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Abstract: This paper proposes a hybrid algorithm to solve the optimal energy dispatch of an 

ice storage air-conditioning system. Based on a real air-conditioning system, the data, 

including the return temperature of chilled water, the supply temperature of chilled water, 

the return temperature of ice storage water, and the supply temperature of ice storage water, 

are measured. The least-squares regression (LSR) is used to obtain the input-output (I/O) 

curve for the cooling load and power consumption of chillers and ice storage tank. The 

objective is to minimize overall cost in a daily schedule while satisfying all constraints, 

including cooling loading under the time-of-use (TOU) rate. Based on the Radial Basis 

Function Network (RBFN) and Ant Colony Optimization, an Ant-Based Radial Basis 

Function Network (ARBFN) is constructed in the searching process. Simulation results 

indicate that reasonable solutions provide a practical and flexible framework allowing the 

economic dispatch of ice storage air-conditioning systems, and offering greater energy 

efficiency in dispatching chillers. 

Keywords: ice storage air-conditioning system; radial basis function network; ant colony 

optimization; chiller; economic dispatch 
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1. Introduction 

Taiwan is located in a subtropical region where summers are hot and dry. As a result, people rely 

heavily on air-conditioning systems to cool buildings. The demand for electricity in Taiwan is 

continuously growing at an average of 3.2% per year, while air-conditioning systems are responsible for 

more than 30% of overall energy consumption, and up to 40% during peak periods [1]. The system peak 

load has also increased by an annual rate of 10% due to a rapid increase in the number of air-conditioning 

systems [1]. In order to shift the system peak load, ice storage technology has begun to be used as a 

demand-side management strategy for reducing energy consumption. 

Most heating, ventilation and air conditioning (HVAC) systems use a multi-chiller system as their 

central component. Chiller systems account for the largest share, roughly 60%, of air-conditioning 

system power consumption [2]. The electrical energy consumption in chiller plants increases significantly if 

the chillers are improperly managed. Thus, the use of computer-based optimization approaches in  

multi-chiller systems has attracted a good deal of research attention. The optimization approach often 

leads to substantial savings in energy consumption. Reported techniques for optimal chiller loading 

include simulated annealing [3], genetic algorithm [4,5], branch and bound method [6], Hopfield neural 

network [7], differential evolution algorithm [8], cuckoo search approach [9], firefly algorithm  

approach [10], and dynamic programming [11]. These approaches can be very accurate given sufficient 

information for optimal chiller loading; however, no approach has suggested a combination of energy 

storage systems in order to shift the peak load. Since the cooling load is a significant portion of peak 

energy consumption, an ice storage system (ISS) was used as part of the proposed peak reduction 

technology. An ISS is charged by operating chillers at off-peak periods, and discharged by melting ice 

during the peak period in order to meet the building cooling demands. This can permanently shift the 

energy use of the system from peak periods to off-peak periods, thereby reducing peak electricity 

demand. ISS will play an important role in managing the electrical energy of air-conditioners in  

the future [12,13]. 

Several studies have been carried out on the effectiveness of energy storage systems. [14] proposed 

a novel technique to solve dynamic chiller loading in a district cooling system with thermal energy 

storage. Two objective functions, minimizing total energy consumption and minimizing total cost over 

a 24 h time horizon, were simultaneously solved. [15,16] presented a simulation environment that can 

evaluate the benefits of simultaneously using building thermal capacitance and ice storage systems to 

reduce operating costs. The results of a series of parametric equations were also analyzed in order to 

investigate the factors that affect the effectiveness of such a system while maintaining adequate occupant 

comfort conditions within the building. [17] used ice storage systems to shift the peak cooling demand 

to off-peak periods in office buildings. A demand response quick assessment tool was used to model and 

simulate large and medium-sized office buildings. Economic and environmental benefits of utilizing ice 

thermal storage systems are discussed in [18]. [19,20] described the impact of using chilled water storage 

systems on the performance of air cooled chillers in Kuwait, while estimating the electrical energy 

consumption and peak electrical load of air-conditioning systems. The performance of district cooling 

plants with ice storage are evaluated to prove their economic feasibility under different tariff structures 

in [21]. Several other studies have discussed the optimal design and control of cooling systems with ice 

storage [22–24]. Results indicated that these researches can be effectively applied to obtain optimal 
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schedules for ice storage air-conditioning systems. The objective in optimal chiller loading is to find an 

optimal schedule for dispatching the chillers, so that the operating cost of the whole scheduling period 

can be minimized while satisfying the numerous operating constraints. The complexities are 

compounded when an ISS is added to the system, and the problem becomes a dynamic optimization 

problem. This can be a difficult decision-making process because of the complex constraints that must 

be considered in all of the commitment’s schedules. Efficient tools are thus needed to solve the problem 

of determining the best dispatching system. 

This paper proposes a hybrid method for the economical operation of air-conditioning systems by 

considering the ISS and operational cost to supply the whole decision space for the dispatcher. Based on 

a real air-conditioning system, the data, including the return temperature of chilled water, the supply 

temperature of chilled water, the return temperature of ice storage water, and the supply temperature of 

ice storage water are measured. The least-squares regression [25] is used to obtain the input-output (I/O) 

curve for the cooling load and power consumption of chillers. This paper also considers the connection 

with a utility company regarding the time-of-use (TOU) rate [26]. The objective is to minimize the 

overall cost in a daily schedule while satisfying all constraints including cooling loading. Combining 

Ant Colony Optimization (ACO) [27] and a Radial Basis Function Network (RBFN) [28], an Ant-Based 

Radial Basis Function Network (ARBFN) is proposed to improve searching ability. Actual cases and a 

daily schedule case were used to verify the effectiveness of the proposed method. Simulation results 

provided a novel tool for the economic dispatch of ice storage air-conditioning systems, while providing 

greater dispatch energy efficiency. 

2. Problem Formulation 

In this paper, the actual controllable parameters of chillers and ice storage tanks in the air-conditioning 

system are used to demonstrate the association between the power capacity of the chillers and the cooling 

capacity of the system. The cooling output of the ice storage tank is timed for freezing and melting ice. 

Figure 1 shows the diagram of an ice storage air-conditioning system with chillers, ice storage tank, 

pump, and other auxiliary equipment. In this study, the system has six ice chillers and one ice storage 

tank. It is necessary to assess the economical and operational benefits offered by the chiller dispatch 

under TOU. Models for chiller capacity cooling load, the charge/discharge process of the ice storage 

tank, and the power consumption of chillers, are all required. 
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Figure 1. Diagram of an ice storage air-conditioning system. 

2.1. The Cooling Load Capacity of Chillers 

The cooling load capacity for chillers is generally calculated based on the return water temperature, 

supply water temperature, and the flow rate of chilled water. Therefore, the calculation of the cooling 

load capacity for the chillers is as in Equation (1): 

chillerpwchwchillerchiller CTLPMQ ,
 (1)

chillerQ : the cooling load of chillers (kJ/hr); 

chillerLPM : the flow rate of chilled water (liter/hr); 

w : the density of chilled water (1 kg/L);  

chillerpC , : the specific heat of water at average temperature (4.186kJ/kg-°C). 

chwT  is the temperature difference of chilled water (°C), which is defined as Equation (2): 

chwstchwrtchw TTT   (2)

chwrtT : the return temperature of chilled water (°C); 

chwstT : the supply temperature of chilled water (°C). 
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2.2. The Cooling Load Capacity of the Ice Storage Tank 

The cooling load capacity of the ice storage tank is calculated based on the return water temperature, 

supply water temperature, and the flow rate of chilled water. Therefore, the calculation of the cooling 

load capacity is represented as in Equation (3): 

icepiceiswice CLPMTQ ,
 (3)

iswsiswrisw TTT   (4)

iswT : the temperature difference of ice storage brine (°C); 

icepC , : the specific heat of ice storage brine at average temperature (3.6 kJ/kg-°C); 

iswrT : the return temperature of ice storage brine (°C); 

iswsT : the supply temperature of ice storage brine (°C); 

iceLPM : the flow rate of ice storage brine (L/h); 

iceQ  : cooling load capacity of the ice storage tank (kJ/h). 

2.3. Power Consumption of Cooling Towers and Pumps 

The power consumption of the cooling tower ( towerP ) is calculated from the fan motor. The power 

consumption of cooling tower is regarded as proportional to the cooling tower capacity ( wrldt ). It can be 

computed as in Equations (5) and (6) [29]: 

)/517.3(,,, tonkWQPt ichilleichilleriwrld   (5)

iwrlditower tP ,, 025.0   (6)

The consumption power of pump ( pumpP )is calculated with the total chilled water-mass flow rate( pG ), 

head loss( H ), and pump efficiency( p ) as in Equation (7) [29]: 

p

p HG
P





3960pump  (7)

2.4. Power Consumption of Chillers and Ice Storage Tanks 

The power consumption of chillers is a convex function of the cooling load capacity as shown in 

Equation (8): 
32

i,chillerii,chillerii,chilleriii,chiller QdQcQbaP   (8)

where ia  , ib  , ic  , and id   are the regression coefficients of the function of cooling load capacity and  

power consumption. 

The power consumption of the ice storage tank is also a convex function of the cooling load capacity 

as shown in Equation (9): 
3

,,
2

,,,,,, iiceiiceiiceiiceiiceiiceiiceiice QdQcQbaP 
 (9)

where iicea , , iiceb , , iicec , , and iiced ,  are regression coefficients of the function of iiceP , . 
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2.5. Objective Function and Constraints 

The main purpose of this paper is to derive the best single-day schedule planning for ice storage air-

conditioning systems so that the total cooling load of the chillers and ice storage tank can meet the 

required cooling needs of the target space. The total electricity cost is also minimized as in  

Equation (10): 
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)(, tP ichiller : the power consumption of the i-th chiller at time t; 

)(, tP itower : the power consumption of the i-th cooling tower at time t; 

)(tPpump : the power consumption of pump at time t; 

)(tUi : the i-th unit on/off at time t, 1 is on and 0 is off; 

)(tEC : the TOU rates as shown in Figure 2 [26]; 

)(tPice : power consumption of the ice storage at time t (kW);  

H : the scheduling time; 

L : the total number of chillers; 

M : the total number of ice storage tanks. 

 

Figure 2. The TOU rate for a summer day and a non-summer day. 

The constraints include both the system constraints and the unit’s constraints: 

(a) load balance: 
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(b) the limitation for the temperature difference of chilled water: 
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i
amxchw

i
chw

i
chw TtTT ,min, )(   (12)

(c) the limitation for the temperature difference of the ice storage tank: 
i

amxisw
i

isw
i

isw TtTT ,min, )(   (13)

where 
)(, tQ ichiller  is the cooling load of the i-th chiller at time t (kJ/hr), )(tQice  is the cooling load of the 

i-th ice storage at time t (kJ/hr) and )(tCL  is the total system cooling load at time t (kJ/hr). )(tT i
chw  is 

the temperature difference of the i-th chilled water at t-th time. 
i

max,chwT  and 
i

chwT min,
 are the maximum 

and minimum generation limits of the temperature difference of the i-th chilled water. )(tT i
isw  is the 

temperature difference of the i-th ice storage tank at time t. 
i

iswT max,
 and 

i
iswT min,

 are the maximum and 

minimum generation limits of the temperature difference of the i-th ice storage tank. 

3. The Proposed Methodology 

ARBFN consists of the input, hidden, and output layers. The unknown j-th input vector Xj=[xj1, xj2, 

…, xji, …, xjN], i = 1, 2,…, N, j = 1, 2,…, M, is connected to the input layer. The number of output nodes 
yj, j = 1, 2,…, M, is equal to the number of training input-output data pairs, that is to say, input nodes  

(a matrix) and output nodes (a vector) are paired. The j-th hidden nodes vector Hj=[Hj1, Hj2, …, Hjk, …, 

HjK], k = 1, 2, …, K, j = 1, 2, …, M. The weights wjk connect the k-th hidden node with the j-th output 

node. The ARBFN structure is shown in Figure 3, and the “ACO” process is performed in the adjusting  

error stage. 

 

Figure 3. The ARBFN Structure j-th forecast. 

3.1. Input Layer 

In this paper, xi is the i-th variable of the expected output. For each training data pair, set input matrix 

X = [xji] M×N, j=1, 2, …, M, i = 1, 2, …, N. 
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3.2. Hidden Layer 

In the hidden layer, Cj=[cj1, …, cjk, …, cjK] is called the j-th center of EACO. ║xji −cjk║ is the 

Euclidean distance between the i-th node of the input layer and the k-th node of the hidden layer.  

The Euclidean distance is determined by Equation (14):  





N

i
jkjijkji cxcx

1

2)(||||  (14)

The k-th hidden layer output is defined as Equation (15): 

))((
1

2



N

i
jkjijkjk cxH  (15)

In Equation (16), the function φ(•) is a Gaussian distribution function and σ is a smoothing parameter: 
22

)(  xex   (16)

3.3. Output Layer 

In the output layer, let wjk be the weight between hidden node Hjk and output node yj, and the j-th 

output of the output layer is given as Equation (17): 





K

k
jkjkj Hwy

1

 (17)

In order to adjust the three parameters, which are weights wjk, the center of C and the smoothing 
parameters σjk of function φ(•), ACO is adopted. The ACO process is: 

1) Calculate Euclidean distance ║xji ﹣cjk║; 

2) Calculate hidden layer output Hjk by Equation (15); 

3) Calculate output layer output by Equation (17); 

4) Calculate the error between simulation output yj and its expected value Tj by error function. In this 

paper, the fitness function is set to an error function which is defined as Equation (18):  
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(18)

where ej(n) and yj(n) is the j-th error and the j-th simulation output of the n-th epoch, respectively. The 

related parameters are updated by Equations (19)–(21): 
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3.4. Ant Colony Optimization (ACO) Process 

The ACO optimization method is used to optimize three learning rate parameters iw , ic , and i . 

These optimal parameters refine the accuracy in a dynamic environment and can yield a minimum 

forecast error based on the testing data. The ACO process as applied to the learning rate parameters is 

as follows: 

Step 1: Set P  ants, pheromone intensity ij , and consciousness constant ij  for each learning  

rate parameter. 

Step 2: In the learning process of ARBFN, the ants deposit their own pheromones along the path, and 

exploration denotes the process of selecting a path by probability. The initial solution is obtained by 

assigning a binary digit for the learning rate parameters as shown in Figure 4. To avoid an ant repeatedly 
visiting the same place, each ant p  has its own path at time i  to memorize where the ant has gone. ij  

and ij  are used to control the ant’s direction of movement to another place. 

 

Figure 4. A binary digit for the learning rate parameters. 

In this paper, an ant matrix is designed to represent an ant’s paths ( )i(tabu p ). In order to deposit two 

statuses along the path, an ant’s path matrix ( )i(tabu p ) is defined as in Figure 5. The process of the 

learning rate parameters operates as ants travel selecting paths, and evaluated by the fitness values of all 

ants until a specified training accuracy is attained. A sample is used to describe the basic concept of the 
ant matrix, shown in Figure 5. If an ant of parameter jw  is located at array (2,1) after the fitness value 

is calculated, the binary digit is set to 1 because the fitness value at array (2,1) is best along this stage. 

The binary digit of array (1,1) will then be set to 0. When the ant passes array (1,3), the binary digit of 
array (2,3) will be set to 0. Simultaneously, the ants of parameters jc  and  j  will conduct their paths. 

A new path matrix is generated when the ants have completely explored the path. 

 

Figure 5. The basic concept of the ant matrix. 
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Step 3: Calculate the probability of the ants’ path. 

The state transition rule of the ant path matrix used by ACO is given by Equation (22), which gives 
the probability of ant p  being at array )j,i( :  
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where 10   is a pheromone decay parameter, )t(p
ij  is the pheromone intensity at time t  and 

)t(p
ij  is the pheromone consciousness at time t. 

Step 4: Generate the new binary matrix and calculate the learning for )1t(jw  , )1t(jc  , and 

)1t(j  . 

Step 5: Calculate the output error of the fitness function. 

Step 6: Update the pheromone intensity: 

p
ij

p
ij

p
ij )t()1t(    (23)

where  is the pheromone intensity constant ( 10   ), and p
ij  is the deviation of pheromone 

intensity as shown in Equation (24): 



 


other,0

antthpfor)j,i(paththe,e/Q p
ijp

ij  (24)

where Q is the pheromone release rate ( 1Q0  ), and p
ije  is the error of path (i,j) for the p-th ant. 

Step 7: Stopping Rule. 

A fitness function error of 0.00001 is set as the stopping criterion. If the convergent condition is not 

met, Steps 2 to 6 will be repeated. 

3.5. Implementation of ARBFN 

Power consumption fluctuations may be the result of temperature (Temp ), Partial Load Regulation  

( PLR ), chillerLPM , iceLPM , the percent of ice stored tank( ICE ), or the temperature difference in an ice 

storage air-conditioning system. ARBFN is capable of coping with complicated interactions among these 

factors. These factors can, thus, be taken into account as inputs to the ARBFN. 

The operating data for chillers and ice storage tanks are collected and divided into input variables and 

output variables. In this study, three ARBFNs are trained in the 24 h schedule. ARBFN training is 

conducted to minimize the fitting error for a sample training set. The output layer contains two output 

variables: power consumption and cooling load. The hidden layer contains K hidden nodes. The variables 

of the input layer depend on the types of units. Three training nets are proposed in this study. 
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(1) Chiller nets: 

 chwchillerchwrt TPLRLPMTTempinput  ,,,,  (25)

 chillerchiller QPoutput ,  (26)

(2) Ice storage tank in charging process: 

 ICELPMTTTempinput icebccwbcw ,,,,   (27)

 iceice QPoutput ,  (28)

where bcwT  is temperature difference of brine for ice-storage tank (°C), bccwT  is temperature difference 

of brine for the cooling pump (°C). The sample data from the ice storage air-conditioning system in 

Chang-Cung Memorial Hospital were collected and constructed in EXCEL Workspace. The data 

analysis and data storage can be easily manipulated with this database. The ARBFN consists of the input, 

hidden and output layers. The learning rates μ,μ,μ cw  were adjusted by ACO as shown in  

Figure 3. The ACO technique finds the optimal solution using a population of ants. The population size 

is set to 20P  and the dimension is set to 3d . The ant generations are ]μ,μ,μ[μ cw
d
i  , where 

wμ , cμ , and μ  are the ARBFN learning rates. 

4. Case Study 

The proposed algorithm was tested in a real ice storage air-conditioning system, which include six 

chillers and one ice storage tank. The cooling capability of the chillers have two sets of 550RT chillers 

(NO1 and NO2) and four sets of 1000RT chillers (NO3–NO6). The cooling capability of the ice storage 

tank has 8000RT (NO7). The cooling capability for each RT is 13910 KJ/hr. The real ice storage  

air-conditioning system is currently operated in a ON/OFF status depend on day or night. The electricity 

cost for the chillers and ice storage tank was calculated based on the announced summer and non-summer 

prices from the Taiwan Power Company (TPC) as shown in Figure 2. By using the measurement data, 

the LSR was used to get the I/O operation curves of the chillers and the ice storage tank. Table 1 shows 

the coefficients of the I/O operation curve for the chillers and the ice storage tank. The rated limits for 

the ice storage air-conditioning system are given in Table 2. 

Table 1. The coefficients of the I/O operation curve for chillers and ice storage tank. 

Unit a b c d 

1,chillerP  65.7772 0.1961 1.3707E-08 1.249E-09 

2,chillerP  128.7969 0.0449 1.139E-04 −2.628E-08 

3,chillerP  68.2033 0.1418 4.13921E-05 −7.599E-09 

4,chillerP  107.7250 0.1181 1.87115E-05 −1.467E-09 

5,chillerP  623.2087 −0.4555 0.000228205 −2.660E-08 

6,chillerP  101.5365 0.0851 6.87455E-05 −1.141E-08 
Charging Process iceP  2204.5246 −24.3534 9.252E-02 −1.022E-04 

Discharging Process iceP  −21.7173 0.2206 5.533E-05 −1.591E-08 
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Table 2. The operational parameter limits. 

Chiller NO1 Max. Min. Chiller NO2 Max. Min. 
PLR(%) 100 50 PLR(%) 100 50 

chwT  5 2.5 chwT  5 2.5 

cwT  5 3 cwT  5 3 
Chiller NO3 Max. Min. Chiller NO4 Max. Min. 

PLR(%) 100 50 PLR(%) 100 50 

chwT  5 2.5 chwT  5 2.5 

cwT  5 2 cwT  5 3.5 
Chiller NO5 Max. Min. Chiller NO6 Max. Min. 

PLR(%) 100 50 PLR(%) 100 50 

chwT  5 2.5 chwT  5 2.5 

cwT  5 3.5 cwT  5 2 
Charge Process Max. Min. Discharge Process Max. Min. 

bcwT  3.9 1.9 iswT  11 5.6 

bccwT  4.2 2.6 Control Valve(LPM) 5109.1 3627 

4.1. Results at Different TOU Intervals 

ARBFN was used to test the functions of six sets of chillers and the ice storage tank, and the condition 

parameters on 17 July 2013 (summer day) and 21 October 2013 (non-summer day) were simulated. The 
hourly required cooling capacity, outside air temperature and chwrtT  of the ice storage system were 

collected from 22:00 of the previous days, 16 July 2013 and 20 October 2013, until 21:00 of the 

following days, 17 July 2013 and 21 October 2013. 

Table 3 shows the energy dispatch results of ice storage air-conditioning systems during a total 

scheduling of 24 h periods on the summer day. From Table 3, during off-peak hours when the cooling 

load is smaller, the ice maker stores the required cooling energy in the storage tank. During the peak 

hours, the storage tank provides the required cooling load. Furthermore, although the power consumption 

during peak hours is lower, the cost will be greater. It can also be shown that the TOU rate will influence 

the overall economy of the ice storage air-conditioning system. 

Table 3. Energy dispatch results on summer day (17 July 2013). 

Hour 
Chiller ICE  

(%) 
Power 
(kW) 

Cost  
(NT$) NO1 NO2 NO3 NO4 NO5 NO6

22 1 1 1 0 1 1 7.10 3152.97 4620.07 
23 1 1 0 1 1 1 14.64 3144.25 4593.52 
24 0 0 1 1 1 1 22.78 3037.77 4409.24 
1 0 1 1 1 1 1 31.42 3013.29 4353.75 
2 1 1 1 0 1 1 40.64 3087.55 4452.04 
3 1 1 1 1 1 0 49.18 3062.86 4424.93 
4 0 1 1 1 1 0 58.17 2760.67 3948.25 
5 0 1 0 1 1 1 65.85 2667.75 3836.68 
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Table 3. Cont. 

Hour 
Chiller ICE  

(%) 
Power 
(kW) 

Cost  
(NT$) NO1 NO2 NO3 NO4 NO5 NO6

6 0 1 1 0 1 1 73.39 2583.26 3716.21 
7 0 0 1 1 1 0 65.87 1758.33 5292.58 
8 0 0 1 1 1 1 60.12 2532.70 7623.44 
9 0 0 0 1 1 1 51.25 2203.22 6631.69 

10 0 0 1 1 1 1 44.73 2507.66 11510.18 
11 1 1 1 0 1 1 37.33 2625.41 12050.61 
12 1 0 1 1 1 0 27.98 2379.28 7161.63 
13 0 1 1 1 1 1 20.87 2702.69 12405.37 
14 1 0 1 1 1 0 11.50 2445.28 11223.84 
15 1 0 1 1 1 1 1.94 2589.96 11887.91 
16 1 0 1 1 1 1 0.00 2792.89 12819.35 
17 1 0 1 1 1 1 0.00 3143.81 14430.08 
18 0 1 1 1 1 1 0.00 3163.51 9522.18 
19 0 1 1 1 1 1 0.00 3027.51 9112.82 
20 1 1 1 1 0 1 0.00 2878.31 8663.70 
21 0 0 1 1 1 1 0.00 2655.52 7993.12 

Total 65916.46 186683.17 

Figure 6 shows the cooling capability provided by each chiller and the ice storage tank on a summer 

day. From Figure 6, the ice storage tank supplies the required cooling load during peak periods.  

All chillers are appropriately dispatched to achieve minimal cost. 

C
oo
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Figure 6. Cooling capability provided by each chiller and the ice storage tank on a summer 

day (17 July 2013). 

Table 4 shows the energy dispatch results of ice storage air-conditioning systems during a total 

scheduling of 24 h periods on a non-summer day. Similarly, although the power consumption is lower 

during peak periods, the cost is still greater. This shows that the TOU rate plays an important role in  

this study. 
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Table 4. Energy planning for ice storage air conditioning on non-summer day (21 October 2013). 

Hour 
Chiller ICE 

(%) 
Power 
(kW) 

Cost  
(NT$) NO1 NO2 NO3 NO4 NO5 NO6

22 0 1 0 1 1 1 7.69 1885.10 2466.67 
23 1 1 1 1 0 1 16.96 2139.77 2810.98 
24 0 1 1 1 1 1 25.43 2098.53 2766.18 
1 0 1 0 1 1 1 34.68 2103.68 2758.08 
2 1 0 0 1 0 1 43.67 2042.69 2674.30 
3 1 0 1 1 0 1 52.65 2057.44 2699.09 
4 1 1 0 1 1 1 59.48 1995.04 2652.43 
5 1 1 0 1 0 1 68.17 2015.33 2650.33 
6 1 0 1 1 1 0 75.66 1895.39 2499.20 
7 1 0 0 0 0 1 68.49 958.99 2809.83 
8 0 0 1 0 1 1 63.45 1543.89 4523.59 
9 0 1 1 1 0 1 56.55 1551.37 4545.51 
10 0 0 1 1 1 0 51.93 1679.36 4920.53 
11 0 0 1 1 1 0 44.31 1432.15 4196.20 
12 0 1 1 1 1 0 38.00 1717.87 5033.35 
13 0 0 0 1 1 1 32.19 1645.15 4820.30 
14 0 1 1 0 1 0 24.92 1541.14 4515.53 
15 0 0 1 1 1 0 19.39 1496.22 4383.93 
16 0 0 1 1 1 0 14.88 1416.48 4150.27 
17 1 0 1 0 0 1 10.52 1363.52 3995.11 
18 0 0 1 1 0 0 7.12 1236.36 3622.52 
19 0 0 1 1 1 0 5.66 1273.19 3730.45 
20 0 0 1 0 0 1 1.96 926.44 2714.47 
21 0 0 0 1 1 0 0.00 944.50 2767.38 

Total 38959.58 84706.24 

Figure 7 shows the cooling capability provided by each chiller and the ice storage tank on a  

non-summer day. From Figure 7, the ice storage tank also supplies the required cooling load during peak 

periods. All chillers are also appropriately dispatched to achieve minimal cost. 

 

Figure 7. Cooling capability provided by each chiller and the ice storage tank on 21 October 2013. 
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4.2. Energy Reduction Analysis 

Table 5 shows the actual power consumption measured for an ice storage air-conditioning system and 

the actual energy consumption analysis of ARBFN and LSR. In Table 5, the “actual” data, which is the 

power consumption of a daily schedule, are the actual measurements of the ice storage air-conditioning 

system. The estimations of the ARBFN and LSR were compared as shown in Table 5. The power 

consumption reduction error of ARBFN on summer day is 1.34% and on non-summer day is 0.68%, 

while the errors of LSR are 6.68% and 5.74%, respectively. Therefore, the accuracy of the ARBFN 

models can be verified. If LSR is chosen for scheduling assessment of the ice-storage air-conditioning 

system, larger errors on costs tend to occur. 

Table 5. The energy reduction analysis of ARBFN and LSR. 

  Actual ARBFN Difference 
Reduction 

(%) 
LSR Difference * 

Reduction 

(%) 

Summer day 

Power 

consumption 

(KW) 

68,481.8 67,562.4 1232 1.34 73,054.8 30,548 6.68 

Total cost 

(NT$) 
194,726 192,310 2996 1.24 181,517 89,557 6.78 

Non-summer 

day 

Power 

Consumption 

(KW) 

41,456.9 41,739.9 192 0.68 39,079.1 13,648 5.74 

Total cost 

(NT$) 
91,457 92,249 689 0.87 98,605 51,823 7.25 

* Difference = Actual – ARBFN × %
Actual

ARBFNActual
(%)ductionRe 100


 . 

4.3. Convergence Test 

Table 6 shows the comparisons of ARBFN, GA with RBFN (GA-RBFN), and EP with RBFN  

(EP-RBFN) in a daily schedule. An IBM PC with a P-IV 2.0 GHz CPU and 512 MB SDRAM was used 

for this test. The improvement of the ARBFN over other algorithms is clear. The average execution times 

for ARBFN, GA-RBFN, and EP-RBFN were only 5.67 s, 4.81 s, and 3.54 s, respectively. Although the 

executed performance of ARBFN was subtle, it did show the capacity of ARBFN to explore a more 

likely global optimum. From Table 6, it is clear that the operating plans of the chillers and ice storage 

tank save 2565.33 (kW) of electricity consumption and 5626.83 (NT$) in electricity costs in summer. 

On non-summer day, the savings on power consumption are 2780.32 (kW) and 7542.8 (NT$). The 

electricity savings on a summer day and on a non-summer day are 2.89% and 8.25%, respectively. It can 

be shown that the proposed algorithm can also yield a better plan for ice storage and melting procedures. 
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Table 6. Comparison of ARBFN, GA with RBFN, and EP with RBFN. 

Algorithms 

Summer Day Non-Summer Day 

Power consumption 
(KW) 

Total Cost 
(NT$) 

Power Consumption 
(KW) 

Total Cost 
(NT$) 

ARBFN 65,916.46 186,683.17 38,959.58 84,706.24 
GA-RBFN 66,148.61 187,309.84 39,287.41 85,371.62 
EP-RBFN 66,431.83 188,131.15 39,514.37 85,984.38 

5. Conclusions 

This paper proposed ARBFN to solve the ice storage air-conditioning system dispatch problem so as 

to reduce buildings’ electricity expenses. The data, including the operational data of chillers, the  

ice-storage tank charging process, and ice-storage tank discharging process in the field, were calculated, 

and the data clusters were embedded in an Excel database. Based on the TOU and all technical 

constraints, the dispatch model of the ice storage air-conditioning system was formulated by considering 

the charging/discharging scheduling of ice storage systems. A real case was used to verify the 

effectiveness of the proposed method. Simulation results provide a practical and flexible framework for 

operators to perform the economic dispatch of the ice storage air-conditioning system. This can also 

provide greater energy efficiency in dispatching chillers, thus reducing a user’s electricity bill. It is 

expected that the results are more in line with the energy-saving planning of the ice storage air-

conditioning system. 
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