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Abstract: With increasing importance being attached to big data mining, analysis, and forecasting in
the field of wind energy, how to select an optimization model to improve the forecasting accuracy
of the wind speed time series is not only an extremely challenging problem, but also a problem
of concern for economic forecasting. The artificial intelligence model is widely used in forecasting
and data processing, but the individual back-propagation artificial neural network cannot always
satisfy the time series forecasting needs. Thus, a hybrid forecasting approach has been proposed in
this study, which consists of data preprocessing, parameter optimization and a neural network for
advancing the accuracy of short-term wind speed forecasting. According to the case study, in which
the data are collected from Peng Lai, a city located in China, the simulation results indicate that the
hybrid forecasting method yields better predictions compared to the individual BP, which indicates
that the hybrid method exhibits stronger forecasting ability.

Keywords: hybrid method; short-term wind speed series forecasting; forecasting accuracy;
neural network; artificial intelligence; optimization algorithm

1. Introduction

Wind energy has been a fast growing energy resource type because it is renewable, pollution free
and abundant. Currently, with the development of the economy, many countries are facing a severe
energy crisis. Therefore, there is no doubt that the necessity of exploring and using various sources of
energy will need to be emphasized. Wind energy, as one of the major renewable energy sources, is a
great challenge regarding the reliability and accuracy of power systems, considering the fluctuation
of the wind speed. Therefore prediction has become a theme in the planning of today’s competitive
environment. Wind speed prediction is more necessary for us to explore and take good advantage of
the advantages of wind power [1]. Utilizing appropriate wind speed data, power system operators
are able to predict the theoretical power output, which helps in system planning, scheduling and
storage capacity optimization. Thus, wind speed prediction plays an important role in actual decisions.
In order to increase the accuracy of wind speed prediction, a hybrid predicted model is proposed in
this paper.
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A number of time series forecasting methods have been successfully applied to the short-term
prediction of wind speed and power generation. The autoregressive integrated moving average
(ARIMA), as a widely used approach for time series forecasting, has been employed in wind speed
forecasting [2,3]. In addition, correlating with the ARIMA, a group has been set up for forecasting.
This system included the moving average model (MA), autoregressive (AR), and the autoregressive
moving average (ARMA). Based on the ARIMA, several modified models have been proposed, such as
the factional ARIMA (FARIMA) and the seasonal ARIMA (SARIMA). However, ARIMA models have
an apparent imperfections. They can only explicitly reveal the relationship between the inputs and
outputs, but they are generally limited to linear forms. Therefore, machine learning (ML) and artificial
intelligence (AI) approaches have also been frequently applied to wind forecasting in recent years.
In the related literature, the ML /Al models reported include various artificial neural network (ANN)
models, such as back propagation (BP) and radial basis function (RBF) [4,5], a support vector machine
(SVM) [6], fuzzy logic [7]. On the one hand, generally, compared to the ARIMA, the machine learning
and artificial intelligence models are more flexible and can perform well when studying non-linear
forms. On the other hand, the relationships that the ML/AI models show are not explicit enough
and, sometimes, are very computationally intensive. After being studied profoundly, these model
structures are integrated with other methodologies, so new methodologies emerge, named hybrid
forecasting or combined forecasting methods.

The hybrid forecasting methodology usually includes several components,which exert different
functions in the hybrid models [8]. In order to predict the wind speed more accurately, this paper uses
a type of hybrid forecasting method, SSA-FA-BP, to forecast the wind speed. The Back-propagation
(BP) model is used as the predictor to provide the final forecast result. For a single BP model, the
forecasting performance is largely affected by the sample data, so the Singular Spectrum Analysis
(SSA) is employed to decompose the original short-term wind speed series into true information and
the noise, which can improve the quality of the data set. Furthermore, considering the randomness of
the BP, a low rate of convergence is another defect. Therefore, the Firefly Algorithm (FA) algorithm
is incorporated into the hybrid model to optimize the parameters of the BP network, weakening the
randomness of the network and enhancing the rate of convergence and, at the same time, preventing
the BP from falling into a local optimum.

Certainly, for the basic part of this hybrid forecasting method, BP has already shown considerable
performance if the network structures, learning rates, inputs, the evaluation metrics forecasting and
the sites of data collection are selected appropriately, but the BP neural network can easily fall into local
optima. Thus, this paper uses the FA algorithm to optimize the parameters of the BP neural network
to find the optimal weights and thresholds of the whole network, which is helpful for improving the
forecasting accuracy and shortening the convergence time.

The firefly algorithm is an example of swarm intelligence (SI), which belongs to an artificial
intelligence (Al) discipline that became increasingly popular over the last decade [9]. Swarm
intelligence is inspired by the collective behavior of social swarms of ants, termites, bees, and worms;
flock of birds; and schools of fish, the individuals of which show collective behavior, for example,
where to forage, when to reproduce, where to live, and how to divide the necessary tasks among the
available work force [10]. FA is one of the recent swarm intelligence methods developed by Yang [11]
in 2008 and is a type of stochastic, nature-inspired, meta-heuristic algorithm that can be applied for
solving the hardest optimization problems. It is inspired by the flashing lights of fireflies in nature.
Heuristic means “to find” or “to discover solutions by trial and error” [11]. Finally, meta-heuristic
means “higher level”, where the search process used in algorithms is influenced by a certain trade-off
between randomization and local search [11]. In the firefly algorithm, the ‘lower level” concentrates on
the generation of new solutions within a search space and, thus, selects the best solution for survival.
On the other hand, randomization enables the search process to prevent the solution from being
trapped into the local optima. The local search improves a candidate solution until improvements



Energies 2016, 9, 757 3 of 28

are detected. Note that the FA is population-based. Population-based algorithms have the following
advantages when compared to single-point search algorithms [12]:

a  Building blocks are put together from different solutions through crossover.

b  Focusing a search again relies on the crossover and means that, if both parents share the same
value of a variable, then the offspring will also have the same value of this variable.

¢ Low-pass filtering ignores distractions within the landscape.

d Hedging against bad luck in the initial positions or decisions it makes.

e  Parameter tuning is the algorithm’s opportunity to learn good parameter values in order to
balance exploration against exploitation.

Furthermore, for most of the data of the time series, the noise components are an element that
needs to be considered. Apart from the time series modeling approach, the extraction of the main
features of the time series, the removal of noise and unpredictable components in a pre-processing
stage can remarkably enhance the prediction performance and accuracy [13]. In fact, filtering the
noisy and almost unpredictable components of nonlinear and chaotic time series by data processing
techniques often leads to a series that is less complex and more predictable [14]. Here, we employed
singular spectrum analysis (SSA) for de-noising. SSA works well for linear and nonlinear, stationary
and non-stationary time series with different features and structure. It can efficiently identify and
extract the trend and noise components of a time series [15] and then reconstruct a new series by
eliminating the noise components and, hence, improve prediction performance. With this character,
SSA is usually employed for time series filtering in the pre-processing stage.

The subsequent content of the paper is structured as follows: the methodologies of the individual
models involved in the hybrid model are described in Section 2. Section 3 introduces the hybrid
model constituted with the component models mentioned above in detail. With the hybrid models
and the component models, a case study is put forward to verify the performance of the proposed
models. The specific description of the data structure are explained in Section 4. Section 5 focuses on
the simulation analysis, in which the results of the three experiments are displayed and analyses and
comparisons of the proposed models are discussed. Finally, Section 6 presents the paper’s conclusions.

2. Methodology

In this paper, the proposed hybrid model is integrated with three components, singular spectrum
analysis, the firefly algorithm, and the BP neural network.

2.1. SSA Algorithm and Methodology

In this section we introduce the information about SSA which is vital for understanding the
implementation of SSA and the ways SSA has to be used for the analysis of real-life data [16]. One of
basic tasks of SSA analysis is to decompose the observed time series into the sum of interpretable
components with no a priori information about the time series structure. Following is the formal
description of the algorithm.

Definition 1. Consider a real-value time series Xy = (x1, ... ,xn) of length N. Let L (I<L<N) be
some integer called window length and K=N — L + 1.

2.1.1. First Stage: Decomposition
The process of decomposition consist of two steps:
1st step: Embedding.

To perform the embedding we map the original time series into a sequence of lagged vectors of
size L by forming K = N —L + 1 lagged vectors X; = (x1, ... ,x01),i=1... K
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Definition 2. The trajectory matrix of the series Xy is:

X2 X3 Tt XK1

X=[Xy,...-Xx] = (xif)ﬁ}il - : : : "

XL XL+1 XL+2 XN
There are two important properties of the trajectory matrix, namely:

(a)  Both the rows and columns of X are subseries of the original series.
(b) X has equal elements on anti-diagonals and therefore the trajectory matrix is Hankel.

2nd step: Decomposition.

Definition 3. Let {Pi}l-L:l be an orthonormal basis in Ry. Consider the following decomposition of
the trajectory matrix:

X =

L
PQl =X+ + X ()

i=1

where Q; = X' P, and define A; = || X; H% = Q|-
We consider two choices of the basis {Pi}l-Lzlz
Basic: {P;}-_, are eigenvectors of XX';
Toeplitz: {P,'}l-L:1 are eigenvectors of the matrix C whose entries are:

1 N—li—]j| o
C = m mzz:l XXy 4|i—j|r 1<i,;<L 3)

In both cases the eigenvectors are ordered so that the corresponding eigenvalues are placed in the
decreasing order.

Let us remark that Case A corresponds to Singular Value Decomposition (SVD) of X, that is,
X =Y, VAU, ViT, P; = U; are left singular vectors of X, Q; = \/A;V;, V; are called factor vectors or
right singular vectors, A; are eigenvalues of XX ; therefore, Note also that Case B is suitable only for
the analysis of stationary time series with zero mean [17].

In the SSA literature (A) is also called the BK version, while (B) is called the VG one, V;. In case A,
the triple (v/A;, U;, V;) is called the Eigen triple.

2.1.2. Second Stage: Reconstruction
The reconstruction process can be separated into two steps:
1st step: Eigen triple grouping.

Definition 1. Let d = max{j:A; # 0}. Once the expansion (2) is obtained, the grouping procedure
partitions the set of indices {1, ... ,d} into m disjoint subsets Iy, ... ,I;. Define X; = Y1 X;.
The expansion (2) leads to the decomposition:

X=Xpn++Xm 4

The procedure of choosing the sets I, ... I is called Eigen triple grouping. If m = d and I; = {j},
j=1,... ,d; then the corresponding grouping is call elementary. The choice of several leading Eigen
triples for Case A corresponds to the approximation of the time series in view of the well-known
optimality property of the SVD.
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2nd step: Diagonal averaging.

Definition 2. At this step, we transform each matrix X;; of the grouped decomposition (3) into a
new series of length N. let Y be an L x K matrix with elements v, 1<i<L1<j<K and let for
simplicity L < K. By making the diagonal averaging we transfer the matrix Y into the series (i1, ..., Un)
using the formula:

Js= Y, i/ |As] @)
(jk)€As
where A; ={(k): I +k=s+1,1<I<L,1<k<K}and |As| denotes the number of elements in the
set As, This corresponds to averaging the matrix element over the “antidiagonals”.
Diagonal averaging (4) applied to a resultant matrix Xj produces a reconstructed series

<k ~| ~| c g . . .
x0 = (xgk),...,xg;)). Therefore, the initial series (x1,...xy) is decomposed into a sum of m
reconstructed series:

xnzzf,sk), n=1,...N (6)
k=1

The reconstructed series produced by the elementary grouping will be called elementary
reconstructed series.

2.2. Firefly Algorithm

The firefly algorithm is a popular algorithm with its basis in biology. In recent years, more
and more comprehensive studies have been put forward, and its elaboration has been getting
more thorough.

2.2.1. Biological Foundations

Fireflies are high-population insects, and their spectacular courtship scenes have inspired poets
and scientists alike [18]. At present, there exist more than 2000 species around the world. According to
several studies, the habitats of fireflies are usually warm, which implies that the swarms are more active
during summer nights. Plenty of researchers have put considerable energy into the study of the firefly
phenomena in nature so that many papers have been put forward, for example [19-23]. Fireflies are
characterized by their flashing light produced by a biochemical process called bioluminescence.
The flashing light serves as the primary courtship signal for mating and is also the signal for warning
of potential danger. Moreover, features such as the brightness and frequency of the flashing light form
the diversity of the signal. Depending on different flashing lights, the fireflies transfer information
to each other and then take actions according to the message. In the FA algorithm, the brightness of
the flashing light is the foremost character. Based on the brightness, the FA algorithm focuses on the
movement of the fireflies when they receive brightness information, which is the biological foundation
of the FA algorithm.

2.2.2. Structure of the Firefly Algorithm

FA has powerful global exploration and exploitation abilities, and it can substantially increase the
local optimum avoidance ability and the convergence speed. This algorithm is based on a physical
formula of the light intensity, which decreases with an increase in the square of the distance 2.
However, as the distance from the light source increases, the light absorption causes that light to
become weaker and weaker. These phenomena can be associated with the objective function to be

optimized. As a result, the base FA can be formulated as what is illustrated in the following algorithm:
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Algorithm: Pseudo-Code of the Firefly Algorithm.

Input:
x(©) The data that has been disposed by Singular Spectrum Analysis.
1 xEO) = (x(o) 1),x©(2),...,x0 (h))—A sequence of training set.
2 = (x(o) (h+1),xO (h+2),...,x0 (h+ d))—A sequence of verifying set.
5 Output:
xp the value of x with the best fitness value in population of fireflies
3 Parameters:
Maxgeneration—the maximum number of iterations
n—the number of fireflies
F;—the fitness function of firefly i
x;—nest i

g—current iteration number

L;— light intensity of firefly I,

d—the number of dimension
4 /*Set the parameters of FA.*/
5 /* Initialize population of n fireflies x; (i = 1, 2,..., n) randomly*/
6 FOREACH i:1 <i<nDO
7 Evaluate the corresponding fitness function F;
8 END FOR
9 /*Determine light intensity.*/
10 FOREACH i:1 <i<nDO
11 Determine light intensity L; depending on F(x;).
12 END FOR
13 WHILE (g < Maxgeneration) DO
14 FOR EACH i = 1:n DO /*all n fireflies */
15 FOR EACH j = 1:n DO /*all n fireflies */
16 /*Move firefly i towards j in all d-dimensions*/
17 IF (L; > L;) THEN

2

18 rij = |xi —xj| = \/Ei_l (xi,k - xj,k)
19 Xi = x;+ Boe” 1" (xj —x;) +a (rzmd — %)
20 END IF
21 Attractiveness varies with the distance r via [306’7’2.
22 /* Evaluate new solutions and update the light intensity. */
23 END FOR j
24 END FOR i
25 /*Rank the fireflies and current best */
26 END WHILE /*Post process results and visualization*/
27 END

There are three idealized assumptions in the FA: (1) ignorance of the sex of the fireflies, there
is no difference in the firefly’s attraction between different sexes—they are considered unisexual;
(2) brightness is the determining factor for the attraction of one firefly towards another which means
a less bright firefly moves towards a brighter firefly. Attractiveness and brightness are in inverse
proportion with the distance; (3) the landscape of the fitness function determines the brightness of
a firefly.
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Definition 1. The distance between any two fireflies i and j whose positions are x; and x; is given
by the Cartesian distance as follows:

D
ri= | Y (Xim — ?Cj,m)2 (7)
m=1

where D is the number of dimensions.

Definition 2. The firefly’s attractiveness is given by:

B(r) = Poe " ®)

At r = 0 attractiveness is By and 7 is the light absorption coefficient. The movement of the iy,
firefly towards more attractive jy, firefly is calculated as:

1

Here, the second term represents the attraction of one firefly towards another and the
randomization in the movement of firefly is caused by the third term with & as randomization
parameter. Rand is random number generator. x;*“ is the new position of the iy, firefly and x{
the old position of iy, firefly. The parameter y determines the attractiveness and hence the speed of
convergence. In implementation, we can take By = 1 and &« ~ (0,1). In this paper we have set y = 0.001

however the results do not show much variation with change in value of +.

ld jg

2.3. BP Neural Network

The BP neural network is a typical feed forward network. Its structure is comprised of the input
layer, output layer and hidden layer, as shown in Figure 1. The working process of BP neural network
can be divided into two stages: the learning stage and the working stage. In the learning stage, the
input information will be disposed from input layer to the hidden layer and then to the output layer.

Drection of learning

Figure 1. The three-layer BP neural network structure.

According to the simulation output, the differences between the results of output layer and the
output given in the sample will be calculated as the back propagation of errors which will be sent
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back as the feedback. Depending on the feedback, the weight values (w;;, wjx) and the threshold
values (a, b) will be modified for the next learning cycle. By this mechanism, the connection weight of
neutrons among different layers can be adjusted. When working well, the network will be applied into
the working stage, in which, the input information is forward-propagating, and the output will be
displayed according to the neural network [24].

3. Hybrid SSA-FA-BP Model

The hybrid model used in this paper consists of the singular spectrum analysis, firefly algorithm,
and BP neural network. Singular spectrum analysis is used to de-noise the wind speed data for
preprocessing. The BP neural network is the main predicting model. The firefly algorithm is used to
optimize the parameters w;;, wjx, a;, and by, of the BP neural network.

The BP neural network objectively has imperfect aspects, such as susceptibility to the initial
parameters of the network and easily being trapped in local optima. Therefore, the single BP neural
network cannot provide good predictions because of the complexity of the short-term wind speed
series. Hence, a hybrid approach consisting of SSA, FA and BP is proposed. The structure of the
proposed SSA-FA-BP is shown in Figure 2.

(b) — T— Determine the network (a) Embedding X, =(x,,...,x_4,,)'
| SA . =g | topology

A

R J

1
- - - Stucture the trajectory matrix
d_ Initial the weights and biases
Install algorithm + lengh of the network The output of EEE
SSA LK Xy

x:[&,..-»X‘l:(X,)ii\:{

Obtain the best weight and
bias

X X v E

Initialize the position of fireflies

Initialize the brightness of fireflies
Update the position of fireflies

Update the brightness of fireflies

Decomposition of the trajectory matrix
X=Srg ok,

Calculate the error
Update the weiaht and bias

Meet the stopping
condition?

Eigentriple grouping

bujsiouap jo ssasoud ay |

Reconstucted series

defineX, =Y, X X=X, +-+X,

No

[ 2

Yes Yes

Diagonal averaging

Is stopping condition met ? \ -
Simulate and forecast \ 5.7 X YellAl

\
i
\

e TR SRR L R R
wi| (w2 [bs][.bz]', M

~
Ixo Fy
/"\"MJ'/ L‘)\/’V . W AN
The optimized parameters by FA Wy TV (WL
n m dals ey A
X sy . i
s=ey{ el W b K
—_
Xl
Yl
AT TR &
X3
% )4
—
: i =
B g
e
(c)

Input Series Predictive Data

Figure 2. The structure of the proposed SSA-FA-BP, (a) The structure of SSA; (b) The structure
of FA-BP; (c) The schematic of back-propagation neural network; (d) The mechanism of multistep
rolling forecasting.
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The specific hybrid model can divided into four stages. The general task in each stage is described
as follows:

Stage 1 According to the characteristics of the dataset of the BP neural network, the data have to
be divided into different parts, including a training set and a test set. The training set is used to train
the original network, which is built for forecasting. The test set is applied to the network to output the
forecasting value.

Stage 2 Utilize singular spectrum analysis to divide the original short-term wind speed series
into two modes, including a de-noising series and a residual series. Discard the residual series
to de-noise and smooth the original short-term wind speed data, and make preparations for the
following forecasting. In this stage, only the wind speed data of the training set are disposed by SSA.
The decomposed residual series are discarded because the residual is small and can be regarded as
an uncorrelated white noise series, which have a negative influence on the prediction; the rest of the
decomposed modes are aggregated into the new data series. This process de-noises the original data
to improve the prediction accuracy.

Stage 3 Optimize the parameters of the BP with the firefly algorithm. The FA was selected as the
optimization instrument to obtain better parameters in the training process of BP, which can improve
the forecasting accuracy. The FA randomly generates the initial population of the candidate solutions
for the weights of the BP. After that, it calculates the light intensity of all fireflies and finds the most
attractive firefly (the brightest firefly) within the population. Then, it calculates the attractiveness and
distance for each firefly to move all fireflies towards the most attractive firefly in the search space. Next,
the best solution among the population is passed to the BP as the initial solution.

Stage 4 Forecast the wind speed in different forecasting horizons (one-step ahead prediction
or multi-step ahead prediction). After optimization of the initial parameters of the BP by the firefly
algorithm, the better-trained BP is used to predict the wind speed in different forecasting horizons.
The forecasting horizon in this paper is spread from one to six, which has been demonstrated to
be valid.

4. Brief Description of the Case Study

As a type of non-polluting and abundantly reserved energy, wind power has important
significance for the sustainable development of energy. Thus, research on wind speed is necessary.
In order to verify the superiority of the hybrid SSA-FA-BP model and the optimizing effect of our
algorithms in actual experiments, we focus on a case study to research the forecasting function of the
hybrid model in wind speed prediction.

4.1. Data Collection

Considering the object that we study, wind speed data constitute the main data set of the
experiment. Therefore, we choose Peng Lai as an experimental site, where wind speed data are
of high quality. Peng Lai (shown in Figure 3), located in the Shandong Province in China, is a coastal
city. Because of its temperate continental monsoon climate, Peng Lai has rich wind power storage
capabilities. In this paper, the wind speed observations were collected from the Peng Lai wind farm to
verify the proposed hybrid approach.

The data used are the wind speed data of 2011, and three main units, No. 12, No. 13, and No. 14,
are selected to be studied for examining the hybrid approach. Table 1 shows the information of the
different data sets. The accurate prediction of the wind speed contributes to planning the economic
load dispatch and the load increment/decrement decisions made. However, according to the actual
study, in order to guarantee the accuracy, the range of short-term predictions is usually considered to
be 10 min to 6 h ahead [25]. The horizon is one to six steps, which definitely indicates 10 min to 6 s
ahead considering all three experiments of different time intervals.
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Table 1. The data sets of three different experiments.

Figure 3. The location of the Peng Lai wind farm, and the data structure.

10 of 28

Experiment  Quarter Testing Days Training Days Number of Samples

1 21 March 2011 13-20 March 2011 1296

10 mi 2 21 May 2011 13-20 May 2011 1296
m 3 27 August 2011 19-26 August 2011 1296

4 22 October 2011 14-21 October 2011 1296

1 21-22 March 2011 6-20 March 2011 816

30 mi 2 21-22 May 2011 6-20 May 2011 816
mn 3 27-28 August 2011 12-26 August 2011 816

4 22-23 October 2011 7-21 October 2011 816

1 5-8 February 2011 1 January—4 February 2011 936

60 mi 2 6-9 May 2011 1 April-5 May 2011 936
min 3 5-8 September 2011 1 August—4 September 2011 936

4 5-8 November 2011 1 October—4 November 2011 936

Figure 4 displays the basic statistical indexes, which include the maximum, minimum, average
and standard deviation of the wind speed data involving the three experimental sites. As shown in
Figure 4, the average and maximum speeds occur in Site B for four different quarters, whereas the
minimum speeds occur in different seasons and sites.

The wind speed series of Site C present the maximum standard deviation values, which lead to
the largest degree far away from the corresponding average value for different seasons. However, these
basic statistical indexes might be not enough for surveying the wind speed patterns. In order to describe
the wind speed series more adequately, the observed frequency distribution (Weibull distribution) is
shown in Figure 4. According to the maximum likelihood (ML) method, the shape parameter and
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scale parameter in the Weill function are estimated depending on the daily wind speeds recorded in
three sites [26]. For each case, the shape parameter a and the scale parameter b vary from one site to
the other two sites or from one season to the other three seasons at the same site, which indicates the
wind speed patterns vary significantly.

Min=08
Sta=1.35
Avg=3.52

B4 c4
PDF obtained by the data of
Site A
> Observed PDF PDF obtained by the data of
Site C
PDF obtained by the data of e
Site B

Figure 4. Weibull wind speed distribution (scale parameter a and shape parameter b) and basic
statistical measures. (Max/Min: maximum/minimum; Avg.: average; Std.: standard deviation. A-C:
three different sites. 1-4: four quarters).

4.2. Evaluation Indices for Forecasting Performance

In this paper, in order to inspect the effect of the hybrid model, three main statistical indices are
employed to measure the forecasting accuracy. They are the mean absolute percent error (MAPE),
mean absolute error (MAE) and mean square error (MSE), for which small values indicate high forecast
performance. These indices are defined as follows:

1Y Yn *Fyvn
MAPE = N ) T x 100% (10)
n=1 n
1Y _
MAE = N Z |Yn — Yl (11)
n=1
1 Y 0

n=1
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where y;, is the observed value for the time period t and §, is the predicted value for the corresponding
period. The MAE reveals how similar the predicted values are to the observed values, whereas the
MSE measures the overall deviation between the predicted values and the observed values. The MAPE
is a unit-free measure of accuracy for the predicted wind series and is sensitive to small changes in the
data. According to some empirical studies, these three indices are reliable for wind speed forecasting,
and have been widely used [27], but when the result of wind speed forecasting is applied to the wind
power forecasting, more error would be displayed, because of other factors that have influence on the
generation of wind energy, such as the turbine efficiency [28]. Therefore, the evaluation indices of wind
speed forecasting are not directly applied to the management of connected electric power systems.

5. Simulation

The simulation includes three experiments, which are determined with time spans of 10, 30 and
60 min. In each experiment, three turbines (Unit 12, Unit 13, and Unit 14) are observed. For the single
turbine, the observed data are divided into four quarters to facilitate the observation of the seasonal
differences. The main models involved in this paper are single BP, FA-BP, SSA-BP, and SSA-FA-BP.
With these four models, the forecasting data and series will be output, and in this paper, we focus on
the one step and multistep prediction. The result of the 1-step, 2-step, 3-step, and 6-step predictions
will be displayed in three experiments, and the main indexes for accuracy observation are MAPE, MSE,
and MAE, which will be shown in all three experiments to express the superiority and inferiority of
the different models.

5.1. Experiment I: The Forecasting for a Time Interval of 10 Min

The experiment of 10 min takes the data of Unit 12 as an example. The original wind series
presents high fluctuation and instability, as Figure 5 shows. Arranged by the SSA algorithm, the original
wind speed series is decomposed, and the residual series are extracted against a meaningful series
(reconstructed series). The residual series mainly contains noisy signals that will disturb the forecasting
process. Therefore, before the final prediction, a de-noising process is necessary, which is able to
improve the forecasting quality of the short term wind speed. During this process, the residual series
are discarded, and all the other modes are reconstructed into the new series to be used for forecasting.
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Figure 5. The results of the wind series of Unit 12 (10 min) disposed by SSA.
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In this case, the number of neurons was determined by the method of trial and error. To set up
a more effective network, many experiments were conducted, and then, the best trial results were
selected. The experimental parameters of the BP are shown in Table 2. With many trials, for the hidden
layer, when neuron number in the hidden layer was 13, the outputs showed good performance in the
accuracy of forecasting. Thus, the structure of the BP was set as 6-13-1.

Table 2. The experiment parameters of BP.

Experimental Parameters Value
Neuron number in the input layer 6
Neuron number in the hidden layer 5-15
Neuron number in the output layer 1
The learning velocity 0.1
The maximum number of trainings 1000
Training requirements precision 0.0001

Table 3 shows the evaluation results for the individual forecasting and combination forecasting
for the three sites (Unit 12, Unit 13, and Unit 14). It is apparent that the forecast accuracy of the
proposed combination approach, SSA-FA-BP, is similar to or exceeds the single forecasting model BP
and two-component models, FA-BP and SSA-BP, in all horizons for three sites. This result reflects
the reliability of the proposed combined method in view of the stochastic nature of wind and its
spatial and temporal variations. More detailed analyses are described as follows. Firstly, the one-step
forecasting results obtained from the foresaid models will be discussed in detail. Then, we analyze the
multi-step forecasting results in a similar way. Finally, we concentrate on the details of the seasonal
influence to the models of concern.

Table 3. The quarterly average forecast results of the combined model and the results of the other
models involving the data of three units (10 min).

Unit 12 Unit 13 Unit 14
Hori Model

orzon %9 MAPE MAE MSE MAPE MAE MSE MAPE MAE MSE
BP 01199 04361 03367 01110 04592 03645 01209 04611 03619
Oneste FA-BP 01061 04134 02995 01034 04334 03181 01157 04507 03515
P SSA-BP 00771 02998 0.1433 00623 02662 0.1224 00686 02558  0.1051
SSA-FA-BP  0.0760 02903  0.1350 0.0586 02405 0.1018 0.0682 02537  0.1036
BP 01459 05163 04783 0.1380 05583 05399 0.1454 05400 0.5259
Twosste FA-BP 01277 04917 04289 01264 05251 04718 01414 05352 05128
P SSABP 00831 03201 01630 00820 03531 02519 00837 03207 0.1777
SSA-FA-BP  0.0818 03107 01557 0.0695 02840 0.1471 00826 03104  0.1630
BP 01632 05722 05893 0.1574 0.6275 0.6861 01654 06102  0.6759
Threeste FA-BP 01432 05515 05402 01432 05913 05955 0.1600 0.6006  0.6465
P SSA-BP 00935 03595 02115 0.1058 04623 04832 01042 04052 03228
SSA-FA-BP  0.0929 03569 02166 00847 03498 02296 0.1026 03855  0.2803
BP 01818 07141 08627 01929 07533 09594 02079 07741  1.0982
Six-step FA-BP 01696 06894 07818 01818 07450 09043 0.1975 07412 09755

SSA-BP 0.1530 05512 0.5210 0.1689  0.7470  1.1340 0.1618  0.6520  0.9188
SSA-FA-BP  0.1533  0.5670  0.6524  0.1286  0.5453  0.5644 0.1588  0.6027  0.7293

5.1.1. Analysis of One-Step Forecasting

When considering the one-step and multi-step forecasting, the accuracy indices refer to the
average of the seasonal indices. For one-step forecasting, we make comparisons between the BP,
FA-BP, SSA-BP and hybrid SSA-FA-BP model. The one-step ahead predicted output of the different
models is displayed in Table 3. It is also clear from Table 3 and Figure 6 that the three forecasting
evaluation indices (MAE, MSE and MAPE) obtained through the proposed hybrid strategy are smaller



Energies 2016, 9, 757 14 of 28

than those obtained from other component models mentioned above for all three units. Comparing
the predictions shows that the integration of the SSA algorithm and the FA algorithm is an effective
method for short-term wind speed prediction and that the hybrid model can provide better prediction
based on the properties of the short-term wind series.
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Figure 6. The quarterly forecasting results of the wind series of Unit 12 with one-step (10 min), (a) refers
to the result of MSE; (b) refers to the result of MAE; (c) refers to the result of MAPE).

To obtain detailed properties, the models are submitted to further careful analyses. Setting Unit 12
as an example, firstly, the single BP model is used as a baseline to benchmark the forecasting accuracy,
and the other combined models are compared with it. Table 3 shows that the FA-BP, SSA-BP and
hybrid SSA-FA-BP models perform better than the single BP model, which reveals that the SSA and
FA have good performance by improving the accuracy of forecasting. This is the reason that an
increasing number of studies have proposed the de-noising algorithm and optimization algorithm
to tackle short-term wind speed problems. In the comparison and analysis of forecasting, the results
between the single BP and SSA-FA-BP reveal that the proposed model leads to reductions of 4.39%
in MAPE, 0.14 in MAE and 0.21 in MSE. In addition, the results between the single BP and FA-BP
show that the firefly algorithm leads to improvements in the accuracy of 1.3% in MAPE, 0.02 in MAE,
and 0.04 in MSE. Furthermore, the results between the single BP and SSA-BP models reveal that the
proposed model leads to reductions of 4.28% in MAPE, 0.14 in MAE and 0.19 in MSE. In conclusion,
the model comparisons show that the proposed SSA-FA-BP hybrid model achieves better forecasting
performance than the other component based on analyses of the prediction results. The SSA model has
a better contribution than FA in the improvement of the forecasting accuracy. Overall, in the hybrid
model, SSA-FA-BP, the SSA is more significant than the FA in improving the forecasting accuracy.
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5.1.2. Analysis of Multi-Step Forecasting

The proposed hybrid SSA-FA-BP model also performs well when applied to multi-step forecasting.
With the model of rolling prediction, the results of the multi-step forecasting are obtained, which
involve the two steps, three steps and six steps. In the experiment of the 10 min interval, multi-step
forecasting indicates forecasting for 20 min, 30 min, and one hour, as shown in Table 3 and in Figure 6.

We also find that the hybrid SSA-FA-BP exhibits better performance than the single BP model,
which reveals that the models that use singular spectrum analysis and the firefly algorithm to handle
the BP neural network predicted model outperform the single BP model, although the former are
more complex and unintelligible than the latter. As shown in Table 3, for Unit 12, the main evaluation
index MAPE of BP is 14.50% in two-step forecasting, 16.32% in three-step forecasting and 18.18% in
six-step forecasting. According to relative research about wind speed forecasting, this accuracy is
not sufficiently accurate for reference. However, for the hybrid model SSA-FA-BP, the corresponding
index MAPE is 8.18% in two-step forecasting, 9.29% in three-step forecasting and 15.33% in six-step
forecasting. Compared with the single BP, the hybrid model shows evident forecasting accuracy
improvement. However, for the horizons that are more than six steps, the result of the prediction is not
good enough in the condition of a time horizon of 10 min. In addition, compared with the FA-BP model,
the SSA-FA-BP model leads to a 4.6% reduction in the total MAPE for the two-step prediction and a 5%
reduction in the total MAPE for the three-step ahead prediction, which demonstrates that the firefly
algorithm methods are effective in boosting the multi-steps forecasting accuracy of the short-term
wind speed prediction. Similarly, in the comparison between the BP, SSA-BP, and SSA-FA-BP, the
modified function of the SSA and FA come out. Additionally, in the hybrid model, SSA-FA-BP, the
singular spectrum analysis occupied more proportions than the firefly algorithm in improving the
effect of multi-steps forecasting. The hybrid models make full use of data preprocessing methods
and take good advantage of the optimization algorithm to improve the performance of forecasting.
In addition, with the comparison of the results of the different predicted horizons, we can draw the
conclusion that the forecasting accuracy of each model decreases with an increase in the number of
horizon steps.

Considering the different sites of concern, the experiment also demonstrates that the hybrid
model is effective for all the data of Unit 12, Unit 13, and Unit 14, which can prove the universality of
the model. According to the diversity of the experimental data, as shown in Table 3, the forecasting
accuracy has a subtle distinction.

5.1.3. Analysis of Seasonal Feature

The specific seasonal forecasting results are shown in Table 4. According to the displayed accuracy
indications (MAPE, MAE, and MSE), differences of accuracy caused by observation time come out.
For example, in the experiment of 10 min, SSA-FA-BP model applied to the data of Unit13 in the first
quarter perform the most accurate forecasting in one-step ahead, and the MAPE is 4.18%, which is
a relatively ideal for wind speed forecasting. As what is shown in Figure 7, in the comparison of
seasonal forecasting, for the 10-min forecasting, the forecasting accuracy of the first quarter is the best,
and forecasting of the second and the fourth quarter is not good enough. Especially, for several specific
sites and quarters, the SSA-FA-BP even perform worse than SSA-BP or FA-BP, which still outperform
than single BP.
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Table 4. The quarterly forecasting results of the combined model and the results of the other models

involving the data of three Units (10 min).

. Unit 12 Unit 13 Unit 14
Horizon Model
MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE
First Quarter
BP 02935 04143 0.0759 0.3348 0.4485 0.0730 0.2885 0.4311 0.0781
One-ste FA-BP 02803 0.3967 0.0720 0.3177 0.4410 0.0717 0.2915 0.4321  0.0786
P SSA-BP 0.1544 0.3202 0.0577 0.1284 0.2750 0.0442 0.1023  0.2630  0.0491
SSA-FA-BP  0.1355  0.3028 0.0562  0.1141 02575 0.0418 0.1017 0.2619  0.0489
BP 0.4526 05174 0.0978 05902 05970 0.1000 0.5625 0.5742  0.1097
Three-ste FA-BP 05959 0.5891 0.1109 0.5586 0.5808 0.0974 0.5383 0.5670  0.1102
P SSA-BP 0.2246  0.3733  0.0679 0.1706  0.3226  0.0531 0.1338  0.3026  0.0574
SSA-FA-BP  0.2022  0.3533  0.0656 0.1756  0.3215 0.0536  0.1349  0.2978  0.0557
BP 09561 0.8032 0.1423 0.8737 0.7291 0.1202 09222 0.7368  0.1427
Sixoste FA-BP 09486  0.8451 0.1385 0.8393 0.7248 0.1199 0.8752 0.7179  0.1434
P SSA-BP 0.6346  0.6748 09845 0.5020 0.5235 0.0867  0.4401 0.4835  0.0932
SSA-FA-BP  0.5857 0.5612  0.1561 0.5520 0.5314 0.0886  0.4916  0.4945  0.0922
Second Quarter
BP 0.3388  0.4614 0.1171 03657 04931 0.1277 04621 0.5243  0.1433
One-ste FA-BP 0.3465 04556 0.1145 0.3650 0.4870 0.1216 0.4491 0.5095  0.1410
P SSA-BP 0.1710  0.3417 0.0853  0.1199 0.2635 0.0665 0.1200 0.2818  0.0773
SSA-FA-BP  0.1718 0.3424  0.0854 0.1203 0.2639  0.0666  0.1205 0.2805 0.0766
BP 0.6982 0.6388 0.1727 0.7352 0.6891 0.1849 0.8548 0.6964  0.1966
Three-ste FA-BP 0.6782  0.6205 0.1636  0.7405 0.6838 0.1732  0.8419 0.6837  0.1979
P SSA-BP 0.2460  0.3962  0.0987 0.2029 0.3372  0.0857 0.3164 0.4232  0.1156
SSA-FA-BP 02454 0.3964  0.0990 0.2031 03375 0.0850 0.3315 0.4266 0.1181
BP 09686  0.7483 0.2091 1.0547 0.8230 0.2322  1.2245 0.8284  0.2410
Sixoste FA-BP 0.8879  0.7084 0.1908 1.0907 0.8425 0.2202 1.2127 0.8277  0.2471
P SSA-BP 0.6480 0.5846  0.1548 0.7039  0.6010 0.1538  0.8417 0.6715 0.1867
SSA-FA-BP  0.6201  0.5727 0.1517 0.6745 0.5897 0.1472 09054 0.6785  0.1982
Third Quarter
BP 0.5033 05340 0.1072 05920 0.5806 0.1139  0.5067 0.5472  0.1171
One-ste FA-BP 0.3964 04782 0.1014 04367 04993 0.1006 0.4913 0.5352  0.1128
P SSA-BP 0.1461 0.2979  0.0681  0.1428 0.2826  0.0541 0.1156 0.2604  0.0573
SSA-FA-BP  0.1344  0.2832  0.0647  0.1009 02373  0.0475 0.1092 0.2568  0.0567
BP 0.7706  0.6644  0.1328 1.0470 0.7868  0.1529  0.9446  0.7287  0.1559
Three-ste FA-BP 0.6033 0.5869 0.1238 0.7739  0.6790 0.1346  0.8965 0.7274  0.1534
P SSA-BP 0.1707  0.3151  0.0698 1.2120 0.7302 0.1359 0.6733 05919 0.1214
SSA-FA-BP  0.2537  0.3725 0.0774 0.3957 0.4543 0.0935 0.4887 05149 0.1094
BP 11326  0.8204 0.1589 1.3310 0.9083 0.1765 1.7693  0.9981  0.2046
Sixoste FA-BP 09320 0.7338  0.1489 1.1534 0.8454 0.1643 14021 09227 0.1868
P SSA-BP 04142 04630 0.0954 24824 1.1354 0.2093 2.0979 1.0418 0.2035
SSA-FA-BP  1.1312  0.7347 0.1372 0.7707 0.6703  0.1364  1.2187 0.8288  0.1687
Fourth Quarter
BP 0.1681  0.3130 0.1354 0.1655 03147 0.1294 0.1902 0.3417  0.1450
One-ste FA-BP 0.1747  0.3229 0.1364 0.1529 03062 0.1194 0.1740 0.3258  0.1303
P SSA-BP 0.1018 0.2391  0.0975 0.0985 0.2435 0.0843 0.0822  0.2180  0.0908
SSA-FA-BP  0.0982  0.2328 0.0979 0.0717 0.2031 0.0786  0.0828 02157  0.0907
BP 02991 04135 0.1840 0.3719 04372  0.1918 0.3419 04416 0.1994
Three-ste FA-BP 0.2833 04095 0.1744 0.3092 04216 0.1675 0.3092 0.4242 0.1786
P SSA-BP 0.2047 0.3534 0.1376  0.3474 04590 0.1486 0.1677 0.3033  0.1224
SSA-FA-BP  0.1652  0.3053 0.1294 0.1440 0.2860  0.1068 0.1658  0.3028  0.1270
BP 03935 0.4843 02167 05783 05527 0.2426 04769  0.5332  0.2433
Six-ste FA-BP 0.3587 04703 0.2001 0.5338 0.5672 0.2228 0.4122 04964  0.2127
P SSA-BP 03871 04825 0.1770 0.8478 0.7282  0.2257 0.2955 0.4110  0.1639
SSA-FA-BP  0.2724  0.3991 0.1682  0.2603 0.3898  0.1421  0.3014 0.4089 0.1760




Energies 2016, 9, 757 17 of 28

Unit12 One-step Forecasting of Third Quarter:

‘Actual wind speed

nomT

ecasting wind spoed by SSAFABP /1 | I speed by SSA-FA-BP
y M|

VAN \
o v '\/ﬁ""/ \ ‘/\4\

A
NN

\' "\.A{lh’,\"""- )
al AN

Wind speed(m/s)

. A v
ot J " \/.‘\'ijv"\ j
W

2ha

0 C
Time (10minutes)

First quarter

Unit12 One-step Forecasting of Second Quarter:
Actual wind speed
Forecas! ind speed by Single BP

peed by SSA-BP

Unit12 One-step Forecasting of Fourth Quarter:

peed by FA-8P in
ting wind speed by SSA-FA-BP Forecasting wind speed by SSA-FA-BP

7 ,’Q* \ A\
Joapd AWV .
| 1\ - Vi i /U»’
Ao gV o g W

WA
Vigf¥ \/I

Wind speed(m/s)
>
S
=
=
—
=
<
<
=
=
x
=
Wind speed(mis)

- « © ) )
Time (10minutes) Time (10minutes)

Figure 7. The multiple-steps forecasting accuracy indexes of Unit 12 (10 min).

5.2. Experiment II: Forecasting for a Time Interval of 30 Min

In the 30 min experiment, the forecasting time interval is longer than the 10-min experiment.
The data collected for this experiment is aimed at the whole hour point and the half hour point.
The result of the forecasting is similar to the 10 min forecasting.

For example, as Table 5 shows, for Unit 12, the SSA-FA-BP model outperforms the other
component models in one-step ahead forecasting and has a lower MAPE value of 12.65% compared to
the MAPEs of 12.78%, 17.11% and 17.62% for the SSA-BP, FA-BP and single BP models, respectively.
In Table 5 and Figure 8 the SSA-BP method performs slightly worse than the best component model
in one-step ahead and multiple steps-ahead forecasting. For the FA-BP and single BP, the forecasting
accuracy is obviously worse than the other two component models. As the forecasting horizon
increases, the MAPEs, MAEs, and MSEs of each model increase. For Unit 13 and Unit 14, the
forecasting accuracy is shown in Table 5. The wind speed forecast displays the same trend with Unit 12,
which adds more weight to the universality of the effectiveness of the models. For all horizons, the
SSA-FA-BP model obtains the best forecasting performance compared with other component models.
The proposed approach, SSA-FA-BP, has a higher reliability and precision at all sites in terms of the
forecasting performance. Table 5 shows the evaluation results of the predictions obtained from models
that used SSA and FA and models that did not use SSA and FA for site 12, site 13 and site 14. The model
comparisons demonstrate that the preprocessing method SSA is effective in increasing the forecasting
accuracy of short-term wind speed prediction, and the optimized method FA is effective in improving
the forecasting accuracy of BP. Considering the seasonal factor, the results in Table 6 and Figure 9 show
that the forecasting of the wind speed in the first quarter is still the most accurate among the whole
year in the 30 min experiment. However, for the second and fourth quarters, the results are not desired.
For some outputs of forecasting, such as the three-step forecasting of Unit 14 in the fourth quarter, the
MAPE of SSA-FA-BP is 24.81%, which is larger than SSA-BP. As the horizon increases, the number of
occurrences of the abnormal results increases.
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Table 5. The quarterly average forecast results of the combined model and the results of the other
models involving the data of three units (30 min).

Unit 12 Unit 13 Unit 14
Hori M 1
orizon odel TVIAPE MAE MSE MAPE MAE MSE MAPE MAE  MSE
BP 0.1199 0.4361 0.3367 0.1110 0.4592 0.3645 0.1209 0.4611 0.3619
One-ste FA-BP 0.1061 0.4134 0.2995 0.1034 0.4334 0.3181 0.1157 0.4507 0.3515
P SSA-BP 0.0771 0.2998 0.1433 0.0623 0.2662 0.1224 0.0686 0.2558 0.1051
SSA-FA-BP  0.0760 0.2903 0.1350 0.0586 0.2405 0.1018 0.0682 0.2537 0.1036
BP 0.1459 0.5163 0.4783 0.1380 0.5583 0.5399 0.1454 0.5400 0.5259
Two-ste FA-BP 0.1277 0.4917 0.4289 0.1264 0.5251 0.4718 0.1414 0.5352 0.5128
P SSA-BP 0.0831 0.3201 0.1630 0.0820 0.3531 0.2519 0.0837 0.3207 0.1777
SSA-FA-BP  0.0818 0.3107 0.1557 0.0695 0.2840 0.1471 0.0826 0.3104 0.1630
BP 0.1632 0.5722 0.5893 0.1574 0.6275 0.6861 0.1654 0.6102 0.6759
Three-ste FA-BP 0.1432 0.5515 0.5402 0.1432 0.5913 0.5955 0.1600 0.6006 0.6465
P SSA-BP 0.0935 0.3595 0.2115 0.1058 0.4623 0.4832 0.1042 0.4052 0.3228
SSA-FA-BP  0.0929 0.3569 0.2166 0.0847 0.3498 0.2296 0.1026 0.3855 0.2803
BP 0.1818 0.7141 0.8627 0.1929 0.7533 0.9594 0.2079 0.7741 1.0982
Six-ste FA-BP 0.1696 0.6894 0.7818 0.1818 0.7450 0.9043 0.1975 0.7412 0.9755
P SSA-BP 0.1530 0.5512 0.5210 0.1689 0.7470 1.1340 0.1618 0.6520 0.9188
SSA-FA-BP  0.1533 0.5670 0.6524 0.1286 0.5453 0.5644 0.1588 0.6027 0.7293
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Figure 8. The multiple-steps forecasting accuracy indexes of Unit 12 (30 min), (a) refers to the result of
MSE; (b) refers to the result of MAE; (c) refers to the result of MAPE).
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Table 6. The quarterly forecasting results of the combined model and the results of the other models
involving the data of three Units (30 min).

Unit 12 Unit 13 Unit 14
MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE

Horizon Model

First Quarter

BP 0.6933  0.6651  0.1252 0.6762  0.6561  0.1187  0.9744  0.7843  0.1468
FA-BP 0.6695  0.6397 01171 0.6756  0.6684 0.1160 0.8127 0.7076  0.1350

-St

One-step  gon P 02048 04436 00818 02647 03980 00698 02849 04283  0.0828
SSA-FA-BP  0.2936  0.4420 00815 02646 03946 0.0693 02814 04261  0.0823
BP 12019 08796 01681 11618 0.8550 01605 1.6323 09821  0.1885
Three-ste FA-BP 12488 08774 01619 10829 08373 01472 12210 0.8598 0.1691
P SsA-BP 04380 05210 00952 04817 05272 0.0933 04518 05319  0.1021
SSA-FA-BP 04474 05232  0.0958 04974 05244  0.0922 04180 05112  0.0990
BP 17849  1.0700 0.1985 17615 1.0452 0.1984 24751 1.1888  0.2148
Sixste FA-BP 19211 10859 01945 15791 1.0067 01746 1.6646 1.0332  0.1964
P SSA-BP 09973 07394 0.1353 09643 07593 01322 10674 07590  0.1348
SSA-FA-BP 11372 07738 01397 1.0999 07950 01390 08772 07012  0.1279

Second Quarter
BP 08119 06544 02017 09624 07375 02033 07448 0.6711  0.1975
One-ste FA-BP 07824 06461 01985 08424 07011 01912 07957  0.6853  0.1842
P SSABP 04778 05382 01519 04949 05556 01595 03412 04831  0.1294
SSA-FA-BP 04797 05378 01514 04598 05286 0.1569 03430 04827  0.1288
BP 12456 08375 02576 15823 09718 02654 13865 0.8951  0.2792
Three-ste FA-BP 11918 08045 02494 14173 09152 02512 16522 09520  0.2393
P SSABP 09478 07562 02236 09389 07322 02144 05586 05933  0.1624
SSA-FA-BP  0.8972 07161 02041 09049 07469 02165 05862 0.6032  0.1665
BP 17529  1.0133 03117 23171 11507 03174 22178 11494  0.3697
Sixste FA-BP 16155 09244 02973 21384 1.0877 03066 27857 12075  0.2862
P SSA-BP  1.6707 09953 03045 19863 1.0425 03053 13912 08491  0.2481
SSA-FA-BP 15347 09224 02716 21290 1.1060 03053 13470  0.8490  0.2526

Third Quarter
BP 09600 07542 01306 0.8185 07672 01302 15726 1.0238 0.1621
One-ste FA-BP  0.8563 07246 01294 09089 07494 01298 1.0489 0.8127  0.1353
P SSABP 03096 04420 00805 04766 05565 0.0934 05216 05594  0.0923
SSA-FA-BP  0.3080 0.4387 00797 04766 05565 0.0934 03495 04771  0.0834
BP 13173 08916 0.1545 13614 09571 0.1548 29792 13736  0.2085
Three-ste FA-BP 11487 08302 01487 12011 0.8683 01480 13967 09523  0.1586
P SSABP 05473 05636 01014 09070 07435 0.1185 42291 13309 0.1875
SSA-FA-BP 05738 05957 01051 07322  0.6854 01125 14015 0.8814  0.1345
BP 20336 1.0920 01793 2.6844 12932 01950 47790 17701  0.2620
Sixste FA-BP 15673 09523 01636 15885 09963 01634 19958 1.1361  0.1812
P SSA-BP  1.1435 07842 01362 1.8079 1.0640 0.1662 6.8947 1.9264  0.2707
SSA-FA-BP 13765 0.8984 0.1511 15240 09663 0.1493  3.8525 1.4646 02144

Fourth Quarter
BP 08136 07044 02473 09385 07416 02282 0.8644 07053  0.2443
One-ste FA-BP 07064 06578 02393 07961 0.6914 02045 07362 0.6583  0.2360
P SSABP 04495 05416 01971 04719 05548 01726 05263 05634  0.1966
SSA-FA-BP 04536 05361 01935 04494 05398 0.1663 05037 05453  0.1939
BP 10414 07975 02799 15676 09861 02969 12111 08521  0.2987
Three-ste FA-BP  1.0504 08051 02914 12728 0.8700 02490 1.0860 0.8163  0.2943
P SSABP 07607 06737 02413  0.8086 07257 02277 0.8960 07344 02613
SSA-FA-BP 07938  0.6960 02481 07428  0.6962 02168 0.8963 07403  0.2686
BP 12451 08747 03021 23734 12047 03424 14588 09619  0.3367
Sixestep FA-BP 14155 09393 03413 1.8266 1.0426 02873 14533 09500  0.3539

SSA-BP 1.1629  0.8457 0.2965 13164 09125 02895 1.2782  0.8946  0.3237
SSA-FA-BP 1.2581 0.8831  0.3078 1.1919 0.8681  0.2692 12269 0.8775  0.3201
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Figure 9. The quarterly forecasting results of the wind series of Unit 12 with one-step (30 min).

5.3. Experiment III: The Forecasting for Time Interval of 60 Min

In the experiment of 60 min, the forecasting time interval is longer than the 10 min and the
30 min experiment. The datum collected for experiment are the whole hour point. And the results of
forecasting are shown in Table 7.

Table 7. The quarterly average forecast results of the combined model and the results of the other
models involving the data of three units (60 min).

Unit 12 Unit 13 Unit 14

Hori
orizon  Model Tyl brT MAE  MSE  MAPE  MAE  MSE  MAPE  MAE  MSE
BP 02222 11156 21938 02356 11604 23347 02179 10937 22214
Oneste FA-BP 02168 1.0648 19555 02208 1.1026 21951 02101 1.0595 2.0808
P SSA-BP 02088  1.0617 19410 02109 11048 2.1478 02121 1.0455 2.0752
SSA-FA-BP  0.2067 1.0547 19441 02094 1.0877 2.0380 01999 1.0068 19313
BP 02533 12751 29324 02703 12946 29242 02512 12630 29573
Twouste FA-BP 02496 12174 2529 02517 12419 27568 02449 12243 27510
P SSA-BP 02366 12077 24844 02435 12566 27819 02464 11964  2.7766
SSA-FA-BP 02373 12037 25120 02389 12301 26166 02292 11572 25756
BP 02764 14061 38110 02976 14143 34873 02806 14056  3.6011
Threeste FA-BP 02710 13306 3.0090 02729 13560 3.1935 02715 13515 3.2769
P SSA-BP 02555 13164 29884 02684 13821 34193 02761 13219 33522
SSA-FA-BP 02570 13152 3.0018 02610 13530 3.1695 02509 12654  3.1232
BP 03205 16411 55115 03565 1.6756 4.8257 03499 17482 52445
Six-step FA-BP 03153 15698 41330 03155 15939 42869 03358 1.6695  4.7780

SSA-BP 0.2943 15393 41907 0.3143 1.6398 4.8937 0.3357 15972  4.6300
SSA-FA-BP  0.2994 15527 4.2664 03134 1.6533 4.7370  0.3025 1.5329  4.5682
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For example, as Table 7 shows, for Unit 12, the SSA-FA-BP model outperforms the other
component models in one-step ahead forecasting and has a lower MAPE value of 20.67% compared
to MAPEs of 20.88%, 21.68% and 22.22% for the SSA-BP, FA-BP and single BP models, respectively.
In Table 7 and Figure 10 the SSA-BP method performs slightly worse than the best component model,
in one-step ahead and multiple steps-ahead forecasting. For the FA-BP, and single BP, the forecasting
accuracy is obviously worse than the other two component models. As the forecasting horizon
increases, the MAPEs, MAEs, and MSEs of each model increase.
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Figure 10. The multiple-steps forecasting accuracy indexes of Unit 12 (60 min), (a) refers to the result
of MSE; (b) refers to the result of MAE; (c) refers to the result of MAPE).

For Unit 13 and Unit 14, the forecasting accuracies are shown in Table 7. Although the optimizing
effect of SSA and FA is still obvious, for the experiment of 60 min, the forecasting accuracy is generally
not ideal. As Figure 10 shows, the superiority of the proposed model decreased, and the differences
among the models also diminish. Considering the seasonal factor, the results in Figure 11 and Table 8
show that the forecasting of wind speed in the fourth quarter is the most accurate during the whole
year in the 60 min experiment. Similarly, for the other three quarters, the results are not desirable.
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Table 8. The quarterly forecasting results of the combined model and the results of the other models

involving the data of three units (60 min).

Unit 12 Unit 13 Unit 14
Horizon Model

MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE

First Quarter
BP 3.0904 1.3125 0.2528 2.3477 1.1632 0.2090 2.2895 1.1422  0.2549
One-ste FA-BP 2.5011 1.1980 0.2480 2.0369 1.0724 0.1977 23402 1.1393 0.2471
P SSA-BP 25617  1.2381 02403 22377 1.1294 0.1947 23312 1.1271  0.2490
SSA-FA-BP 24950 1.2516 0.2384  2.0449 1.0873 0.1937 22497 1.0764 0.2252
BP 6.8733  1.7607 0.3392 3.8318 1.4707 0.2691 3.9836  1.5474 0.3575
Three-ste FA-BP 4.0310 1.5524 03298 3.5085 1.4259 0.2654 39086  1.4991 0.3311
P SSA-BP 4.0014 1.5590 0.3127 4.1479 15042 0.2598 3.7688  1.4613  0.3400
SSA-FA-BP 39749 15597 0.3052 3.5960 1.4205 0.2550 3.9408 1.4512 0.3029
BP 74483 22169 04122 59659 1.8733 0.3335 6.3516 19940 0.4800
Sixoste FA-BP 5.8183 1.9060 0.3899 55473  1.8238  0.3260 6.0641  1.9065 0.4214
P SSA-BP 59958  1.8902 0.3678  7.1205 1.9702 0.3320 5.7157 1.8657 0.4376
SSA-FA-BP 59469  1.8762 0.3553 5.8798 1.8574 0.3247 6.4170 1.8905 0.3897

Second Quarter
BP 23115 1.1888 0.2270 3.7144 15111 0.2761 41706  1.5753  0.2558
One-ste FA-BP 22246 11875 02206 3.8431 1.5091 0.2700 3.7578  1.4758  0.2448
P SSA-BP 1.9702 1.1183 0.2120 3.4919 14826 02619 35591  1.4698 0.2362
SSA-FA-BP  2.1578  1.1093  0.2061  3.1664 1.4169 0.2479  3.4986  1.4423 0.2339
BP 3.4521 1.4139 02734 50604 1.7127 03314 63046 1.8386 0.3044
Three-ste FA-BP 3.2495 1.3875 0.2662 4.8472  1.6672  0.3089 54841 1.7668 0.3122
P SSA-BP 2.8445 1.2864 0.2513 5.1100 1.7268 0.3283  6.0599  1.8093 0.3048
SSA-FA-BP 3.3858  1.3575 0.2613 43150 1.5992  0.2977 5.2543 1.7094 0.2855
BP 48547 1.6460 03312 6.6771 19479 0.3953 79052 2.0703 0.3454
Six-ste FA-BP 47895 1.6568 03295 58763  1.8409 0.3517 74185 2.0468 0.3830
P SSA-BP 41495 15157 03044 6.5884 19244 0.3902 79878  2.0627 0.3590
SSA-FA-BP 52176  1.6414 0.3314 6.1996 1.8667 0.3722 7.4138 19789 0.3445

Third Quarter
BP 1.7932 09926 02573 15404 09415 02914 1.1712 0.8250 0.2337
One-ste FA-BP 1.6403 09217 0.2480 14965 09093 0.2592  1.1428 0.8038 0.2287
P SSA-BP 1.8546 09990 0.2403 1.3990 0.8838 0.2369  1.4989  0.8957 0.2578
SSA-FA-BP  1.6452 09153 0.2328 15284 09091 0.2442 1.1293 0.8238  0.2355
BP 2.3381 1.2127 03047 24070 1.2176 0.3860 1.6862  1.0420 0.2913
Three-ste FA-BP 23320 11757 03055 22592  1.2001 0.3317 15434 09651 0.2783
P SSA-BP 2.8998 1.2829  0.2805 2.0913 1.1259 0.2973 2.0314 1.0814 0.3197
SSA-FA-BP 21165  1.1232  0.2745 24344 12159 03095 15379 09826 0.2778
BP 27442 13509 0.3420 3.4045 14702 04768 21751  1.2249 0.3437
Sixoste FA-BP 29066  1.3647 03502 2.8596  1.3685 0.3780 19424 1.1266 0.3241
P SSA-BP 4.0418 15094 03182 27657 1.2901 0.3289 26041 1.2763  0.3799
SSA-FA-BP 25330 1.2691  0.3021 33609 1.4305 0.3454 1.8845 1.1093 0.3075

Fourth Quarter
BP 1.5798 09686  0.1517 1.7365  1.0257 0.1657 1.2542  0.8324 0.1271
One-ste FA-BP 14558 09521 0.1508 1.4037 09196 0.1563  1.0824  0.8190 0.1199
P SSA-BP 13773  0.8915 0.1425 14627 09233 0.1501 09118 0.6894 0.1056
SSA-FA-BP 14782 09424 0.1497 14125 09373 0.1519 0.8476  0.6847 0.1051
BP 25804 1.2373 0.1883 2.6499 1.2561 0.2040 24300 1.1946 0.1694
Three-ste FA-BP 24234 12069 0.1826 2.1592  1.1309 0.1858 21714 1.1751 0.1645
P SSA-BP 22080 1.1372 0.1773  2.3281 11714 0.1881  1.5485 0.9358 0.1399
SSA-FA-BP 25299  1.2204 0.1871 23327 1.1764 0.1819 1.7596 09186 0.1372
BP 29989  1.3504 0.1968  3.2551 14112 02205 45460 1.7037  0.2304
Six-ste FA-BP 3.0174 13516 0.1915 2.8643 1.3424 0.2063 3.6869 1.5979 0.2145
P SSA-BP 25756  1.2418 0.1868  3.1001 1.3745 0.2063 22126  1.1843 0.1663
SSA-FA-BP  3.3679 14242 0.2089 3.5078  1.4587  0.2115 25573  1.1530 0.1682
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Figure 11. The quarterly forecasting results of the wind series of Unit 12 with one-step (60 min).

5.4. Summary: Based on Experiments I-I11

Comparing the three experiments above, we obtain the following overall conclusion:

The BP network has acceptable accuracy in the forecasting of the wind speed.

The combined model possesses a more powerful forecasting ability than the individual model.
As every experiment shows, the accuracy of the model single BP, FA-BP, SSA-BP and SSA-FA-BP for
wind speed forecasting increases successively, and in all predictions, the SSA-FA-BP almost always
outperform the other two component models and the individual model.

According to the results shown in Tables 3, 5 and 7, compared with BP, SSA-BP has more obvious
improvement than FA-BP. Therefore, we can deduce that, in the combined model SSA-FA-BP, the SSA
has more contribution than FA in the improvement of the wind speed forecasting accuracy. However,
as Figures 6, 8 and 10 show;, as the intervals of the data increase, the differences of accuracy for the
models decrease, and the optimizing effects of SSA and FA decrease.

Table 9 shows the forecasting results of the three experiments with the average of the three sites.
For one-step ahead forecasting, the MAPE of 10 min is 6.76%, which is less than that for 30 min and
60 min. For two-step and other multi-step ahead forecasting, the accuracy also decreases as the time
interval increases.

As Table 3, Table 5, Table 7, and Table 9 show, whichever the experiment, for any model, as the
forecasting horizon increases, the forecasting accuracy shows an obvious decrease. For the six-step
ahead forecasting, most of the MAPE is more than 15%, which is not credible enough for wind speed
forecasting. This result implies that, if the forecasting horizon is more than six, the models we propose
are not available.

Figure 7, Figure 9, and Figure 11 and Table 4, Table 6, and Table 8 show that the wind speed
forecasting of the first quarter is the most accurate of the whole year. The forecasting of the second and
fourth quarters are not relatively ideal.
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Table 9. The quarterly average forecast results of the combined model and the results of the other
models involving the data of three units (three experiments).

10 Min 30 Min 60 Min

Horizon Model
MAPE MAE MSE MAPE MAE MSE MAPE MAE MSE
BP 0.1173  0.4521 0.3544  0.1748 0.7387  0.9025 0.2252  0.2252  2.2500
One-ste FA-BP 0.1084 04325 0.3230 0.1558 0.6952 0.8026 0.2159 0.2159 2.0771
P SSA-BP 0.0693  0.2739  0.1236  0.1246  0.5054 0.4095 0.2106 0.2106  2.0547
SSA-FA-BP 0.0676  0.2615 0.1134  0.1243  0.4892 0.3805 0.2054 0.2054 1.9711
BP 0.1431 05382 05147 01994 0.8477 1.1944 02583 1.2776  2.9379
Two-ste FA-BP 0.1319 05173  0.4711 0.1777  0.7924  1.0426  0.2488 1.2279  2.6791
P SSA-BP 0.0830 03313 0.1975 0.1435 05919 0.6279  0.2421 1.2203  2.6810
SSA-FA-BP  0.0780  0.3017  0.1553  0.1419  0.5621 05139 02352 1.1970 2.5680
BP 0.1620  0.6033  0.6504 0.2192  0.9399 1.4740 0.2849 14087  3.6331
Three-ste FA-BP 0.1488  0.5811 0.5941 0.1972  0.8657 1.2475 0.2718  1.3461 3.1598
P SSA-BP 0.1012 04090 0.3392 0.1677 0.7028 0.9971 0.2666 1.3401 3.2533
SSA-FA-BP 0.0934  0.3641 0.2422  0.1652  0.6600 0.7410 0.2563 1.3112  3.0981
BP 0.1942  0.7472 09734  0.2589 1.1512 22403  0.3423 1.6883  5.1939
Six-step FA-BP 0.1830  0.7252  0.8872  0.2423 1.0302 1.7960 0.3222 1.6110  4.3993

SSA-BP 0.1612  0.6501  0.8579  0.2261 09643 1.8067 03148 1.5921  4.5715
SSA-FA-BP  0.1469 05716  0.6487  0.2232  0.9255 15462  0.3051 1.5797  4.5239

6. Statistical Testing of the Predictive Accuracy

The statistic testing has been widely used to evaluate the predictive accuracy between the various
predicting models. In order to promote the superiority and conviction of the proposed model, in this
paper, the bias-variance statistics framework and the Diebold-Mariano (DM) test are employed to test
the predicting results at the point of statistics.

6.1. Bias-Variance Statistics Framework

The bias-variance framework [29] is utilized to estimate the models” accuracy and stability, which
are important in evaluating the effectiveness of the wind-speed forecasting models. The error attributed
to bias is taken as the difference between the forecasts of the proposed model and the observed value.
The error attribute to variance is taken as the variability of the forecasting results:

f f

Definition 1: e = x; — x7 is the difference between the forecasting value x; and the actual value

x{. E (xf ) = % 1 x{ is the expectation of the forecasting data, where # is the number of data for
comparison. The bias-variance statistic framework is described as follows:

iy
= var () 4 B ()

Var(¥) demonstrates the stability of predicting model, and Bias(x/) demonstrates the
predictive accuracy.

Table 10 shows the bias and variance of the bias-variance statistic framework. For all three
experiments of different time interval, the bias of the SSA-FA-BP is smaller than the other three models
which indicate that the proposed hybrid model has is superior in predictive accuracy. However, for the
same models, as the time interval increases, the bias maintains a growing trend, which reveals the
decline of the accuracy. The variance results show that the proposed model is more stable generally.
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Table 10. Bias-variance and Diebold-Mariano test of three experiments among the four different models
for the average value of four quarters and three sites.

Model Bias-Variance Diebold-Mariano Statistic D;

Bias

Var

Experiment I

SSA-FA-BP 0.2609 5.2405 x 1073 -
SSA-BP 0.2740 5.8840 x 1073 5.150083 *
FA-BP 0.4349 1.6363 x 102 15.444575 *

BP 0.4556 2.0070 x 1072 14.842546 *
Experiment II

SSA-FA-BP 0.4892 1.9164 x 102 -
SSA-BP 0.5053 2.0321 x 1072 3.3645941 *
FA-BP 0.6951 5.0297 x 1072 9.5205534 *

BP 0.7387 5.0989 x 102 10.836091 *
Experiment III

SSA-FA-BP 1.0736 47839 x 1072 -
SSA-BP 1.0775 3.8947 x 1072 1.491449 ***
FA-BP 1.1469 6.5574 x 1072 1.655307 **

BP 1.1247 8.7046 x 1072 2.734882 *

* indicates the 1% significance level; ** indicates the 10% significance level; *** indicates the 15% significance level.

6.2. The Diebold-Mariano (DM) Test

The Diebold-Mariano (DM) test [30], which is a comparative test that focuses on the predictive
accuracy, could be used to compare and evaluate the forecasting performance of the proposed hybrid
model and other comparing models. In empirical applications, it is often the case that two or more
time series models are available for forecasting a particular variable of interest.

Definition 1. The actual values are {y, }, and the two forecasting values are { gf}) }, and { %2) }

(1) _ 1) (2) _ ~(2)

The forecasting errors from the two models are 0, " =¥, ' — yn and 6’ =y, ' — y,. Here we employ

the popular loss expression, absolute deviation loss, L (&%) = ’5,(1i)

Definition 2. The DM test statistic evaluates the forecasts in terms of the absolute loss function:

) @) "

VS2/n
where S? is an estimator of the variance of d, = L (5,&1)) —L ((5,52))

The DM testing is based on the hypothesis testing, thus we construct the null hypothesis and the
alternative hypothesis as:

Hy:E(dy) =0 (15)
Hi:E(dy) #0 (16)

The null hypothesis is that the two forecasts have the same accuracy. The alternative hypothesis
is that the two forecasts have different levels of accuracy under the null hypothesis, the test statistics
DM is asymptotically N(0,1) distributed. The null hypothesis of no difference will be rejected if the
computed DM statistic falls outside the range of [z_, /2, z,/2] that is if:

IDM| > z4/2 (17)
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where z,; is the upper z-value from the standard normal table corresponding to half of the desired
level of the test.

The results of the DM testing are shown in Table 10. For experiment I and experiment II, the values
of the DM statistic between the proposed hybrid model and the other three models are larger than the
upper limit at a 1% significance level, which means the hybrid model displays a distinct superiority
over the other three models. For experiment III, the value of the DM statistic between the hybrid
model and BP is larger than the upper limit at 1% significance level, but for the FA-BP and the
SSA-BP, the values of the DM statistic against the hybrid model are larger than the upper limit at a
10% significance level and a 15% significance level respectively, which indicates a weaker significant
difference compared to the other models. Thus, it can be concluded that the hybrid model reveals a
significant superiority compared to the other models for the forecasting accuracy, and as the data time
intervals increase, the superiority declines.

7. Conclusions

As the energy pressure increases, the development and utilization of new renewable energy
sources deserve greater attention to achieve the aims of sustainability and environmental protection.
At present, there is no doubt that wind energy is one of best forms of non-renewable energy. However,
for wind power generation, the reliability and accuracy of wind speed forecasts are vital, but the
complexity and fluctuation of wind speed series make it a great challenge to forecast the wind
speed precisely. A large number of studies have been devoted to improving wind speed forecasting
performance through parameter optimization and factors analysis, which affect the final estimates
significantly. However, in conventional studies, the model constructed ignoring the pre-processing of
the data, which contains considerable irrelevant factors, will inaccurately estimate the fluctuation trend
of the wind speed series, which is usually devoted to the deviation and errors in the predicted results.
To achieve the desired forecasts, therefore, it is necessary to identify and eliminate the outliers in the
original wind speed data before constructing a forecasting model. In this study, singular spectrum
analysis is introduced for the process of de-noising. Moreover, affected by various environmental
factors, the wind speed data present high fluctuations, autocorrelation and stochastic volatility, making
it difficult to forecast the wind speed using a single model.

Thus, in this paper, a hybrid model, SSA-FA-BP, is proposed. The SSA is exploited to eliminate
the stochastic volatility in the wind speed series. The parameters in the BP are tuned and optimized
by the FA algorithm, so the defect of the randomness of the BP neural network is overcome partly
and does not fall into the local optimum. In addition, this study generates wind speed predictions
over two different forecasting horizons: one-step ahead prediction and multi-step ahead prediction.
The test results obtained for different forecast horizons suggest that the proposed hybrid wind speed
forecasting method based on the BP model integrated with the FA algorithm and preprocessing with
the SSA algorithm has the ability to produce good wind speed predictions. In addition, the SSA
outperforms the FA on the contribution of the improvement of the forecasting accuracy in the proposed
hybrid model.
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Abbreviations

The following abbreviations are used in this manuscript:
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ARIMA Autoregressive integrated moving average x(0) Disposed series
MA Moving average model x® Reconstructed series
AR Autoregressive xgo) Sequence of training set
FARIMA Factional;fgfﬁgl;{eszggéntegrated x;(” Sequence of verifying set
ML Machining learning Xp Best fitness value in population of fireflies
Al Artificial intelligence F; The fitness function of firefly i
ANN Artificial neural network X; Nest i
BP Back propagation d The number of dimension
RBF Radial basis function Tij Cartesian distance
SVM Support vector machine Wij, Wik The connecting weight of layers
FA Firefly algorithm a,b The threshold value
SSA Singular Spectrum analysis x{ , {gﬁli)} The forecast value
SI Swarm intelligence xf, {yn} The actual value
XN Real-valued time series DM Statistical value
X Trajectory matrix of the series g0 Forecasting error
{Pi}}:1 Eigenvectors of the matrix s2 Estimator of the variance
SVD Singular Value Decomposition Za /2 Upper (or positive) z-value
A Eigenvalues of the matrix “Zu )2 Under (or negative) z-value
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