had direct implications in the scale of 

prices which decreased an average of around 4.4 €/MWh in 2013.  

Figure 3 shows the evolution of the average daily prices of electricity for the day-ahead market of the 

MIBEL along part of the years 2012 and 2013, as well as the average daily values of some explanatory 

variables: average daily thermal power generation (combined cycles, coal and nuclear power 

generations) and renewable power generation (hydropower and wind power generations) and average 

daily power demand. We can observe that high prices occur in periods with high loads (power demands). 

On the other side, sometimes minimum values of the prices occur in days with low values of thermal 

power generation, caused by high values of hydropower or wind power productions (e.g., in April and 

May 2012, and April 2013). The variability of prices is very high compared with the variability of the 

explanatory variables represented in Figure 3.  

Figure 3 indicates very complex and nonlinear relationships between the prices and the explanatory 

variables represented in such figure. Furthermore, the non-linearity of relationships between hourly 

explanatory variables and hourly prices are related to price spikes corresponding to abnormal high and 

low values. In fact, in many of the cases, the price spikes cannot be explained by physical explanatory 

variables, since extreme abnormal values of prices could result from other possible causes; for example, 

they could be consequence of strategic decisions of market agents related to inside information of the 

electricity market. One of the reasons to build the REMPE model was to identify this partial lack of 

capability of the physical variables in order to explain the prices.  
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Figure 3. Evolution of the daily average prices and some explanatory variables along part 

of the years 2012 and 2013. 

3. Reference Explanatory Model for Price Estimation (REMPE Model) 

The REMPE model is an hourly price estimation model that basically uses recorded values of 

explanatory variables corresponding to hour h of day D + 1 in order to estimate the price of hour h of 

day D + 1. This model also includes values of hourly prices on previous days D and D – 6.  

Thus, in order to build the REMPE model, four groups of explanatory variables were utilized, as it is 

shown in Table 1. The first group is composed of the chronological variables “hour” and “week day” 

(variables V1 and V2). The second group of hourly variables is composed of the prices on previous days 

at the same hour h (variables V3 and V4). The third group includes hourly explanatory variables of the 

power system, aggregated at a regional level, that is, the actual hourly power generations (variables V6R 

to V11R) and the actual hourly power demand (variable V5R), corresponding to hour h of day D + 1. 

The fourth group includes hourly weather forecasts of wind speed, temperature and irradiance (variables 

V12R to V14R) for hour h of day D + 1, obtained for the studied region as indicated in sub-Section 2.1. 

It should be noted that power system information will be generally available acquired up to day D – 1. 

Furthermore, it will also be possible to use the prices resulting from prices for hour h of day D: this 

information of prices is available for each of the 24 h in day D because it was established in the previous 

day. Therefore, although the REMPE model is a price estimation model, we naturally decided to use the 

available price of hour h of day D as input variable of such model.  

The REMPE model was implemented with a MLP [47], using one hidden layer with 2n + 1 neurons, 

where n is the number of input variables (explanatory variables). This model was trained and tested with 

the in-sample and out-sample data sets previously described in sub-Section 2.2, which were utilized in 

all computing experiences presented in this paper. Since we used random weights initiation in these 

neural networks, different training of the same MLP resulted in slightly different computer results 

(outputs). In order to avoid this inconvenience, we used, as a final forecasting result, the ensemble 

averaging [47,48] of the outputs of five training processes of the same MLP. This final result is the linear 

combination of the five output values, thus achieving a more stable response and a lower error.  
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Table 1. Explanatory variables of the reference explanatory model for price estimations 

(REMPE) model. 

Variable Description 

V1 hour 
V2 week day 
V3 hourly price D 
V4 hourly price D – 6 

V5R hourly power demand D + 1 
V6R hourly wind power generation D + 1 
V7R hourly hydropower generation D + 1 
V8R hourly cogeneration and solar power generation D + 1 
V9R hourly coal power generation D + 1 

V10R hourly nuclear power generation D + 1 
V11R hourly combined cycled power generation D + 1 
V12R hourly forecasted temperature D + 1 
V13R hourly forecasted wind speed D + 1 
V14R hourly forecasted Irradiance D + 1 

An error analysis for the REMPE model using the mean absolute percentage error (MAPE) was 

carried out in the price estimations corresponding to the out-sample data set, where the MAPE is defined 

by Equation (1), 







N

T Treal

TestimationTreal

P

PP

N 1 _

__
100

1
MAPE  (1)

where Preal_T is the real hourly price value, Pestimation_T is the estimation of the hourly price value obtained 

from the explanatory model, and N is the number of elements of the out-sample data set. The MAPE 

error value corresponding to the final ensemble result achieved by the REMPE model was 10.23%. 

Several Alternative Reference Explanatory Models for Price Estimation, AREMPE-1 to AREMPE-14, 

were also built using MPLs. They are alternative models derived from the REMPE model: they have a 

similar structure (MLP, one hidden layer, 2n + 1 neurons), and they use the same input variables except 

one of them, as it is shown in Table 2. These models were created to detect whether some of the 

explanatory variables were relatively useful or not for the hourly price estimation.  

All the alternative models, from AREMPE-1 to AREMPE-14, resulted in higher MAPE errors than 

the error of the REMPE model which contains the complete set of variables. These results indicate that 

all explanatory variables contain valued information for the REMPE model. The alternative explanatory 

model for price estimation that leads to a higher value of MAPE error indicates that a relatively important 

variable was excluded. From the results of MAPE error values with the out-sample data set shown in 

Table 2, we can conclude that the price variables on previous days (variables V3 and V4) are important 

ones; also, the actual wind power generation variable (V6R) is an important variable to explain the prices 

of day D + 1; and the cogeneration and thermal generation variables are considered as significant 

information. On the other hand, forecasted wind speed (VR13), hour (V1), and week day (V2) variables 

contain relatively less valuable information for price estimation. 
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Table 2. Alternative Explanatory Models for Price Estimation and their mean absolute 

percentage error (MAPE) errors. 

Model Excluded Variable MAPE (%)
REMPE model – 10.23 

AREMPE-1 V1: hour 10.39 
AREMPE-2 V2: week day 10.34 
AREMPE-3 V3: hourly price D 10.93 
AREMPE-4 V4: hourly price D – 6 10.78 
AREMPE-5 V5R: hourly power demand D + 1 10.50 
AREMPE-6 V6R: hourly wind power generation D + 1 10.71 
AREMPE-7 V7R: hourly hydropower generation D + 1 10.46 
AREMPE-8 V8R: hourly cogeneration and solar power generation D + 1 10.56 
AREMPE-9 V9R: hourly coal power generation D + 1 10.54 

AREMPE-10 V10R: hourly nuclear power generation D + 1 10.49 
AREMPE-11 V11R: hourly combined cycled power generation D + 1 10.45 
AREMPE-12 V12R: hourly forecasted temperature D + 1 10.52 
AREMPE-13 V13R: hourly forecasted wind speed D + 1 10.32 
AREMPE-14 V14R: hourly forecasted Irradiance D + 1 10.56 

In Table 2, the explanatory variables with apparent low importance (corresponding to AREMPE 

models with smaller MAPE errors, relatively close to the error of the REMPE model) are not variables 

without an explanatory value, but there is possibly another variable that better explains the same 

information. For instance, the forecasted wind speed for day D + 1 (variable V13R) is a relevant variable 

in practical forecasting applications, but in the REMPE model another more accurate variable, the actual 

wind power generation for day D + 1 (variable V6R), practically extracts all the information that could 

exist in the forecasted wind speed variable (V13R) for price estimation purposes. However, as we will 

explain in Section 4, the wind power generation for day D + 1 is not included in our Explanatory Model 

for Price Forecasts, EMPF model, and, therefore, the forecasted wind speed for day D + 1 takes a 

considerable relevance in such EMPF model, as it is shown later.  

The MAPE error obtained with the REMPE model is, as previously indicated, the lowest error 

(“minimum error”) using the considered explanatory variables. This value (10.23%) corresponds to the 

lowest limit of the possible performance of any explanatory model for price estimation (or for price 

forecast) belonging to the same kind of explanatory models, that is, with similar kind of variables to 

those used in the REMPE model. This was another reason to build this REMPE model. 

The REMPE model uses the information that could better “explain” the prices of day D + 1, in the 

context described in this paper for explanatory models. Since the explanatory variables of the REMPE 

model cannot “explain” such prices with more accuracy, this fact can mean that there is approximately 

a 10% of MAPE error that can be caused by other diverse factors: it could be caused by the market 

agents’ behaviours (strategic, speculation and/or other decision type of market actors) that are not related 

to physical explanatory variables. These behaviours are dependent on inside information that, obviously, 

we did not model as explanatory variables. In this matter, hourly price spikes are cases where the REMPE 

model frequently fails. For example, Figure 4 presents actual hourly prices and REMPE hourly price 

estimation values for the week 37 in year 2013: in the off-peak period of the third day (hours 48 to 55), 
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an abnormal value of the actual price is shown, which cannot be sufficiently well explained by physical 

explanatory variables used by the REMPE model. 

 

Figure 4. Actual prices and REMPE price estimation values for week 37 of 2013. 

Figure 5 gives the hourly “error of the REMPE price estimation” values versus the actual hourly price 

values for the out-sample data set. Such error is the difference between the actual hourly price value and 

the corresponding hourly price estimation value of the REMPE model. Figure 5 shows that the 

abovementioned error is relatively well-centred in the horizontal axe for real prices in a range from 15 

to 65 €/MWh. Figure 5 also shows that the errors present an asymmetrical distribution in the vertical 

axe, with some relatively higher error values for positive errors, but with a relatively higher “frequency” 

(density of “points” in Figure 5) for small negative errors. For this range, 15 to 65 €/MWh, the mean 

absolute error is approximately 4.5 €/MWh. However, for price spikes higher than 65 €/MWh, the 

REMPE model leads to worse estimations, unsatisfactorily explaining high actual prices. On other side, 

for price spikes lower than 15 €/kWh the REMPE model have difficulties to explain low actual prices. 

 

Figure 5. Error of the REMPE price estimation values versus actual price values. 
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4. Explanatory Model for Price Forecasts (EMPF Model) 

The EMPF model is a short-term hourly price forecasting model that utilizes recorded explanatory 

variables mainly corresponding to hour h of days D – 1 and D – 6, as well as weather forecasts for hour 

h of day D + 1, in order to forecast the electricity price for hour h of day D + 1. This EMPF model also 

includes hourly prices on previous days D and D – 6. 

Thus, four types of explanatory variables were considered in the EMPF model:  

(a) Chronological variables such as “hour” and “week day”, including a differentiation for 

holidays in the week day. 

(b) Hourly prices of days D and D – 6. 

(c) Hourly explanatory variables of the power system, that is, hourly power demand and hourly 

power generations of days D – 1 and D – 6. 

(d) Hourly weather forecasts of wind speed, temperature and irradiance, for day D + 1.  

As briefly outlined in sub-Section 2.1, the time series of hourly electricity price and other hourly 

power system variables, such as power demand or generation variables, have a common characteristic 

of seasonality, that is, an autocorrelation analysis shows that they contain significant information in the 

24 h lag, 48 h lag or 168 h lag. This fact responds to the temporal behaviour of the hourly power demand, 

which has daily and weekly patterns. There is one exception: the hourly wind power generation variable, 

which does not contain significant pattern information in day D – 1 since the Auto Correlation Function 

(ACF) and the Partial Auto Correlation Function (PACF) applied to the wind power generation variable 

don’t show significant values for a lag over a few hours. Therefore, the wind power generation of day D – 1 

is useless for the price forecasting of the day-ahead D + 1 since such generation of day D – 1 corresponds 

to a lag of 48 h. The solar power generation and power cogeneration variable is partially related to the 

meteorological variables but most of the power generation comes from that of the cogeneration power, 

with well-defined seasonal patterns (daily and weekly patterns).  

Thus, for the explanatory variables of types (b) and (c) previously mentioned, the EMPF model 

considers three sets of seasonal variables, as it is shown in Table 3. The first set includes only one 

variable: the hourly price, V3, with a 24 h lag, that is, the hourly price in day D. The second set comprises 

the variables V5, V7, V9, V11, V13 and V15 with a 48 h lag, that is, they correspond to the values in 

day D – 1. The third set comprises the variables V4, V6, V8, V10, V12, V14 and V16 with a 168 h lag, 

that is, they correspond to the values in day D – 6. The explanatory variables of type (d), variables V17, 

V18 and V19, are the weather forecasts for day D + 1. Obviously, these meteorological variables of the 

EMPF model, V17, V18 and V19, correspond to the variables V12R, V13R and V14R used the REMPE 

model (Table 1).  

The EMPF model was implemented with a MPL with the same structure than that used for the 

REMPE model, that is, one hidden layer with 2n + 1 neurons, where n is the number of input explanatory 

variables. For training and testing of the MLP, in-sample and out-sample data sets previously described 

in sub-Section 2.2 were used again, as well as the ensemble technique for the corresponding computer results. 
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Table 3. Explanatory variables of the explanatory model for price forecast (EMPF) model. 

Variable Description 
V1 hour 
V2 week day 
V3 hourly price D 
V4 hourly price D – 6 
V5 hourly power demand D – 1 
V6 hourly power demand D – 6 
V7 hourly hydropower generation D – 1 
V8 hourly hydropower generation D – 6 
V9 hourly cogeneration and solar power generation D – 1 

V10 hourly cogeneration and solar power generation D – 6 
V11 hourly coal power generation D – 1 
V12 hourly coal power generation D – 6 
V13 hourly nuclear power generation D – 1 
V14 hourly nuclear power generation D – 6 
V15 hourly combined cycled power generation D – 1 
V16 hourly combined cycled power generation D – 6 
V17 hourly forecasted temperature D + 1 
V18 hourly forecasted wind speed D + 1 
V19 hourly forecasted irradiance D + 1 

In a similar way as that followed for the REMPE model, the MAPE was calculated for the price 

forecasts corresponding to the out-sample data set for the EMPF model. In this case, the MAPE is defined 

by Equation (2), 






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T Treal

TforecastTreal

P

PP

N 1 _

__
100

1
MAPE  (2) 

where Preal_T is the real hourly price value, Pforecast_T is the forecasted hourly price value of the forecasting 
model; and N is the number of elements in the out-sample data set. 

The MAPE error value (final ensemble result) achieved by the EMPF model was 13.36%.  

As expected, this MAPE error is higher than the one obtained with the REMPE model (10.23%) but 

relatively close to this reference error value. 

The error values of the EMPF model vary from week to week in the out-sample data set. Figures 6 

and 7 show two examples of hourly evolution of the actual price values, forecast values of the EMPF 

model, and REMPE estimation values in two different weeks belonging to the out-sample data set.  

Figure 6 shows relatively good performances of both REMPE and EMPF models, and Figure 7 shows 

performances of such models which are comparatively not so good.  

Week 7 of year 2013 (Figure 6) corresponds to a period with a medium hydropower generation level, 

and a very high wind power generation in the first two days of the week but with a strong decreasing 

generation to zero in the last days of the week.  
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Figure 6. Actual price values, forecast values of the EMPF model, and REMPE estimation 

values for the week 7 of year 2013. 

 

Figure 7. Actual price values, forecast values of the EMPF model and REMPE estimation 

values for the week 12 of year 2013. 

Week 12 of year 2013 (Figure 7) was a week with relatively high values of hydro and wind power 

generation, with a strong variability on wind speed. In the second day of this week, the forecasts of wind 

speed presented high error values, which could partially justify a relatively higher error in the forecasting 

values of the EMPF model; however the REMPE model estimates the price more correctly, probably 

because it uses exact values of the wind generation as a variable.  

The histograms of the error values of the EMPF model and of the REMPE model are given in Figure 8. 

These values represent the difference between the actual price values and the forecasted ones, and are 

percentage-wise expressed with respect to the actual price values. The distribution of error values of the 

REMPE model is centred with respect to the horizontal axe, with a bias of 0.13%, but the bias is 2.74% 

for the EMPF model, slightly showing some more frequency and magnitude of errors.  
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Figure 8. Histogram of the error values of the EMPF model and the REMPE model for the 

out-sample data set. 

Several Alternative Explanatory Models for Price Forecasts (AEMPF-1 to AEMPF-19), shown in 

Table 4, were also built by utilizing MPLs. These alternative models have a similar structure than that 

of the EMPF model, each of them excluding however a different input variable from those used by the 

EMPF model. Thus, we could identify explanatory variables that were relatively important for price 

forecasting, as it is indicated later.  

Obviously, none of the Alternative Explanatory Models for Price Forecasts, AEMPF-1 to AEMPF-19, 

achieved better performance (MAPE error) than that of the EMPF model (base model), meaning that all 

considered variables contain useful price forecasting information. Variables excluded in the 

corresponding AEMPF model with higher MAPE error are relatively important for forecasting purposes. 

The forecasted wind speed of day D + 1 (variable V18) is clearly the most important variable for the 

price forecasting, followed in relevance by the price of the previous day (variable V3). From Table 4, 

analyzing the MAPE error values from the AEMPF-3 to the AEMPF-19 models, we can conclude that 

the power generation dispatch variables of day D – 1 (variables V7, V9, V11, V13 and V15), and the 

consumption (power demand) of day D – 1 (variable V5), seem variables with some relevance, but they 

are obviously less important than the price of day D (variable V3) and the forecasted wind speed of day 

D + 1 (variable V18). The combined cycled power generation of day D – 1 (variable V15) is the least 

important variable of the set of generation variables of day D – 1. In general, the inform ation in most of 

the variables of day D – 1 seems to be more valuable than that from the same variable of day D – 6.  

In Table 4, “hour” and “week day” chronological variables, variables V1 and V2, seem to have 

relatively and slightly less useful information, because there are several variables of day D – 1 with 

seasonal information. 

Table 4. Alternative Explanatory models for Price Forecasts and their MAPE errors. 

Model Excluded Variable MAPE (%) 
EPFM model – 13.36 

AEMPF-1 V1: hour 13.60 
AEMPF-2 V2: week day 13.64 
AEMPF-3 V3: hourly price D 14.98 
AEMPF-4 V4: hourly price D – 6 13.85 
AEMPF-5 V5: hourly power demand D – 1 14.06 

C
as

es
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Table 4. Cont. 

Model Excluded Variable MAPE (%) 
AEMPF-6 V6: hourly power demand D – 6 13.68 
AEMPF-7 V7: hourly hydropower generation D – 1 13.87 
AEMPF-8 V8: hourly hydropower generation D – 6 13.58 
AEMPF-9 V9: hourly cogeneration and solar power generation D – 1 13.77 

AEMPF-10 V10: hourly cogeneration and solar power generation D – 6 13.54 
AEMPF-11 V11: hourly coal power generation D – 1 13.78 
AEMPF-12 V12: hourly coal power generation D – 6 13.55 
AEMPF-13 V13: hourly nuclear power generation D – 1 13.74 
AEMPF-14 V14: hourly nuclear power generation D – 6 14.17 
AEMPF-15 V15: hourly combined cycled power generation D – 1 13.68 
AEMPF-16 V16: hourly combined cycled power generation D – 6 13.65 
AEMPF-17 V17: hourly forecasted temperature D + 1 13.74 
AEMPF-18 V18: hourly forecasted wind speed D + 1 17.71 
AEMPF-19 V19: hourly forecasted irradiance D + 1 13.97 

Lastly, notice that for other specific electricity markets different from the MIBEL, the corresponding 

EMPF model could be built as well as the corresponding Alternative Explanatory Models for Price 

Forecasts that would allow one to determine the importance of the explanatory input variables in such 

different electricity markets. 

5. Simpler Explanatory Models for Price Forecasts (SEMPF Models) 

As previously discussed, there are different types of input information that can be used in explanatory 

models for short-term price forecasts: chronological information, hourly price information, recorded 

hourly power demand, recorded hourly power generations and hourly weather forecasts. If the complete 

set of information is available, then, from a technical point of view, the best option is to use the 

combination of all explanatory variables which provide the best hourly price forecasting performance. 

However, data gathering is generally a complex process in forecast services; furthermore, in some cases, 

a part of the data set is not available, or it is not complete or reliable and it cannot be used; or the data 

gathering leads to some kind of cost. There is also the computational effort issue: hourly price forecasting 

models with more explanatory variables are computationally more intensive, especially when they need 

data pre-processing. 

In order to analyze the value of the type of information for short-term price forecasts, we utilized the 

same process used in the EMPF model applied to some Simpler Explanatory Models for Price Forecast 

(SEMPF models) that consider different types of explanatory information. Table 5 shows the explanatory 

variables for the SEMPF-20 to SEMPF-26 models that were tested for comparative purposes, and the 

MAPE errors obtained with the out-sample data set for each model.  

The SEMPF-20 model is a “baseline model” that uses “hour” and “week day” chronological variables 

(variables V1 and V2). In practice, it is a model that computes an average price for each hour in each 

week day. The output of the SEMPF-20 model is the same for all weeks of the year, and it leads to a 

MAPE error of 20.94%, as it is shown in Table 5. This SEMPF-20 model is minimalist in the usage of 

information, although the price series have been used as a target in the training process. However, in 
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situations where there is no way of receiving information about the prices in previous days, this naïve 

SEMPF-20 model is the most suitable. 

Table 5. EMPF and simpler explanatory models for price forecast (SEMPF) models input 

variables and their MAPE errors. 

Model Used Variables MAPE (%) Description 
SEMPF-20 V1, V2 20.94 baseline model 
SEMPF-21 V3, V4 18.04 hourly price time series 

SEMPF-22 V1, V2, V3, V4 16.80 
hourly price time series and chronological 
information 

SEMPF-23 V3, V4, V17, V18, V19 15.53 hourly price time series and weather forecasts 

SEMPF-24 
V1, V2, V3, V4, V17, 

V18, V19 
14.34 

hourly price time series, weather forecasts and 
chronological information 

SEMPF-25 V1, V2, V3, V4, V5, V6 16.59 
hourly price time series, power demand and 
chronological information 

SEMPF-26 
V1, V2, V3, V4, V5, 
V6, V17, V18, V19 

13.95 
hourly price time series, weather forecasts,  
power demand and chronological information 

EMPF model  All variables V1 to V19 13.36 all variables  

The SEMPF-21 model only uses information about prices in previous days, that is, price of day D 

and price of day D – 6 (variables V3 and V4). It should be noticed that, with only this seasonal 

autoregressive information, the MAPE error decreases to 18.04%, as it is shown in Table 5.  

The SEMPF-22 model uses the chronological information and price time series (variables V1, V2, 

V3 and V4). This model is a natural alternative to the SEMPF-21 model because the chronological 

information has no additional data gathering effort and it is naturally known. The MAPE error, 16.8%, 

achieved by this model is 1.24% lower than that for the SEMPF-21 model. This appreciable decrease 

indicates a relative importance of the chronological information when there is a small number of  

seasonal variables.  

The SEMPF-23 and SEMPF-24 models incorporate weather forecasts (variables V17, V18 and V19) 

to the price information (variables V3 and V4) and to the chronological information (variables V1 and V2). 

The SEMPF-24 model achieves a MAPE error of 14.34%, decreasing the error 2.46% with respect to 

the MAPE error of the SEMPF-22 model; furthermore, SEMPF-23 model achieves a MAPE error of 

15.5%, decreasing the error 2.51% with respect to the MAPE error of the SEMPF-21 model. These error 

decreases show that weather forecasts are relevant information for the hourly price forecasting. Models 

SEMPF-23 and SEMPF-24 require weather forecast services that could incur costs for a regional level 

application (in the MIBEL, or other similar market) because hundreds of hourly weather forecast 

geographic points are necessary to conveniently cover the service area of the electricity market studied.  

The SEMPF-25 model adds the power demands (variables V5 and V6) to the list of explanatory 

variables of SEMPF-22 model with a small MAPE error improvement of 0.21%. On the other hand, a 

small MAPE error improvement is observed when the power demands (variables V5 and V6) are added, 

in the SEMPF-26 model, to the list of variables of the SEMPF-24 model.  

Finally, we can compare the SEMPF models with the EMPF model that achieves a MAPE error of 

13.36%, as it is shown in Table 5. It should be observed that the EMPF model uses 19 explanatory 
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variables and the procurement of some of them require some effort, especially in the case of the different 

kinds of power generation time series. The EMPF model is the best for price forecasts under the MAPE 

error criterion with the variables analyzed; on the other hand, SEMPF models comparatively need lower 

effort for data gathering, but they lead to higher MAPE error values.  

Thus, Table 5 and the corresponding comparisons among explanatory models described above allow 

outlining some guidelines of the value of the diverse type of input information used by SEMPF models 

for the day-ahead price forecasting of the MIBEL.  

6. Conclusions 

This paper presents the analysis of the importance of a set of explanatory variables for the day-ahead 

price forecast in the Iberian Electricity Market (MIBEL). The set of explanatory variables includes 

recorded time series of prices, of regional-aggregated hourly power generations and hourly numerical 

weather forecasts associated with the studied region. Two main models, related with the analysis of 

importance, are presented in the paper: the EMPF model for the day-ahead hourly price forecasting and 

the REMPE model) for the estimation of the hourly prices. A set of alternative models derived from the 

EMPF model (AEMPF models), and a set of simpler models than the EMPF model (SEMPF models), 

have been tested in order to analyze the relative importance of each explanatory variable and each type 

of explanatory variables for the day-ahead price forecasting in the MIBEL. 

The EMPF model provides day-ahead hourly price forecast, at a regional level, mainly using recorded 

time series of prices, of regional-aggregated hourly power generations and hourly numerical weather 

forecasts associated with the studied region. Thus, as input variables (price explanatory variables), the 

EMPF model considers, in addition to chronological variables, hourly prices in previous days,  

regional-aggregated hourly power demands and hourly power generations of most of the types of 

electricity production in previous days as well as weather forecasts (hourly wind speed, temperature and 

irradiation) for the day-ahead in hundreds of geographical points of the region. 

The REMPE model provides the estimation of the hourly prices. The main difference between this 

model and the EMPF model is that the REMPE model uses actual power demand values and actual 

power generation values corresponding of such day-ahead instead of the values of these variables in 

previous days. Thus, the REMPE model is not a model for price forecasts but for price estimations.  

Both EMPF and REMPE models have been successfully and satisfactorily applied to the real-life case 

study of the MIBEL that covers the mainland of Portugal and Spain. 

The MAPE error of the REMPE model, for the MIBEL, is the lowest one, using the considered 

explanatory variables. This value is the lowest limit of the MAPE errors of any explanatory model for 

price estimation or for price forecast using the same input variables of the REMPE model. It seems that 

this MAPE error of the REMPE model could be caused by diverse factors which are different from the 

physical explanatory variables. Among these factors, for example, we could consider strategic market 

agents’ behaviours that are not essentially related to physical variables, but possibly related to inside 

information for market bidding. In these matters, price spikes are cases where the REMPE model 

presents a worse performance, possibly indicating some special market agents’ actions. Thus, this model 

has also been useful in analyzing price estimation difficulties in the price spikes. 
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The EMPF model achieves a MAPE error, in the MIBEL, higher than the “minimum error” obtained 

by the REMPE model, but relatively close to it, showing a satisfactorily performance with respect to the 

REMPE model.  

The EMPF model has been useful in identifying the relative importance of each explanatory variable 

for price forecasts among the remaining variables that are inputs of such model. Thus, in the day-ahead 

price forecasts of the MIBEL, the EMPF model computer results indicate that the forecasted wind speed 

and the price in the previous day are the most relevant variables, although all the variables of the model 

give explanatory information for price forecasting.  

Other SEMPF models have been also applied to the case of the MIBEL, using only some of the types 

of input information (chronological information, price information, power demands, power generations 

and/or weather forecasts). The reduction in the types of input information has led to higher MAPE errors 

for the SEMPF models than those for the EMPF model, since this model is the best for the day-ahead 

price forecasts with the considered explanatory variables. However, such SEMPF models obviously need 

a lower data gathering effort.  

The explanatory models of this paper for price forecasts, their performance in the MIBEL, mainly in 

terms of MAPE errors, and the analysis of the importance of their input variables, can be useful for 

electricity market agents and other actors of the electric energy industry. 
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