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Abstract: The prediction accuracy of short-term load forecast (STLF) depends on prediction model
choice and feature selection result. In this paper, a novel random forest (RF)-based feature selection
method for STLF is proposed. First, 243 related features were extracted from historical load data
and the time information of prediction points to form the original feature set. Subsequently,
the original feature set was used to train an RF as the original model. After the training process,
the prediction error of the original model on the test set was recorded and the permutation importance
(PI) value of each feature was obtained. Then, an improved sequential backward search method was
used to select the optimal forecasting feature subset based on the PI value of each feature. Finally,
the optimal forecasting feature subset was used to train a new RF model as the final prediction model.
Experiments showed that the prediction accuracy of RF trained by the optimal forecasting feature
subset was higher than that of the original model and comparative models based on support vector
regression and artificial neural network.

Keywords: short-term load forecast (STLF); random forest (RF); feature selection; permutation
importance (PI); sequential backward search (SBS)

1. Introduction

Load forecast (LF) is the basis for the planning, operating, and scheduling of traditional power
networks. LF is also the basis for creating an efficient power system by reducing operational costs
and using the renewable energy source of the smart grid [1]. LF can be divided into three categories
according to forecast horizon: long-term LF, mid-term LE, and short-term LF (STLF) [2]. STLF generally
refers to the prediction of load one hour, one day, or one week ahead [3]. The prediction accuracy of
STLF is directly related to the safety, stability, and economy of power system operation. Considering
an electrical utility in the United Kingdom as an example, a decrease of 1% in prediction error can
result in a decrease of approximately 10 million pounds in operational costs [4]. Therefore, in the smart
grid and deregulated power market environment, power systems require high prediction accuracy
of STLE.

STLF methods are divided into traditional and artificial intelligence methods. The traditional
methods mainly include Kalman filtering [5], exponential smoothing [6], regression analysis [7],
and autoregressive integrated moving average (ARIMA) methods [8,9]. These methods have simple
principles and mature technologies, but lack self-learning capability and have difficulty describing
complex non-linear models accurately [10]. The artificial intelligence methods mainly include the
fuzzy logic (FL) method [11,12], the artificial neural network (ANN) [13-15], support vector regression
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(SVR) [16-18], and random forest (RF) [19-21]. The FL method has strong adaptability and can
deal with fuzzy phenomena in power systems. However, FL can only roughly map the output and
has weak learning capability. ANN has been extensively used in the field of STLF because of its
excellent self-learning and fault-tolerant capabilities. Nevertheless, ANN easily falls to overfitting
and local optimum. A unified approach for choosing the network structure and connection weights
is also lacking [16], thereby resulting in several errors and instabilities for the application of ANN to
STLE. SVR follows the structural risk minimization principle to improve the generalization capability,
a principle different from that of empirical risk minimization of ANN. Therefore, SVR overcomes the
numerous disadvantages of ANN [22]. However, when constructing the forecast model, the structure
and parameters of SVR must be adjusted according to different inputs. The optimization process is
relatively complex. Unlike other methods, RF is an artificial intelligence method that combines decision
tree (DT) and integrated algorithm together. RF has the advantages of good anti-noise capability and
strong resistant to overfitting. Only a few parameters of RF need to be optimized as compared with
other methods [23].

The feature set used as the input of these artificial intelligence forecast methods can directly
affect the prediction accuracy and efficiency of the forecasting model [24-26]. Electrical LF refers
to the accurate prediction of future electric power load based on a large quantity of historical load
data and other related factors. Therefore, the present study aims to obtain the optimal feature subset
for the forecasting model through feature selection methods. However, most artificial intelligence
forecast methods cannot conduct the feature selection process and need to be combined with another
feature selection algorithm to do so. Che et al. combined SVR with an approximation convexity
optimization framework with three different initial values of the optimal feature subset dimension m
converged to the same value at the stop condition to obtain the optimal feature subset [24]. Ghofrani
et al. and Kouhi et al. combined ANN and correlation analysis [25,26]. By calculating the correlation
coefficient of model input and output, the relevant features are retained and the redundant features
are eliminated. Although the above studies have made progress in the feature selection of STLEF,
the constantly changing input feature subsets used in the process of feature selection require the
adjustment and optimization of forecasting model parameters. Furthermore, forecasting models have
difficulty achieving optimal forecasting results, and the optimal feature subset needs to be evaluated
by the prediction error of the forecasting model. SVR and ANN have difficulty obtaining the minimum
prediction error of different feature subsets, thus affecting the feature selection result.

When the original feature set is used to train an RF model, the permutation importance (PI) value
of each feature for prediction can be obtained in the training process. On this basis, the optimal features
can be selected through the sequential backward search (SBS) method. Thus, when used for load
forecasting, RF need not be combined with complex feature selection algorithms. Furthermore, if the
number of DTs in RF is sufficiently large, then only one parameter needs to be adjusted when the
feature subset dimension changes. This parameter can be conveniently calculated using the empirical
formula. Unlike SVR and ANN, RF is more suitable for feature selection of STLF. Determining the
threshold for feature selection methods and modifying the numerous parameters of the predictor
according to the different feature subsets are difficult. However, the optimal feature subset can be
easily selected by combining PI with the improved SBS strategy. Consequently, the abovementioned
shortcomings can be overcome and the accuracy of STLF can be improved.

In this paper, a novel RF-based feature selection method for STLF is proposed. First, 243 related
features are extracted from historical load data and time information of predicted point to form the
original feature set. The load data for a full year are divided into a training set and a test set by random
sampling. Subsequently, the original feature set is used to train an RF as the original model. After the
training process, the prediction error of the original model on the test set is recorded as the threshold
to evaluate the forecasting capability of different feature subsets and obtain the PI value of each feature.
Then, the improved SBS method is used to select the optimal forecasting feature subset according to
the PI value of each feature. Finally, the optimal forecasting feature subset is used to train a new RF
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as the final prediction model. The historical load data for 2012 of a city in Northeast China are used
for comparative experiments and to demonstrate the superiority of the proposed method in feature
selection and load forecasting.

The rest of the paper is organized as follows. Section 2 introduces RF, and Section 3 describes the
RF learning process and the proposed feature selection method. Section 4 presents the real load data
for experiments, and analyzes and discusses the feature selection and STLF results. Finally, Section 5
elaborates the conclusions and future work.

2. Mathematical Preliminaries

RF is an intelligent algorithm that combines DT with integrated algorithm. RF not only possesses
the numerous advantages of DT, but also overcomes the poor generalization capability of DT.
As compared with DT, RF enhances the precision of classification and regression without significantly
increasing its computational complexity.

2.1. Decision Tree

DT is a type of classical machine learning algorithm. As an example of DT models, classification
and regression tree (CART) can be used for classification and regression analysis [27,28]. DT is an
inverted tree. The top of DT is the root node, which contains all the training samples. The optimal
feature is selected from the original feature space to split each of the non-leaf nodes in DT until the
stop condition is reached. If all the samples contained in a node belong to one class, then this node is
defined as a leaf node. Splitting the leaf node is unnecessary, and each path connecting the root node
and the leaf node represents a partition rule.

DT has a simple principle and structure and can thus be constructed easily with high efficiency.
Although DT can explain the training set perfectly, its dependency on the training samples increases
when grown freely. Accordingly, the generalization capability of DT weakens, thereby lowering its
resistance to overfitting. Therefore, a pruning operation must be conducted to restrict the free growth
of DT. DT may also fall into the local optimal state, thereby weakening the explanation capability of
the single DT.

2.2. Random Forest

RF was proposed by Breiman in 2001 [23] to overcome the shortcomings of DT. RF combines
CART and the bagging algorithm and builds a new DT set based on ensemble learning methods.

{t(x, s, ), t(x,50,), .-, t(x, SG)m)} ’ M)

where t(x, s, ) is the base classifier, which represents a CART (k = 1,2,...,m); x is the input vector
of CART; and sg, is a random vector, which determines the random extraction process of training
samples for the kth tree. The growth process of the kth tree is also determined by sg,. Meanwhile,
all sg, values are independent of one another but share the same distribution.

For integrated algorithms, the difference of base classifiers can significantly affect their
performance [29]. The two methods of RF randomness described below ensure significant difference
among the base classifiers.

1.  Assume S is the original sample set with n samples. When bagging is used to generate the training
set for each CART, each of the samples in the original sample space has 1/n probability to be
selected. Based on the characteristics of bagging, several samples may never be selected, whereas
other samples may be selected more than once. All samples that have never been selected are the
out-of-bag (OOB) dataset of this tree. Therefore, the training set of each CART is different, thus
reducing the correlation between the trees in RE. The diversity of CART increases the capability
of RF to resist noise and reduces its sensitivity to outliers. These are the main advantages that
bagging brings to RE.
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2. RF differs from DT in terms of selecting a feature to split a non-leaf node. Specifically, instead of
searching the entire original feature space M to select the best feature, RF randomly generates a
candidate segmentation feature set m for each non-leaf node. The set m is a subset of the original
feature set with m;,,, features (Mtry is no longer changed once determined). Thereafter, the optimal
feature is selected from m to split this node.

The two ways of RF randomness make its CARTs different from one another. Thus, RF has a wide
range of applications and requires few parameters to be adjusted and optimized. Only two parameters
can affect the forecasting performance of RF, that is, the tree number 7., and the dimension iy of
the candidate segmentation feature set. When the number of trees in RF is low, the performance of RF
is very poor and its precision fails to meet the requirements of regression prediction. According to the
Strong Law of Large Numbers and the tree structure, the generalization error of RF will tend to be a
stable upper bound with the rise in tree number [23]. As a result, RF becomes resistant to overfitting.
Compared with that of 4, myry has a larger effect on the performance of RF. After considerable
experimental research, the default experience value for m;,, when RF is used for regression has been
obtained [21]: t

mtry = 5 (2)
In this equation, t represents the dimension of the original feature set.

RF can provide two kinds of useful indices, namely OOB error and the importance value of
each feature, after completing the training process. According to the characteristics of bagging,
approximately one-third of the samples in the original sample space will never be selected when the
training set is generated for each tree. Therefore, for each sample j, approximately one-third of trees
exist in RF that are not contained in this sample. These trees are then used to predict sample j. The

OOB error is calculated by:

OOBError = (v —vp)° ©)

S|
.M:

I
—

1

where 7 represents the number of all samples, y; is the true value of sample i, and y,, is the predictive
value of sample i. The OOB error can be used to estimate the generalization error of RE. Meanwhile,
the PI value of each feature can be calculated based on the OOB dataset, which can significantly benefit
the following feature selection stage.

After the training process, the final predictive result can be obtained by averaging the output of
all trees:

y= ;Z%’- 4)

In this equation, ¢ = n4e represents the number of trees in RF and y; is the predictive value of the
ith tree.

3. Random Forest (RF) Learning Process and Feature Selection for Short-Term Load Forecast (STLF)

In the STLF field, a large number of features must be considered, such as historical load data
and hourly and daily information. If all the features are used for load forecasting, then the prediction
accuracy and efficiency of the forecasting model can decrease because of the existence of redundant
features. Thus, the optimal feature subset must be constructed by removing the redundant features.
In the early stage, the feature subset is artificially specified by expert experience. However, this process
is unreasonable and less credible. In the current load forecasting field, the feature selection methods are
necessary to optimize numerous parameters for every feature subset. As a result, the feature selection
becomes time-consuming and the error caused by the unreasonable design of the parameters cannot
be avoided easily. RF can guarantee the optimization of the model by adjusting only a small number
of parameters. After completing the training process, RF can provide the importance value of each
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feature for prediction. The redundant features can then be removed step by step according to the
importance value. Accordingly, the feature selection process of STLF can be significantly simplified.

3.1. RF Learning Strategy

RF is a collection of numerous DTs. Therefore, RF has a simple structure with strong anti-noise
capability and can overcome the interpretation capability disadvantage of a single DT. The Strong Law
of Large Numbers guarantees that RF will nearly never fall to overfitting. Its numerous advantages
make RF suitable for application in power system load forecasting [19].

By obtaining the historical load data and hourly and daily information, the original sample space
with dimension # is constructed. On this basis, n samples are randomly selected with replacement
from the original sample space according to the bagging principle. The selected samples form a new
training set for the CART. The rest of the samples form the OOB dataset of this tree. The process is
repeated for 714 times. These 74, training sets are then used to construct .. CARTs. All the trees
grow freely without pruning operation.

When a non-leaf node is split, the segmentation effect of a feature is determined by Gini index.
Assuming that a non-leaf node A contains the dataset D, a total of d samples exist in D. The Gini index
of set D before being split by a feature is as follows:

) Lordp?
Ginipefore(D) = 1 — Z <D> , &)

j=1

where [ represents the number of categories contained in D; and d; (j = 1,2,...,1) is the set composed
of the samples belonging to the jth class. If feature F is used to split node A, then D is divided into o
subsets (D1, Dy, ..., D,). A total of d; samples existin set D; (i = 1,2,...,0). Accordingly, the Gini
index of set D after segmentation is:

. dy .. . do . .
Glnlafter (D) = ElGlnlbefore(Dl) tee Tt FOGlnlbefore(Do)° (6)

According to Equation (6), the Gini index is inversely proportional to the segmentation effect.

Therefore, the feature with smaller Gini, ., can achieve better performance.

3.2. Feature Selection for Load Forecasting Based on Permutation Importance (PI) and Optimal SBS Method

3.2.1. Feature Importance Analysis Based on Permutation Importance (PI)

RF can determine the importance of a feature to STLF by calculating the PI value of each feature.
When calculating the importance value of feature F/ based on the ith tree, OOBError; is first calculated
based on Equation (3). Then, the values of feature F/ in the OOB dataset are randomly rearranged and
those of the other features are unchanged, thereby forming a new OOB dataset OOB,’. With the new
OOB;’ set, OOBError;' can also be calculated using Equation (3). The PI value of feature F/ based on
the ith tree can be obtained by subtracting OOBError; from OOBError;’.

PI; (Fj) = OOBError;’ — OOBError;, (7)

The calculation process is repeated for each tree. The final PI value of feature F/ can be obtained
by averaging the PI values of each tree:

PI (Ff) - %i PI; (Pf), ®)
i=1
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where ¢ = 1y represents the tree number. If a feature is important, then its values of different samples
will be dissimilar. After the values of this feature are randomly rearranged on the OOB dataset, the
discrimination of different samples will be reduced. The feature with high PI value is more important
than the other features.

3.2.2. Optimal Sequential Backward Search (SBS) Method for Feature Selection of Short-Term Load
Forecast (STLF)

On the basis of the PI value of all the features combined with the SBS method, the optimal feature
subset can be determined. However, considering that the dimension of the original load feature set is
relatively high, the process of feature selection will be time-consuming when using the SBS method.
Thus, an improved SBS method is proposed.

A preselection stage is added before using the traditional SBS method. The steps of the preselection
stage are described as follows.

1. The original load feature set is used as the input to train an RF. After the training process is
completed, the test set is used to evaluate the performance of this RF. Thereafter, the prediction
error P, can be obtained and set as a threshold value. The PI value of each feature can also
be obtained.

2. According to the PI value, all features are rearranged in a descending order and are resaved to
the original feature set M.

3.  The first 10 features with the highest PI value are added to the preselection feature set Qpre,
which is an empty set at first. Subsequently, these features are removed from set M.

4.  Let set Q;re (superscript i represents the number of features in the set) be equal to set Qpre.
Set Q;m is then used to retrain a new RF and the prediction error is recorded as P;',,e.

5 If P;;,e < Py, then the first 10 features of set M are added to set Q;m to form the set Q;;elo.

The training and testing processes are repeated using set Q;";elo.
6. If P;;‘r*‘elo > P]f,,e, then adding another feature to set Qpr is unnecessary. Otherwise,

the first 10 features of set M must be added to set Qp and must be removed from set M.
This condition indicates that the stop conditions are P;W < Py and P;,jelo > P;,m.
7. The preceding steps are repeated until the stop condition is met or set M is empty.

8. The preselection feature set Q. is obtained and is equal to set Q%m, and the preselection

stage ends.

After determining the preselection feature set Qyr, the traditional SBS method is applied to set
Qpre- The features in set Q. are removed one by one, from smallest to largest according to their PI
values, until set Q. is empty. Whenever a feature is removed, set Q. is used to retrain a new RF and
the prediction error on the test set is recorded. The optimal forecasting feature subset Qy,; is obtained
by considering prediction error and feature set dimension. The flowchart of the algorithm is shown in
Figure 1.

Unlike the traditional SBS method, a preselection stage is added in the method proposed in this
paper. By spending a small amount of time, a preselection feature set Qpe that is much smaller than
the original feature set M can be obtained. On this basis, the traditional SBS method is performed
within a relatively small amount of time. Therefore, the proposed algorithm is very suitable for load
forecasting with high dimensional feature sets.



Energies 2016, 9, 767 7 of 24

Data ‘ 243 features are extracted to form the original feature set M |
preprocessing
stage l
l 33 days are selected randomly to be the test set, and the rest as the training set ‘
‘ Use training set to train RF, and record the predict error P,; on the test set ‘
Feature PI : 5 vz .
i Feature mean Pl value can also be obtained through 10 times training process after outliers are deleted
value vaulS] tion
stage l
‘ Sort the features according to their Pl value in descending order, and resave to M ]
|
R i T ™ e e e e A e s \
| Feature selection stage |
|
| Feature preselection stage Traditional SBS search stage :
[ : = I
| | Set 1=0, Q. =9 | Set j equal to the dimension of Q, |
I |
| . i=i+10 | l :
| ¥ Use as the input vector to train a new RF, and | |
I The first 10 features in M are added to Q,, to wrrecord the predict error on test set |
: form Q:., and these features are removed from M l |
v |
: Use Q.. to train a new RF, arnd record the predict | Q. =Q,. - Q...[1] | :
| error P, I |
| |
! = | |
I | =i i
| |
| |
I The first 10 features in M are added to Q... to form 0 S |
| Q’,‘,“’ |
: i Yes :
I Use @ to train a new RF, and record the predict Select the optimal prediction feature subset |
: error B according to the predict error and feature dimension :
I T e e e o s e Y
: RE sl } Use the optimal prediction feature subset to train a
| Yes I new RF to be the final predictor
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| ‘ Prediction stage m
L

are sorted in descending order

Figure 1. Flowchart of the algorithm.

4. Experimental Results and Analysis

The data used in the experiment are all real historical load data. Two kinds of error evaluation
criteria, namely, mean absolute percentage error (MAPE) and root mean square error (RMSE), are used
to evaluate the load forecasting results. The calculation formula of MAPE and RMSE are described in
Equations (9) and (10):

1 () = vp(8)]
MAPE = -y W ZYntIT 009, )
Sy

5 (e (t) — yp (1))

RMSE = | = - , (10)

where 1 represents the number of sample points, y,(t) is the real load value of hour ¢, and y,(t) is the
forecasting load value of hour t.
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4.1. Dataset

The historical load data for 2012 of a city in the northeast of China are used for the experiment.
This historical load dataset contains a total of 366 days. According to Jurado et al., a total of 9% of
these days (33 days) are randomly selected as the test set, and the remaining 91% (333 days) are used
as the training set [20]. When the load data are sampled in this city, the sampling is 1 h. The load curve
of the entire year is shown in Figure 2.

9000 L fan. i Feb. | Mar i Apr. i May. | e ! Ty | Aug | Sept | Oct | Nov. | Dec -
H H i i H 1
i H 1

7500

i
7000%'
L

Load (MW)

50 i ; i i i i i
0 3 &0 91 121 152 182 213 24 274 305 335 366
Days

Figure 2. Load curve of the entire year.

Figure 2 clearly shows three huge falls in the curve. These three falls correspond to the three main
holidays of this year, that is, the Spring Festival, the Labor Day holiday, and National Day. The load
consumed in the winter gradually increases because of the cold weather.

The entire year is divided into a training set and a test set by random sampling. To increase
the reliability of the experiment, 33 days of the test set are randomly and equally distributed in four
quarters (approximately eight days per quarter). The relevant information for each day of the test set
is listed in Table 1.

Table 1. The relevant information for each day of the test set.

The First Quarter The Second Quarter The Third Quarter The Fourth Quarter
(1/1/2012 to 31/3/2012) (1/4/2012 to 30/6/2012) (1/7/2012 to 30/90/2012) (1/10/2012 to 31/12/2012)
5and 8/1/2012 1and 20/4/2012 8 and 28/7/2012 136(') 316333{1201
(Thur., Sun.) (Sun., Fri.) (Sun., Sat.)

(Tues., Sun., Sun., Tues.)

4,9 and 24/2/2012 10, 18, 25 and 31/5/2012 15,23 and 31/8/2012
(Sat., Thur., Fri.) (Thur., Fri., Fri., Thur.) (Wed., Thur., Fri.) 21 ?&i d29/Tl; : r2)0 12
3,23 and 31/3/2012 18 and 27/6/2012 17,21, 25 and 27/9/2012 9 and 27"/12/2'012
(Sat., Fri., Sat.) (Mon., Wed.) (Mon., Fri., Tues., Thur.)
(Sun., Thur.)

4.2. Load Feature Selection Based on Permutation Importance (PI) Value

Based on the above dataset, two kinds of predictions, namely, 1-h-ahead prediction and day-ahead
prediction, are conducted.

Assume the load is predicted starting from the time t. When the original load feature set of
1-h-ahead prediction is composed, the historical load values of 240 time points (10 days) before time
t are considered, starting at time ¢ — 1 (1 h ahead of time t). Meanwhile, whether the forecast date
is a working day, the date type of forecast date, and the moment of ¢ are also considered. A total
of 243 features constitute the original feature set of 1-h-ahead prediction.
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Contrary to 1-h-ahead prediction, the historical load values of the original feature set of day-ahead
prediction start from time ¢ — 24. The number of considered historical load value is 240. Whether the
forecast date is a working day, the date type of forecast date, and the moment of ¢ are considered as
well. A total of 243 features comprise the original feature set of day-ahead prediction.

In this study, several covariates, such as temperature, are ignored. If temperature is added to the
original feature set, then the temperature of moment ¢ must be obtained first based on the numerical
weather forecast, or simply replaced by a historical temperature. Nevertheless, the numerical weather
forecast itself has a certain prediction error that can affect the accuracy of STLF [30]. Considering the
actual demand in the feature, covariates, such as temperature, can be easily added to the original
feature set. Notably, changes in the original feature set can insignificantly influence the process of the
proposed feature selection method.

Tables 2 and 3 list the composition of original feature sets of 1-h-ahead prediction and day-ahead
prediction, respectively, in detail.

Table 2. The composition of original feature set used for 1-h-ahead prediction.

Names of the Features Meanings of the Features

1—"]_1*’1 (i=1,2,...,240) The historical load value of (t — i) time
F214’1h Whether today is a working day? (1-Yes, 2-No)
le 4’2’1 What day is today? (1-Mon., 2-Tues., 3-Wed., 4-Thur., 5-Fri., 6-Sat., 7-Sun.)
F214’3h The moment of ¢ (from 0 to 23, corresponding to the 24 hours a day)

Table 3. The composition of original feature set used for day-ahead prediction.

Names of the Features Meanings of the Features

Fl_24*h (i=1,2,...,240) The historical load value of (t — i — 23) time
Fzzfl’ f Whether today is a working day? (1-Yes, 2-No)
Fzzfz’ k What day is today? (1-Mon., 2-Tues., 3-Wed., 4-Thur., 5-Fri., 6-Sat., 7-Sun.)
Fzzfg h The moment of ¢ (from 0 to 23, corresponding to the 24 hours a day)

The original load feature set is used as the input to train an RF. The PI value of each feature of
the original load feature set can be obtained after completing the training process. In the experiment,
Ntree is set to the default value of 500, and 4y, also takes the default experience value of t/3. The same
training process is conducted 10 times to ensure the reliability of the experimental results. Accordingly,
several accidents that can increase the PI value of several irrelevant features and decrease that of
several relevant features can be avoided.

The PI value boxplots of each feature of 1-h-ahead prediction and day-ahead prediction are shown
in Figures 3 and 4, respectively.

)
@

w

— =)
n =

Permutation importance value

o

Feature label

(a)

Figure 3. Cont.
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Figure 3. (a) Boxplot of the PI value of the first 122 features of 1-h-ahead prediction; (b) boxplot of the
PI value of the remaining 121 features of 1-h-ahead prediction.
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Figure 4. (a) Boxplot of the PI value of the first 122 features of day-ahead prediction; (b) boxplot of the
PI value of the remaining 121 features of day-ahead prediction.

The dimension of the original load feature set is relatively high. The 243 features are divided
into two groups to demonstrate the PI value distribution of each feature. The first 122 features
of 1-h-ahead prediction and day-ahead prediction are shown in Figures 2a and 3a, respectively,
and the remaining 121 features are shown in Figures 2b and 3b, respectively. Considering that
the abscissa is relatively dense, only the features with high PI values are marked in the figure.
For ease of interpretation, Fi is used to replace the original Filfh and Fl.24*h to represent the feature i in
Figures 3 and 4, respectively.
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Considerable information can be obtained from a boxplot. A small circle in a boxplot represents
an outlier. If the possible outliers are ignored, from top to bottom, then the boxplot comprises
the upper edge line, upper quartile (Q3) line, median line, lower quartile (Q1) line, and lower
edge line. Among them, the upper quartile line, median line, and lower quartile line constitute
a small rectangle. The length of this rectangle represents the concentration degree of data distribution.
The values of Q, and Q, representing the upper edge line and lower edge line, can be calculated using
Equations (11) and (12):

Qu=0Q3+15IQR (11)

Qs = Q1 —15IQR (12)

where IQR = Q3 — Q1, which represents the interquartile range. The data sitting outside of the upper
edge line and lower edge line are defined as outliers and are represented by small circles.

Figure 3 shows that features Fll_h, le_h, F214_ h, F116_8h, and F214_2h have higher PI values compared
with those of other features. The PI values of features Fllfh, F214* ", and Fllgsh are obviously higher than
those of features lefh and F214*2h. The length of the rectangle of the three features (Fllfh, F214* " and Fllégh)
is very short and no abnormal values are found. All these results indicate that the three features are
important for the forecasting outcome. This deduction is also consistent with the common sense of LF,
which states that the historical load data for 1, 24, and 168 h before time f have significant importance
for the forecasting result. As shown in Figure 4, the PI values of features F124*h, Fféih, Flzfg h, and Fzzf; h
are relatively higher than those of other features. Features F124_h and Fifgh represent the historical
load data for 24 and 168 h before time ¢.

As shown in Figures 3 and 4, numerous features have an outlier while some have two or more
outliers. The existence of outliers has a significant effect on the importance of the feature. An important
feature may be regarded as an irrelevant feature because of a very small outlier, or an irrelevant
feature may be regarded as an important feature owing to a very large outlier. Therefore, all outliers
are deleted. The final PI value of a feature can then be obtained by averaging all normal values.
The PI values of features of 1-h-ahead prediction and day-ahead prediction are shown in Figure 5a,b,
respectively. Considering the limited space, only the first 40 features with the highest PI values are
presented. For ease of interpretation, Fi is used to replace the original Filfh and F1424*h to represent the
ith feature in Figure 5a,b.

Feature label
Feature label

Permutation importance Permutation importance

(a) (b)

Figure 5. (a) The permutation importance (PI) values of the first 40 features of 1-h-ahead prediction; (b)
The permutation importance (PI) values of the first 40 features of day-ahead prediction.
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After obtaining the PI values of all features, the improved SBS method is used for feature selection.
First, the original feature set M is used to train an RF, and the prediction error P, of this model on
the test set is recorded. Subsequently, features are rearranged in descending order according to their
PI values. Then, 10 features are added into the preselection feature set Q. in order every time and
are removed from set M. Finally, set Q;,re, which is equal to set Qpr, is used to train a new RF and the
prediction error P;,re is recorded. The process is repeated until the stop condition is reached or set M is
empty and the preselection stage is completed. The prediction errors of different RFs with different
training sets Q;m are presented in Tables 4 and 5, respectively.

Table 4. Prediction error of different feature subsets selected for 1-h-ahead prediction.

Feature Subset Mean Absolute Percentage Root Mean Square Error

Error (MAPE) (%) (RMSE) (MW)
The original feature set 1.016 4.434
QLo 1.068 4.696
Q% 0.983 4.342
Qe 0.987 4.393

Table 5. Prediction error of different feature subsets selected for day-ahead prediction.

Feature Subset Mean Absolute Percentage Root Mean Square Error
Error (MAPE) (%) (RMSE) (MW)
The original feature set 1.773 7.212
QL. 1.835 7.689
Qsve 1.794 7.545
Qe 1.767 7.194
Qpe 1.772 7.221

In this paper, MAPE is used as the criteria of feature selection in the preselection stage. The MAPE
and RMSE of different feature subsets are shown in Tables 4 and 5. It can be seen that the change trend
of the RMSE is the same as that of the MAPE. The preselection feature sets of 1-h-ahead prediction
and day-ahead prediction contain 30 and 40 features, respectively. Thus, the traditional SBS method is
used for the two preselection feature sets with 30 and 40 iteration times. The traditional SBS method is
directly used for the original feature set if no preselection stage is applied. The number of iteration
times is 243, which is substantially higher than 30 and 40. Given the substantially larger iteration time,
the improved SBS method is suitable for the load forecasting of high dimensional original feature sets.

According to their PI value, the features in the preselection feature set are deleted one by one,
from smallest to largest. Whenever a feature is deleted, a new preselection feature set is used to train
a new RF and the prediction error is recorded. The process is repeated until the preselection feature
set is empty. The prediction errors of different feature subsets of 1-h-ahead prediction and day-ahead
prediction using the traditional SBS method are shown in Figure 6a,b.

Figure 6a shows that, when the dimension of the feature subset is smaller than 6, the prediction
error quickly increases with the decrease in the number of features. When the number of features is
reduced from 18 to 6, the reduction of the prediction error is stable; however, 0.243% of the increase still
remains (from 0.988% to 1.231%). When the feature subset dimension is larger than 18, the prediction
error does not produce much volatility if a feature is deleted. The MAPE obtains the minimum value
of 0.971% when the dimension of the feature subset is 24. When the feature subset dimension is smaller
than 18, the prediction error begins to gradually increase if a feature is deleted. The same trend is
observed in Figure 6b. The prediction error maintains a relatively stable value when the feature subset
dimension is larger than 6, and the minimum value of 1.745% is obtained when the dimension of the
feature subset is 33. Therefore, when conducting 1-h-ahead load prediction, the first 24 features with
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the highest PI values must be selected to form the optimal forecasting feature subset. Meanwhile, the
first 33 features with the highest PI values must be selected to form the optimal forecasting feature
subset when conducting day-ahead prediction.

%)

Prediction error (MAPE

(24,0971) (18,0.988)

a (6, 1.231)

0.5

30 25 20 15 10 5 0
Dimension of feature subset
@

6
~ 55
£ s
3
= 45
E 4
g
e 35
E A
=
£ 25
= -

7 (33,1.745) (6, 1.830)

e .
15
40 35 30 25 20 15 10 5 0
Dimension of feature subset

Figure 6. (a) Prediction error (MAPE) of different feature subsets obtained from SBS method of
1-h-ahead prediction; (b) prediction error (MAPE) of different feature subsets obtained from SBS
method of day-ahead prediction.

Prediction efficiency and prediction accuracy must be considered when STLF is conducted.
In 1-h-ahead prediction, the increase in prediction error is insignificant when the feature number
is reduced from 24 to 18 or 6, and the computation of the model training process is increased.
However, the prediction accuracy is directly related to the economic and stability of power system
in the STLF field. Therefore, the prediction accuracy must be guaranteed first before prediction
efficiency. Kulkarni et al. emphasized that a decrease of 1% in prediction error can result in a decrease
of approximately 10 million pounds in operational costs [4]. Consequently, a 0.26% (from 1.231% to
0.971%) or a 0.017% (from 0.988% to 0.971%) decrease of prediction error is important for improving
the safety and stability of a power system and reducing system operational costs. In the same way,
the prediction accuracy must be used as the feature selection index when the day-ahead prediction
is conducted.

Two other feature selection algorithms, namely, Pearson correlation coefficient (PCC) and ReliefF,
are used for comparative experiments to further verify the effectiveness of the proposed feature
selection method.

When 1-h-ahead prediction is conducted, the optimal feature subset selected by PCC is {F1, F2,
F22, F23, F24, F25, FA7, F48, F49, F71, F72, F73, F95, F96, F97, F119, F120, F121, F143, F144, F145, F167,
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F168, F169, F191, F192, F193, F216, F240}, and the optimal feature subset selected by ReliefF is {F1, F2,
F3,F4, F5, Fe, F7, F8, F9, F10, F11, F12, F13, F22, F23, F24, F25, F241, F242}.

When day-ahead prediction is conducted, the optimal feature subset selected by PCC is {F1, F2,
F22, F23, F24, F25, F26, F46, F47, F48, F49, F50, F70, F71, F72, F73, F74, F95, F96, F97, F119, F120,
F121, F143, F144, F145, F167, F168, F169, F170, F191, F192, F193, F215, F216, F217, F239, F240}, and the
optimal feature subset selected by ReliefF is {F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14,
F15, Fl16, F17, F18, F19, F20, F21, F22, F23, F24, F25, F26, F27, F48, F49, F73, F97, F121, F145, F241, F242}.

The optimal feature subsets selected by the three kinds of feature selection algorithms discussed
are used to train RE. The dimension of the optimal feature subsets and the prediction error
of the three RFs on the test set in 1-h-ahead prediction and day-ahead prediction are listed
in Tables 6 and 7, respectively.

Table 6. Comparison of three feature selection algorithms when 1-h-ahead prediction is conducted.

Feature Selection Feature Subset Prediction Error
Algorithm Dimension MAPE (%) RMSE (MW)
PI 24 0.971 4.372
PCC 29 1.491 6.155
ReliefF 19 1.201 5.128

Table 7. Comparison of three feature selection algorithms when day-ahead prediction is conducted.

Feature Selection Feature Subset Prediction Error
Algorithm Dimension MAPE (%) RMSE (MW)
PI 33 1.745 7.324
PCC 38 2.123 8.899
ReliefF 35 2.003 8.575

As shown in Tables 6 and 7, regardless of whether the dimension of the optimal feature subset
selected by PCC and ReliefF is higher or lower than PI, the prediction errors of their corresponding RFs
are higher than the RF corresponding to PI. Therefore, the proposed feature selection method is valid.

Moreover, to further validate the effectiveness of the proposed feature selection method, some
other persistent methods are used for comparison. These methods select the previous load feature,
the load feature from the previous day, and the load feature from the previous week by experience.
Meanwhile, the selection of the daily and hourly feature refers to the result of the proposed new
feature selection method. When 1-h-ahead prediction and day-ahead prediction are conducted,
features F241 and F242 are included in the feature subsets selected by the proposed feature selection
algorithm. When 1-h-ahead prediction is conducted, the composition of the feature subsets obtained
from four persistent methods is as follows:

e  Persistent feature set 1: F1 (Lt.1, the load of the previous one hour), F241, and F242;
e  Persistent feature set 2: F24 (L;.p4, the load of the same time of the previous day), F241, and F242;

e Persistent feature set 3: F168 (L;.1¢3, the load of the same time of the previous week), F241,
and F242;
e DPersistent feature set 4: F1, F24, F168, F241, and F242;

When day-ahead prediction is conducted, the composition of the feature subsets obtained from
the four persistent methods is as follows:

e DPersistent feature set 5: from F1 to F24 (from L; 4 to Lt.47, the load of the previous 24 h), F241,
and F242;
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e  DPersistent feature set 6: from F145 to F168 (from L¢.148 to Lt-191, the load of the past 24 h from the
previous week), F241, and F242;
e  Persistent feature set 7: from F1 to F24, from F145 to F168, F241, and F242;

Then these feature subsets, together with the feature subset selected by the proposed feature
selection method, are used to train RF. The dimension of the feature subsets and the prediction
error of the four RFs on the test set in 1-h-ahead prediction and day-ahead prediction are listed
in Tables 8 and 9, respectively.

Table 8. Comparison of permutation importance (PI) and three empirical feature selection algorithms
when 1-h-ahead prediction is conducted.

Feature Selection Feature Subset Prediction Error
Algorithm Dimension MAPE (%) RMSE (MW)
PI 24 0.971 4.372
Persistent feature set 1 3 7.343 25.522
Persistent feature set 2 3 6.311 22.834
Persistent feature set 3 3 6.859 25.618
Persistent feature set 4 5 2.825 11.233

Table 9. Comparison of permutation importance (PI) and three empirical feature selection algorithms
when day-ahead prediction is conducted.

Feature Selection Feature Subset Prediction Error
Algorithm Dimension MAPE (%) RMSE (MW)
PI 33 1.745 7.324
Persistent feature set 5 26 1.792 7.877
Persistent feature set 6 26 3.418 14.208
Persistent feature set 7 50 1.891 9.028

Tables 7 and 8 show that the predicted errors of the methods with persistent feature sets are higher
than those of the PI method.

4.3. Load Forecasting Error of Different Models

The selection of predictor also significantly affects the forecasting results. Two other kinds of load
predictors, namely SVR and ANN, are therefore considered to verify the effectiveness of the proposed
approach for STLE.

In the comparison experiment, SVR uses the RBF Kernel function. The three major parameters,
C (trade-off parameter), J (RBF width), and e (constant value), are set to 1500, 0.45, and 0.1 according
to Kavousi et al. [16]. A BP neural network (BPNN) with three layers is used as the ANN model.
The number of neurons in the hidden layer is determined to be 30 through experiments. The connection
coefficient w;; between the input layer and hidden layer neurons and the connection coefficient wj;
between the hidden layer and output layer neurons in BPNN are calculated according to reference [13].

The optimal feature subset is used as the input of RE. When SVR and ANN are used as
predictors, the proposed feature selection method is repeated using SVR and ANN instead of RF.
A total of 27 and 22 features are selected for SVR and ANN for 1-h-ahead prediction,
and 38 and 36 features for day-ahead prediction. When the day-ahead prediction is conducted,
a time series analysis method called ARIMA that lacks a feature selection process is used for comparison.
The load data for 20 days before the forecast date are used as the input of ARIMA. After the training
process is completed, the prediction errors on the test set are recorded. The 1-h-ahead prediction and
day-ahead prediction errors of the three predictors on the test sets of different quarters and the entire
test set are listed in Tables 10 and 11, respectively.



Energies 2016, 9, 767 16 of 24

Table 10. Mean absolute percentage error (MAPE) and root mean square error (RMSE) of random forest
(RF), support vector regression (SVR), and artificial neural network (ANN) on the different testing sets
of 1-h-ahead prediction.

Predictors/Dimension of Feature Subset

Time Period of Testing Set Predict Error

RE/24 SVR/27 ANN/22
The first auarter MAPE (%) 0.849 2.240 1.665
d RMSE (MW) 3.924 7.39 6.723
The second auarter MAPE (%) 0.868 1.664 2.504
d RMSE (MW) 3.281 6.741 8.467
. MAPE (%) 0919 1.889 2.142
The third quarter RMSE (MW) 3.985 7.381 7.315
MAPE (%) 1.216 2.306 2.339
The fourth quarter RMSE (MW) 5.901 8.894 9.057
Totl MAPE (%) 0.971 2.021 2.165
ota RMSE (MW) 4372 7.448 7.926

Table 11. MAPE and RMSE of RE, SVR, ANN, and ARIMA on the different testing sets of
day-ahead prediction.

Predictors/Dimension of Feature Subset

Time Period of Testing Set  Predict Error

RF/33 SVR/38  ANN/36 ARIMA/480
The first quarter MAPE (%) 1.794 3.585 4309 2.961
RMSE (MW) 7.659 12.884 18.546 9.586
The second quarter MAPE (%) 1.663 3.616 3.326 3.059
RMSE (MW) 6.187 12.652 12211 9.833
. MAPE (%) 1.673 3.233 3.057 2.482
The third quarter RMSE (MW) 7.057 12.279 11.506 8.179
The fourth quarter MAPE (%) 1.987 3.058 3.074 3.145
RMSE (MW) 7.874 11.754 11.971 9.996
MAPE (%) 1.745 3273 3.430 2.957
Total RMSE (MW) 7.324 12.451 13.798 9.513

Table 10 indicates that, no matter which test set is used, the MAPE and RMSE generated by RF
are basically only half or less of those by SVR and ANN. When the entire test set is used to test the
performance of RF, the MAPE is only 0.971%. Although the MAPE and RMSE in Table 11 are larger
than those in Table 10, the same conclusion can be drawn from Table 11. Therefore, RF is proven to be
more suitable than SVR, ANN, and ARIMA for STLE. The real load curve and forecasting load curves
of seven days of the test set obtained from 1-h-aheah prediction and day-ahead prediction are shown
in Figures 7 and 8, respectively. These seven days contain every day of the week and are randomly and
equally extracted from four quarters (approximately two days per quarter). These seven days include
June 18 (Mon.), September 25 (Tues.), June 27 (Wed.), February 9 (Thur.), September 21 (Fri.), March 3
(Sat.), and December 9 (Sun.).

Figure 7 shows that the load curve predicted by RF nearly overlaps with the real load curve.
Compared with the load curve predicted by RF, the load curves predicted by SVR and ANN have a
certain error with the real load curve. Although the fitting degree among all the forecasting load curves
and the real load curve in Figure 8 are worse than those in Figure 7, the load curve predicted by RF is
still better than the load curves predicted by SVR, ANN, and ARIMA. This result validates the high
accuracy of RF when used as the load predictor. The MAPE and RMSE of different predictors of the
seven days in Figures 7 and 8 are shown in Tables 12 and 13, respectively, when 1-h-ahead prediction
and day-ahead prediction are conducted.
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Figure 7. (a) The comparison of prediction results obtained from 1-h-ahead prediction of June 18th;
(b) the comparison of prediction results obtained from 1-h-ahead prediction of September 25th; (c) the
comparison of prediction results obtained from 1-h-ahead prediction of June 27th; (d) the comparison of
prediction results obtained from 1-h-ahead prediction of February 9th; (e) the comparison of prediction
results obtained from 1-h-ahead prediction of September 21st; (f) the comparison of prediction results
obtained from 1-h-ahead prediction of March 3rd; (g) the comparison of prediction results obtained
from 1-h-ahead prediction of December 9th.
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Figure 8. (a) The comparison of prediction results obtained from day-ahead prediction of June 18th;
(b) the comparison of prediction results obtained from day-ahead prediction of September 25th; (c) the
comparison of prediction results obtained from day-ahead prediction of June 27th; (d) the comparison of

prediction results obtained from day-ahead prediction of February 9th; (e) the comparison of prediction

results obtained from day-ahead prediction of September 21st; (f) the comparison of prediction results

obtained from day-ahead prediction of March 3rd; (g) the comparison of prediction results obtained
from day-ahead prediction of December 9th.
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Table 12. Prediction error of different predictors of the selected seven test days when 1-h-ahead
prediction is conducted.

Predictors
Data Prediction Error RE SVR ANN
June 18 (Mon.) RMSEMW) 317 eor 1046
September 25 (Tues.) Rl\lfqgglil\(/;é\)/) ggﬁ ggl;;g égﬁ
June 27 (Wed.) Rb&gg}?&@) ggig éﬁé éi?;
February 9 (Thur.) Rl\&gg]ﬁﬁ(/}’é\)]) ggi; é?lg; éﬁi
September 21 (Fri.) Rl;\/[/gglil\(/;@\)/) gggé ;égi éiég
March 3 (Sat.) Rl\ﬁgg}?&é\)/) g:%g égg éég(l)
December 9 (Sun.). Rl\f/gg%\g@\)}) 2(9);(1) iggg ég:l’j

Table 13. Prediction error of different predictors of the selected seven test days when day-ahead
prediction is conducted.

Predictors
Data Prediction Error
RF SVR ANN ARIMA
June 18 (Mor) MAPE (%) 2.001 4674 4519 3.174
: RMSE (MW) 6.817 15.332 14.235 12.279
MAPE (%) 0.688 1.929 2.552 2.638
September 25 (Tues.) RMSE (MW) 2.448 6.208 9.923 8.352
MAPE (%) 1.253 2771 3.407 2.676
June 27 (Wed.) RMSE (MW) 4224 8.594 11.591 9.570
MAPE (%) 1.215 3.423 3.419 2.854
February 9 (Thur,) RMSE (MW) 4302 11.836 14.416 9.388
. MAPE (%) 1.266 2.981 3.616 2.152
September 21 (Fri.) RMSE (MW) 4.399 10.195 14.055 7.587
MAPE (%) 1.066 3.285 4.072 2.792
March 3 (Sat.) RMSE (MW) 3.839 11.537 17.692 10.491
December 9 (Sun) MAPE (%) 1.405 2.492 2611 4.036
ccember 7 lsun.). RMSE (MW) 5.399 10.053 13.683 16.960

Tables 12 and 13 indicate that the MAPE and RMSE of RF are always lower than those of the other
methods. This result is attributed to that RF requires few parameters to be optimized and is resistant to
overfitting. As a result, RF can obtain higher prediction accuracy than SVR, ANN, and ARIMA when
used for STLF.

Each day of the test set is arranged according to the order of the date. The MAPE and RMSE
of each test day of the three predictors for the 1-h-ahead prediction are shown in Figure 9a,b.
The MAPE and RMSE of each test day of the four predictors for the day-ahead prediction are shown in
Figure 10a,b.
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Figure 9. (a) MAPE of three predictors for each test day when 1-h-ahead prediction is conducted;
(b) RMSE of three predictors for each test day when 1-h-ahead prediction is conducted.
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Figure 10. (a) MAPE of four predictors for each test day when day-ahead prediction is conducted;
(b) RMSE of four predictors for each test day when day-ahead prediction is conducted.

As shown in Figure 9, when the 1-h-ahead prediction is conducted, the MAPE and RMSE produced
by RF are smaller than those produced by SVR and ANN. Figure 9a shows that the MAPE of RF is
higher than 1.5% only when used to forecast the load of the 26th test day, whereas the MAPE of SVR
and ANN are mostly higher than 1.5%. A similar conclusion is obtained from Figure 9b. When RF
is used to forecast the load, in addition to the RMSE of the 26th test day being higher than 6 MW,
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the RMSE of the 25th test day is slightly higher than 6 MW. As shown in Figure 10a,b, the MAPE and
RMSE of RF are basically smaller than those of the three other predictors. Therefore, the accuracy of
RF applied to the load forecasting was verified.

4.4. Further Validation of Effectiveness of the Proposed Method Based on 10-Fold Cross-Validation

A 10-fold cross-validation was used to fully verify the effectiveness of the proposed method.
The entire dataset was randomly divided into 10 groups (six groups of 37 days and four groups
of 36 days). A 10-fold cross-validation was used to analyze the prediction error of the proposed
method under different test sets, in which the optimal parameters of the predictors are unchanged.
The MAPE and RMSE of different predictors on the test set of 10 independent experiments are shown in
Figures 11 and 12 for 1-h-ahead prediction and day-ahead prediction.
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Figure 11. (a) MAPE of three predictors on the 10 test sets when 1-h-ahead prediction is conducted;
(b) RMSE of three predictors on the 10 test sets when 1-h-ahead prediction is conducted.

Figures 11 and 12 show that the MAPE and RMSE in 10-fold cross-validation experiments are
consistent with the results in Tables 10 and 11. The prediction error of RF is lower than the errors
of other methods. When 1-h-ahead prediction is conducted, the MAPE of the proposed method
ranges from 0.893% to 1.218%, and the RMSE ranges from 4.012 MW to 5.023 MW. It can be seen
that the MAPE and RMSE of the proposed method in 10-fold cross-validation are around 0.971%
and 4.372 MW, respectively, for minor fluctuation. When day-ahead prediction is conducted, the
MAPE of the proposed method ranges from 1.659% to 1.912%, and the RMSE ranges from 6.795 MW
to 8.268 MW. Similarly, the MAPE and RMSE of the proposed method in 10-fold cross-validation are
around 1.745% and 7.324 MW, respectively, for minor fluctuation. According to the experimental results
of 10-fold cross-validation, it can be concluded that the proposed method can achieve satisfactory
forecast results for different training and test sets. The effectiveness and robustness of the proposed
method were verified.

Therefore, RF can obtain satisfying prediction results for different test sets, and the validity and
accuracy of RF applied to STLF were once again verified.
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Figure 12. (a) MAPE of four predictors on the 10 test sets when day-ahead prediction is conducted;
(b) RMSE of four predictors on the 10 test sets when day-ahead prediction is conducted.

5. Conclusions

A novel feature selection method for STLF is proposed in this paper. Compared with current

STLF methods and feature selection methods, the following innovations are made in this study:

1.

Compared with other STLF methods that use another feature selection method with high time
complexity, the proposed approach designs a novel feature selection method based on PI value
obtained in the training process of RF. The optimal forecasting feature subset is selected only by
the improved SBS method with simple principle and high efficiency.

In the process of feature selection, the prediction error of RF is used to determine the performance
of each feature subset. Only two parameters of RF need to be adjusted, and the parameter selection
method is clear. Considering this advantage, the proposed approach avoids the influence of
unreasonable model parameters on the feature selection results.

The traditional SBS method is optimized to reduce the number of iterations. Therefore, the
efficiency of the search strategy is dramatically improved.

The experimental results based on real load data verify the effectiveness of the proposed RF-based

feature selection method for STLEF. In addition, the optimized RF has better generalization capability
than SVR and ANN. Therefore, RF is suitable for STLF of power systems. Future work will focus on
load forecasting in the distribution system, especially for residential load forecasting.
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Abbreviations

The following abbreviations are used in this manuscript:

STLF Short-term load forecast

RF Random forest

PI Permutation importance

SBS Sequential backward search

ARIMA Autoregressive integrated moving average
FL Fuzzy logic

ANN Artificial neural network

SVR Support vector machine

DT Decision tree

CART Classification and regression tree

OOB Out-of-bag

MAPE Mean absolute percentage error

RMSE Root mean square error
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