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Abstract: In this study, a novel, non-isolated, cascade-type, single-switch, high step-up DC/DC
converter was developed for green energy systems. An integrated coupled inductor and voltage lift
circuit were applied to simplify the converter structure and satisfy the requirements of high efficiency
and high voltage gain ratios. In addition, the proposed structure is controllable with a single switch,
which effectively reduces the circuit cost and simplifies the control circuit. With the leakage inductor
energy recovery function and active voltage clamp characteristics being present, the circuit yields
optimizable conversion efficiency and low component voltage stress. After the operating principles
of the proposed structure and characteristics of a steady-state circuit were analyzed, a converter
prototype with 450 W, 40 V of input voltage, 400 V of output voltage, and 95% operating efficiency
was fabricated. The Renesas MCU RX62T was employed to control the circuits. Experimental results
were analyzed to validate the feasibility and effectiveness of the proposed system.
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1. Introduction

In response to climate change and global warming induced by heavy use of fossil fuels, energy
conservation and carbon reduction techniques, such as developing clean energies and increasing
energy use efficiency, have become a global focus. Major countries across the globe have endeavored
to develop low-carbon economies based on high performance and low emissions and have adjusted
various industry, energy, technology, and transaction-related policies [1,2] to encourage green industry
development. Moreover, because fossil fuel supplies are overly concentrated in areas with social
instability, fuel prices are typically volatile and affected by human factors (e.g., political schemes
and policies). Thus, fossil fuel energy supplies become restricted, resulting in increased geopolitical
risks for investors and hindering energy production, transportation, and infrastructure construction
and maintenance. Typically, such adversity indirectly leads to social instability and volatile political
developments in developing countries. To address these problems, green energies have been developed
as the primary method to propel contemporary progression.

The reusability of green energies is unaffected by conventional energy shortages. Numerous
applications of green energies have been developed in recent years, such as photovoltaics (PV), wind
power, biomass energy, and tidal energy production. However, these green energies are highly
dependent on natural conditions and require high investment and maintenance costs, resulting in low
power efficiency and high total power generation cost. In addition, the output voltage of reusable
energies is low and unstable. Such energy must be converted using a first-stage step-up power
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converter before it can be used in households. The conversion process is shown in Figure 1. For
instance, the input voltage (Vin) of photovoltaic ranges between 20 V and 45 V. To effectively feed
the photovoltaic energy into the grid, the voltage must be increased to 380 ± 20 V to facilitate the
grid connection for the rear inverter [3–5] or charge/discharge battery of an electric vehicle (EV) by
a bidirectional DC/DC converter [6–8]. In the front-end structure, a boost converter is employed
to generate a step-up ratio of at least 1:8. Thus, many high step-up converter structures have been
recently researched and developed.
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Figure 1. Block diagram of application of vehicular green energy systems. PV: photovoltaics; and
MPPT: maximum power point tracking.

After previous studies have claimed that using a conventional, non-isolated boost converter to
multiply voltage requires operating the system duty cycle at an extremely high ratio. Constrained
by parasitic elements in the circuit, diodes have a reverse recovery time when equivalent series stray
inductance and series impedance of the capacitor exist in the circuit or when switched between on
and off transients. These factors restrain the step-up ratio and lower the conversion efficiency [9–11].
To achieve a high step-up ratio and conversion efficiency, while maintaining low development cost
and compactness of electric power converters, many scholars have developed technical structures to
improve boost converter-based step-up ratios. Applying a cascade type [12–14] boost converter
can boost the voltage stepwise and raise the step-up ratio. However, in doing so, multistage
cascade converters complicate the circuit and transmit energy indirectly through a capacitor [15,16],
which causes unnecessary energy consumption. Therefore, scholars have proposed a voltage lift
technique [17,18] to insert a voltage multiplier formed by a capacitor and diode in the boost pathway
to substantially simplify the circuit compared with that of the cascade type. However, the voltage
lift technique increases the size and cost of the circuit design and the voltage stress the switch
bears remains overly high during high voltage output, thereby lowering the designers’ flexibility
in selecting components. Consequently, a concept of integrating coupled inductors [4,19,20] and a
coupled inductor cascade [21–23] has been proposed to achieve a design with high step-up ratios.
This coupled structure couples inductors with a method similar to how a transformer turns a ratio
to form a voltage multiplier; thus, the size and cost of circuit design can be reduced considerably.
However, when the switched-off leakage of coupled inductors lacks a pathway to release energy, it
resonates with the parasitic capacitor of cascade switches, increases the switching voltage stress, and
causes increased switching losses, thereby degrading the overall circuit efficiency [24]. To avoid the
conversion efficiency deterioration resulting from leakage, scholars have proposed improved circuit
designs [19,23] to fabricate a clamping circuit that combines a capacitor and diode, while compromising
slight cost and size increases. The clamping circuit can recover leakage energy or increase the control
complexity to add a soft-switching converter with zero-current switching (ZCS) and zero-voltage
switching (ZVS), to improve the conversion efficiency [25–27].

In the present study, a high step-up converter structure for green energy systems was developed.
By using integrated voltage multipliers of three groups of coupled inductors, the proposed converter
structure can boost voltage and combine a capacitor and diode to produce a boost converter.
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Additionally, a freewheeling current path is provided to recover leakage energy, reduce the voltage
stress on critical components, largely reduce the circuit size, and increase the overall conversion
efficiency. The proposed design satisfies the requirements of a high voltage gain ratio, high conversion
efficiency, low component voltage stress, and simple control in green energy circuit systems.

2. Operating Principles of the Main Circuit

Figure 2 shows the proposed novel, non-isolated, cascade-type single-switch high step-up DC/DC
converter. The main circuit components are composed of a switch (S), the primary magnetizing
inductance (Lm), magnetizing leakage inductance (Lk1), and coupled inductors (turns ratio N1:N2:N3).
A voltage multiplier circuit is composed of diodes D1 and D2, capacitors C1 and C2, coupled inductor
L2, and coupled leakage inductance Lk2. Another circuit cascaded with capacitor C3 is composed of
diodes D4 and D5, capacitors C4 and C5, coupled inductor L3, and coupled leakage inductance Lk3. A
complete cycle of the circuits comprises five operating modes, which are analyzed as follows.
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Figure 2. The novel, cascade-type single-switch, high step-up converter with coupled inductors.

To simplify the circuit analysis, the following assumptions were postulated:

(1) The capacitance values of C1, C2, C3, C4 and C5 are high enough to be regarded as constant power
sources; and

(2) The circuit is operated under the continuous conduction mode (CCM) and the magnetic
inductance of each winding is substantially higher than the leakage.

In accordance with these assumptions, the steady-state waveform patterns of the primary
operating signals of the converter were operated under the CCM and shown in Figure 3. Figure 4
shows the operating patterns of each mode.
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Figure 3. Operating waveform patterns in the continuous conduction mode (CCM).
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Figure 4. Mode operating under CCM: (a) Mode I; (b) Mode II; (c) Mode III; (d) Mode IV; and (e)
Mode V.
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2.1. Mode I (t0 ≤ t < t1)

When t = t0, the S, D1 and D4 are turned on, whereas D2, D3 and D5 are turned off. The current
pathway is depicted in Figure 4a. In this mode, the Vin stores energy through Lm and Lk1, yielding a
linear rise of the inductive current. At the turn-on transient of S, Lk2, and Lk3 of N2 and N3 continuously
release energy to C1 and C4 through D1 and D4, the cascade of C3, C4 and C5 transmits energy to
the output load (RL) until the currents id1 and id4 = 0. When t = t1, this operating region ends and
progresses into the next mode.

2.2. Mode II (t1 ≤ t < t2)

In this operating region, the S, D2 and D5 are turned on continuously, whereas D1, D3 and D4 are
turned off. The current pathway is depicted in Figure 4b. In this mode, the Vin stores energy through
Lm and Lk1, yielding a linear rise of the inductive current. Meanwhile, coupled inductors based on
turns ratios N21 and N31 and through D2 and D5 release energy to C2 and C5 in a forward manner.
The cascade of C3, C4 and C5 transmits energy to the RL. When t = t2, this operating region ends and
progresses into the next mode.

2.3. Mode III (t2 ≤ t < t3)

In this operating region, when t = t2, the S is turned off transiently. Since the inductive voltage
has a continuous current characteristic and cannot be changed instantaneously, D2, D3 and D5 are
turned on, whereas D1 and D4 are turned off. The current pathway is depicted in Figure 4c. In this
mode, the Vin is connected to VC1 and VC2 in series and transmits energy to C3 through D3. As D2

and D5 are switched on, the coupled inductors maintain leakage currents iLk2, iLk3, from which energy
is continuously released to C2 and C5 as the means to recover leakage. The cascade of C3, C4 and C5

transmits energy to the RL. When the t = t3, this operating region ends and enters the next mode.

2.4. Mode IV (t3 ≤ t < t4)

When t = t3, S is permanently turned off and D1, D3 and D4 are turned on, whereas D5 is turned
off. The current pathway is depicted in Figure 4d. In this mode, because the preceding mode releases
energy continuously until currents iLk2 and iLk3 reach zero, the polarity of the coupled inductors is
reversed. The energy at N1 is transmitted through a flyback method and switched on through D1 and
D4 to C1 and C4, thereby increasing id1 and id4. The Vin is continuously connected to VC1 and VC2 in
series to transmit energy to C3 through D3. At the output end, similarly, the cascade of C3, C4 and C5

transmits energy to the RL until the iLk1 current reaches zero. When t = t4, this operating region ends
and progresses into the next mode.

2.5. Mode V (t4 ≤ t < t5)

In this operating region, the S is turned off permanently. The Vin becomes an open circuit because
of the zero iLk1 current. D1 and D4 are on, whereas D2, D3 and D5 are off. The current pathway
is depicted in Figure 4e. In this mode, the Lm couples energy into C1 and C4 through the coupled
inductors. Since the magnetizing inductance is the only source that supplies the required energy, the
magnetizing inductance current iLm and id1 and id2 continue to drop until t = t5. Upon the conclusion
of this operating region, a complete switching cycle TS is achieved.

3. Steady-State Analysis

In this section, discussion and analysis of the voltage gain ratio and switching stress of components
are provided. The results are then compared with those of previous studies. To simplify the circuit
analysis, the following assumptions were postulated:

(1) The capacitance values of C1, C2, C3, C4 and C5 are high enough to be regarded as constant
power sources;
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(2) The S, D1, D2, D3, D4 and D5 are ideal circuit elements;
(3) The magnetizing inductance of each winding is substantially higher than the leakage, which can,

thus, be ignored; and
(4) The converter is operated under the CCM.

3.1. Step-Up Conversion Ratio

With the S turned on, the node voltage analysis based on Kirchhoff’s voltage law (KVL) applied
to Mode II, shown in Figure 4b, yields the following equations of voltage stress of the inductance
and capacitors:

Vin − VL1 = 0 (1)

VC2 = N21 × VL1 (2)

VC5 = N31 × VL1 (3)

where N21 = N2:N1 and N31 = N3:N1.
When the S is off, KVL applied to Mode VI, shown in Figure 4e, can be used to determine the

voltage stress of the inductance and capacitors as expressed in the following equations:

VC3 = Vin + VC1 + VC2 − VL1 (4)

VC1 = N2 × VL1 (5)

VC4 = N31 × VL1 (6)

In accordance with a voltage-second balance principle between the on-off transients of each
inductance, the following equations were derived:

∫ DTs

0
VL1dt +

∫ Ts

DTs
VL1dt = 0 (7)

Vc1 =
N21 × DVin

1 − D
(8)

Vc2 = N21 × Vin (9)

Vc3 =
(1 + D + N21)× Vin

1 − D
(10)

Vc4 =
N31 × DVin

1 − D
(11)

Vc5 = N31 × Vin (12)

Since VO = VC3 + VC4 + VC5, substituting Equations (10)–(12) into the equation can render a
voltage gain ratio of converters, as expressed in Equation (13):

VO
Vin

=
1 + D + (N3/N1) + (N2/N1)

1 − D
(13)

The voltage gain ratio curve obtained from Equation (13) is shown in Figure 5. Under identical
duty cycles, the proposed converter provided a higher step-up ratio than did conventional step-up
converters at a turns ratio of n = 1.
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3.2. Component Voltage Stress

By using the on-off transients, the voltage stress on circuit elements can be calculated. The switch
on-off state of Mode II in Figure 4b can be applied to calculate the voltage stress on the S and D1, D3,
and D4. The corresponding equations are expressed as follows:

Vswitch =
1

1 − D
Vin (14)

VD1 = VC1 + VL2 =
N2

1 − D
× Vin (15)

VD3 = VC3 − VC2 − VC1 =
1 + D
1 − D

× Vin (16)

VD4 = VC4 + VL3 =
N3

1 − D
× Vin (17)

When the S of Mode VI in Figure 4d is off, the voltage stress on D2 and D5 are calculated using
Equations (18) and (19), as follows:

VD5 = VC4 + VC5 =
N3

1 − D
× Vin (18)

VD2 = VC1 + VC2 =
N2

1 − D
× Vin (19)

3.3. Loss Analysis

Performing a loss analysis is a critical step in circuit design. By performing reasonable calculations
and evaluations of the power loss characteristics of circuit elements, designers can efficiently design
circuits without wasting time on wrong design directions. Loss analysis is discussed in two sections
of this paper, separated into loss analysis of individual elements during operation and the estimated
conversion efficiency of the entire system.

3.3.1. Switch Element (S)

The loss of the S primarily depends on conduction loss and switching loss, which involves driver
loss, turn-on, and turn-off transient loss. The loss value is determined by summing Equations (20)–(23),
where Tr represents the rise time of the switch and Tf represents the fall time of the switch.

Pconduction-loss = Iload
2 × RDS(on) (20)

Pdriver-loss = 16/3 × Cgs × Vin × fsw (21)
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Pturn_on-loss = 1/2 × Tr × Iload × Vin × fsw (22)

Pturn_off-loss = 1/2 × Tf × Iload × Vin × fsw (23)

3.3.2. Magnetic Energy Storage Element (L)

This element comprises copper and core losses. The copper losses refer to losses caused by
current I flowing through wire equivalent impedance R on a transformer or inductor winding, as
expressed in Equation (24). The core losses, or iron losses, can be categorized into hysteresis losses and
eddy-current losses. Affected by varying magnetic fields, hysteresis losses cause partial energy losses
inside the iron core through thermal dissipation. Eddy-current losses involve the cyclic current (i.e.,
eddy current) generated within a conductor caused by varying induction of the magnetic field. The
energy of eddy currents dissipates through heat transference when passing through the resistance of
iron core materials. The eddy-current loss and area of current cycle are positively correlated.

Pcopper-loss = Iload
2 × R (24)

3.3.3. Capacitor (C)

The capacitor presents two major loss factors, namely, equivalent series resistance (ESR) and
leakage current. When aluminum electrolytic capacitors are operated, leakage current definitely occurs.
When the leakage current flows through the internal resistance Rc in the capacitor, losses are generated.
The leakage current should be minimized. The equation to calculate leakage currents is expressed in
Equation (25):

Ileakage = K × C × V (25)

where I is the leakage current (µA) and K is the constant set for production.

3.3.4. Diode (D)

Although diodes are unidirectional conducted elements, power losses occur in forward conduction
and reverse-bias blocking. In forward conduction, a junction potential barrier Vf occurs to lower the
voltage; when current Iload flows through the potential barrier, power losses occur, as expressed in
Equation (26):

Pforward-loss = Vf × Iload × D (26)

where D represents a duty cycle. In addition, parasitic series resistance (Rd) exists in the diodes and
can cause power losses when the Iload flows through it. The equation is expressed in Equation (27):

PRd-loss = Iload
2 × Rd × D (27)

When the diodes are in the reverse-bias blocking state, they may have a reverse recovery that
prevents the currents from returning to zero transiently during cut off; instead, the current maintains
a reverse flow for a certain period before returning to zero. Such current is called reverse recover
current (Irm) and the period during which it occurs is called the reverse recovery time (Trr). The area
resembling an inverse triangle formed by Irm and the Trr is called the reverse storage charge (Qrr).
Without appropriate recycling mechanisms, the energy accumulates and cause losses, as expressed in
Equation (28):

Pdrr−loss =
1
2

Trr × Inn × VR × fsw (28)

where fsw is the switching frequency and VR is the reverse-bias voltage of the diode.
In the proposed structure, reverse recovery losses are absent because the capacitors in the circuit

recycle and store the energy. Table 1 lists the expected loss assessment of components under a
power loading of 450 W. The values were calculated without considering eddy-current losses, Rd,
and capacitor losses. The total impedance of the winding was set to 60 mΩ, resistance of switching
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conduction RDS(on) as 10 mΩ, diode Vf as 0.55 V, and fs as 50 kHz for calculation. In this paper, the
measurement device was limited, so component power losses were roughly estimated. We neglected
some difficult evaluation parameters (for example. eddy-current, capacitance ESR, print circuit board
(PCB) (parasitic impedance losses, and capacitance impedance losses, etc.), and the full load efficiency
estimation compared with measurement can meet within ±1%. The total component power losses of
the system were much smaller than the system power.

Table 1. Assessment of component power losses under 450 W power loading.

Component Loss Calculation Unit

Switch Conduction Loss 2.166 W
Switch Switching Loss 1.726 W
Inductor Copper Loss 12.612 W

Inductor Iron Loss 0.28 W
Total Diode Loss 7.324 W

Total 24.108 W
Calculated Efficiency 94.642% -
Measured Efficiency 93.159% -

3.3.5. Estimated Conversion Efficiency Analysis

In the analysis presented in this subsection, diode Trr, coupled coefficient losses and leakage of
coupled inductance, and equivalent series inductance of electrolytic capacitors were ignored. The
parasitic effects of elements that were considered were the parasitic internal resistance of coupled
inductance (rL1, rL2 and rL3), the forward conduction voltage drop of diodes (VD1, VD2, VD3, VD4 and
VD5), the series internal resistance of diodes (rD1, rD2, rD3, rD4 and rD5), the ESR of capacitors (rC1, rC2,
rC3, rC4 and rC5), and the internal RDS, as depicted in Figure 6.
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Figure 6. Equivalent model circuit of efficiency analysis.

To simplify the analysis, temporary recycle pathways caused by leakage and equivalent resistance
of capacitors were ignored. Only the on and off states of the switch were considered. Subsequently,
the voltage-second balance, small-ripple approximation, and capacitor-charge balance principles were
applied to calculate the circuit conversion efficiency, as expressed in Equation (29). The efficiency was
the ratio of the output power (Po) to the input power, as expressed in Equation (30):

Vo
Vin

=

(
n2D + 2−n3D+D

1−D

)
− (VD1+VD2+VD3+VD4+VD5)

Vin

1 +
(

A
RL×(1−D)2

)
+
(

B
RL×(1−D)

)
+
(

C
RL×(1−D)

)
+
(

D
RL

) (29)
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A = (1 + n2D) rD3 + rC3 (1 + D) + (rC1 + rC5) D + (1 − D) (rC2 + rC4)

B = n3 (1 − D) rL3 + (rD1+rD5)D + (1 − D)

C = (1 + n2) D × rL2 + (rD2+rD4) (1 − D)

D = (1 + n2 + n3)× (rds + rL1)

η =
(1−D)

(
n2+

2−n3D+D
1−D

)
− (VD1+VD2+VD3+VD4+VD5)

Vin

(2−n3D+D)[1+
(

A
RL×(1−D)2

)
+
(

B
RL×(1−D)

)
+
(

C
RL×(1−D)

)
+
(

D
RL

)
]

(30)

where the values of rL1–rL3 are assumed to be 50 mΩ, rD1–rD5 as 20 mΩ, RDS as 10 mΩ, rC1–rC5 as 20
mΩ, diode conduction voltage drop as 0.55 V, Vin as 40 V, output voltage as 400 V, and RL as 355.56 Ω.
The relationship among efficiency, gain ratio, and duty cycle is shown in Figure 7.
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Figure 7. Relationship between efficiency and voltage gain vs. duty cycle.

A desirable step-up ratio was approximately 1:10. The curves in Figure 7 reveal that the turns
ratio of n = 1:2:2 should be applied in consideration of optimal circuit design points. At this ratio, the
duty cycle of the S is approximately 0.5, rendering an efficiency of 95% or higher.

3.4. Comparison of the Proposed Structure with Extant Structures

The aforementioned characteristics of the single-switch high step-up converter of the proposed
structure were compared with those in [9,16,21], as tabulated in Table 2. In Table 2, n2 represents
the ratio of coils N2 to N1; n3 represents the ratio of N3 to N1; and D represents the operating duty
cycle ratio. The voltage gain comparison in Table 2 is depicted in Figure 5, where the turns ratio is
N1:N2:N3 = 1:2:2.

Table 2. Comparison of studies regarding the single-switch high step-up converters.

Comparison
of Studies

Voltage
Gain Ratio

Switch
Voltage Stress

Diode
Voltage Stress

Number of
Capacitors

Number of
Inductors

Number
of Diodes

Proposed
structure

1+D+n2+n3
1−D

Vin
1−D

n2×Vin
1−D 5 3 5

Reference [9] 2+n+nD
1−D

Vin
1−D

(1+n)Vin
1−D 4 2 4

Reference [16] 1+n2×D
(1−D)2

(1+n2)Vin
1−D Vo + n3Vin 3 3 4

Reference [21] 1+nD
(1−D)2

Vo
1+nD

nVo
1+nD 3 2 4

Figure 8 reveals that the systems of [9,16,21], and the proposed structure renders more than a
10-fold increase of voltage at D = 0.5–0.6. Although the step-up ratio of [9] exhibited an exponential
increase with the increase in the control cycle, the cascade structure was unsuitable for overly high
duty cycle ratios because of efficiency problems.
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digitized control, the problems of an overly complex hardware circuit and difficulty in designing the
control circuit caused by the massive use of analog circuits can be avoided.
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The electrical specification and element parameters of the circuit are tabulated in Table 3.

Table 3. Electrical specification and components of the experimental circuit.

Parameter Specification

Input DC Voltage Vin 36–48 V
Output DC Voltage VO 400 V
Max output power Po 450 W

Switching frequency f s 50 kHz
Coupled inductors turns ratio N1:N2:N3 = 1:2:2

Component Model Specification
S1 IRFP4110 100 V, 120 A

D1, D2, D4, D5 MBR20200 200 V/20 A
D3 NF020 200 V/40 A
L MPPRing core 125 µH

C1, C2 MPP Film Capacitor 10 µF/100 V
C3 Electrolytic Capacitor 300 µF/400 V

C4, C5 MPP Film Capacitor 22 µF/100 V
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Figure 13 reveals the operating waveforms of each element measured under the power loading
of 450 W: (a) S waveform and inductive current waveform; (b) D1–D3 voltage waveform; (c) D4 and
D5 voltage waveform; (d) D1–D3 current waveform; (e) D4 and D5 current waveform; and (f) voltage
waveform of C1, C3, C4, and output. From the experimental waveforms of Figure 13 compared with
the steady-state analysis before, the proposed converter had been proved that the component voltage
stress of the active switch and diodes are less than 100 V, and was consistent with the results of
steady-state analysis.
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Figure 13. The operating waveforms of each element measured under the power loading of 450 W, (a)
Vgs: 10 V/div, Vds: 50 V/div, ILK1: 25 A/div, Ids: 25 A/div, time: 5 µs/div; (b) Vgs: 10 V/div, VD1: 100
V/div, VD2: 100 V/div, VD3: 50 V/div, time: 5 µs/div; (c) Vgs: 10 V/div, VD4: 100 V/div, VD5: 100
V/div, time: 5 µs/div; (d) Vgs: 20 V/div, ID1: 5 A/div, ID2: 5 A/div, ID3: 25 A/div, time: 5 µs/div; (e)
Vgs: 20 V/div, ID4: 5 A/div, ID5: 5 A/div, time: 5 µs/div; and (f) VC1: 50 V/div, VC3: 250 V/div, VC4:
50 V/div, VO: 200 V/div, time: 25 µs/div.

Figure 14 shows the comparison of efficiency curves of the proposed converter and those presented
in previous studies. The Vin, output voltage, and output power for the proposed converter were 40 V,
400 V and 450 W, respectively. The output power of [9,16,21] were only 200, 400 and 300 W, respectively.
These curves were measured under a distinct Po. Under a light-load Po of 50 W, the proposed structure
yielded a 94.511% efficiency. Under a full-load Po of 450 W, the efficiency became 93.2%. The optimal
efficiency (95.346%) was reached under a Po of 250 W. The efficiency under all power conditions was
higher than 93%.
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5. Conclusions

In the present study, a high step-up DC/DC converter with coupled inductance and voltage
multipliers was developed. Through operating principles, steady-state analysis, and final test results,
the effectiveness and feasibility of the proposed converter were validated. Applying the design of a
single switch and coupled inductance with an integrated common core can substantially simplify the
control circuit and reduce costs, while maintaining the effect of high step-up ratios. In addition, the
proposed converter can recycle leakage, thereby minimizing the reverse voltage stress of the switch
and diodes. Consequently, the switching losses can be reduced. Meanwhile, low-conduction loss
elements can be flexibly selected to lower the conduction losses and improve the converter efficiency.
In accordance with the experiment results, the converter efficiency reached 93.16% and 95.35% under
the output power conditions of 450 W and 250 W, respectively. Obviously the proposed converter is
advantageous for integrating high efficiency, simple structure, and high voltage gain ratios.
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