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Abstract: The Reynolds Stress Model (RSM) is adopted to simulate the wind turbine wake and the
simulation results are compared with the wind tunnel test data, simulation results from the standard
k-e model and a modified k-¢ model. RSM shows good performance in predicting the turbine wakes
velocity, turbulence intensity and the kinetic shear stress, while the k-¢ based models fail to predict
either wakes velocity or turbulence intensity. Simulation results show that the wake velocity will be
recovered up to 90% at around 10 D downstream of the turbine (D denotes turbine rotor diameter)
and it stops at 91% at around 16 D downstream. The wake turbulence intensity reaches a maximum
at around 5 D downstream of turbine. Further investigation shows that the horizontal profile of the
wakes velocity can be approximated by a Gaussian distribution, and the turbulence intensity can be
approximated by a bimodal distribution. The influence of the wakes effect is limited to within +D
in the across-wind direction. The turbine wakes show clear anisotropy, which could explain the
incorrect estimation on the turbulence intensity with the extended k-¢ model.

Keywords: wind turbine wakes; Reynolds stress model; actuator disc; anisotropic turbulence; BEM

1. Introduction

Wake effects associate with intense decreases in wind velocity and an increase in the turbulence
result in a reduction in the power production of wind farms and additional fatigue loads on the wind
turbines. Previous research has showed that the power losses due to wake effects of a normal wind
farm can be up to 10%—-20% of total generation [1]. Meanwhile the extra loads are significant when the
turbine sits in the wake region. Measurements results from the Alsvik wind farm in Sweden indicated
that the equivalent load increases 10% at 9.5 D (where D denotes the diameter of the turbine rotor)
downstream and up to 45% at 5 D under full-wake conditions [2]. Similar measurements were taken
at Danish offshore Vindeby wind farm. Data showed that the fatigue load increased 80% when the
turbine is exposed to wake [3].

In the planning of a wind farm in a certain area, the wake effect is an influencing factor in
maximizing the power production and minimizing the cost and additional loads on the turbine.
More turbines in the certain area will increase the total power production and decrease the marginal
cost of construction, but it will also reduce the efficiency of the power generation and cause additional
loads on the turbines if the turbines are placed too close to each other. Any decision made requires
a thorough understanding of the turbine wake effects and accurate prediction of the wind turbine
wake. An accurate prediction of the turbine wake is also fundamental to the optimization of the wind
farm layout and for the wind turbines fatigue hazard mitigation [4].

Analytical and numerical models are usually used to predict turbine wakes. Analytical models
with mathematical background derived from aerodynamics theories are simple [5-7]. Usually,
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the turbine wake velocity and turbulence intensity are expressed in the form of linear/non-linear
equations of the approaching flow variables and down-stream position. However, these models
depend heavily on the availability of aerodynamic hypotheses which has to be checked for each study.
Numerical models predict the turbine wakes by computational fluid dynamics (CFD) method to
simulate atmospheric boundary layer (ABL) flowing through the wind turbines. Simulation results are
therefore relatively dependable and stable.

In CFD, the modelling of the turbine rotor and the turbulence are two key points for the simulation
of the wind turbine wake. Two approaches are mainly used to model the turbine rotor: fully resolved
simulation and generalized actuator disc. By modeling the real rotating turbine blades, fully resolved
simulation deals with a complicated blades-flow interaction problem that consumes a large amount of
computing resources. Due to its high demand on computing capability, the fully resolved simulation
is seldom applied in engineering practice, especially in simulating a wind farm with a number of
turbines. A more commonly used approach is the generalized actuator disc, which includes three
methods: actuator disc method (ADM), actuator line method (ALM) and actuator surface method
(ASM). The concept of ADM was firstly proposed by Froude [8], following Rankine’s work on the
momentum theory of propellers [9]. The fundamental idea of ADM is to use a permeable disc of
equivalent area to represent the turbine rotor. The force is evenly distributed on the disc and it is
calculated from the velocity of approaching flow and the thrust coefficient of turbine rotor. To account
for the rotational feature of rotor, the blade element momentum method (BEM) proposed by Glauert
was introduced to the ADM to become the ADM-R [10]. The BEM models the turbine blade as several
independent blade elements characterized by their aerodynamic parameters such as drag and lift
coefficients. By calculating the force on each blade element, the rotational features of the turbine rotor
is considered and the distribution of force on the disc is obtained. ADM/AMD-R has been widely
adopted by industry due to its simplicity and relative high accuracy. ALM and ASM modify the
ADM/ADM-R by modeling the rotor with actuator line or surface. The performance of ALM and ASM
has been studied in references [11-14].

A widely adopted model to simulate turbulent flow is the Reynolds-averaged Navier-Stokes
(RANS) method. The first attempt to simulate turbine wake by RANS adopted the parabolic and
axial-symmetric form of the Navier-Stokes equations, which gave a fast calculation. However,
it cannot predict the (pressure driven) expansion of the wake properly [15]. Crespo et al. proposed
an asymmetric parabolic model, UPWAKE, based on standard k-¢ model with specific model
constants [16,17]. Cabezoén et al. used the standard k-¢ model coupled with ADM to evaluate the
performance in simulating the turbine wakes [18]. Simulation results showed that the standard
k-e model over-estimated the recovery of turbine wakes due to the under-estimation of turbulence
dissipation rates near the turbine. Further investigations showed that the standard k-e and k-w models
tend to yield diffusive wakes, resulting in over-recovery of the wake velocity but without a distinct
peak of turbulence intensity that appeared in wind tunnel experiments [18-23]. Réthoré explained the
failures of these standard models with the limitations of the Boussinesq hypothesis [19]. Kasmi and
Masson then proposed an extended k-¢ model, in which a turbulence dissipation zone was added
artificially creating a non-equilibrium turbulence in the certain area to address the weakness of the
Boussinesq hypothesis [21]. The corresponding results featured lower discrepancy than those from
the standard model. Similar approaches were carried out by Cabezoén et al. and Rados et al. with
acceptable results compared to experiment measurements [18,23]. Réthoré revised Kasmi’s model by
importing turbulence production terms and gave a wake prediction with relative higher accuracy [19].
Van der Laan pointed out that in the wake region, where the velocity gradient is high, the constant to
parameterize the eddy viscosity should be flow depend. Following this idea he proposed an improved
k-e model which yielded relatively good results in different cases [24,25].

Though various kinds of modified k-¢ models had been proposed, many of them were based on
the application of non-equilibrium turbulence and the results are heavily dependent on the empirical
correction of turbulence dissipation or production. Meanwhile, though many of these k-e-based
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models consider the non-equilibrium of turbulence, usually they assume the isotropy of the Reynolds
stresses. However, this condition cannot be found in practice, especially in the region near the
wind turbine where the turbulent shear is extremely large. Gémez et al. indicated that turbulence
anisotropy exists in the turbine wake and this effect is more intense when it is closer to the border of the
wake [26]. Reynolds Stress Model (RSM), considering an equilibrium but anisotropic Reynolds stresses,
is a potentially good model to simulate the wind turbine wake. Cabezén compared various k-e-based
models and RSM concluding that RSM can give a relatively good simulation of wake deficit in both
near and far wake regions and acceptable wake turbulence intensity results [27]. Makridis and Chick
simulated the wind turbine wakes with terrain effect using RSM and gave acceptable predictions [28].
Cabezén et al. applied RSM in OpenFOAM simulating the turbine wakes of a large wind farm and
concluded that RSM gave a better solution than isotropic model and could be further developed [29].

In the present work, the RSM turbulence model is applied to simulate the wake flow of a single
wind turbine mounted on flat terrain. ADM-R is introduced to model the turbine rotor induced forces.
Turbine nacelle induced forces is calculated by the drag coefficient of the nacelle. A standard k-¢ model
and an extended k-¢ model are also adopted as contrasts to evaluate the performance of RSM. Finally,
the wind flow quantities simulated by three different turbulence models are presented and compared
with data from wind tunnel experiments. The relative importance of the RSM is discussed with
reference to the performance of predicting the wake flow of turbine machines, and further application
in the wind farm sitting, planning and optimization.

2. Governing Equations

Reynolds-averaged Navier—Stokes equations (RANS) are used as the governing equations of the
atmospheric boundary layer flowing through wind turbines. Specifically, the governing equations of
a stationary incompressible Newtonian fluid can be written in Einstein notation as:

du;
axl-
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where p is the density, y# is dynamic viscosity, —pugu} is the Reynolds stress and fy,,;, is the turbine
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induced force modeled in Section 5.

3. Reynolds Stress Model

Due to the isotropic Reynolds stresses assumption, the standard k-¢ model is not capable of
simulating the anisotropy of the turbulent flow [30-32]. Abandoning the isotropic Reynolds stresses
assumption, the Reynolds-stress model solved the governing equations above together with the
transport equations of Reynolds stresses and an equation for the dissipation rate. It yields better
prediction in the streamline curvature, swirl, rotation, and rapid changes in strain rate than the
k-e model.

The steady incompressible transport equation for the Reynolds stresses is formulated as:

d
pax,c (Uk%”]) = _DT,ij + DL,ij + Pij + (Pl] — & 3)
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Pressure-strain ¢;; = i (az’ + gz ) and it is modeled using a linear pressure-strain model [33-36]

as: ¢ij = ¢ij1 + Pij2 + Pijw- The slow pressure-strain term ¢;; 1 = —Cl { ; — zél]pk}

Ci = 18; the rapid pressure-strain term ¢, = —C {P,-]- -G — %517 (Prx — Ckk)}, C, =0.6;
) R 3/2

the wall reflection term ¢ o = (i} (uiu;nnknméij - %u’.u;{n]-nk - %u;u,’cnink) % +

C k32

c, ((j)km,znknméij — 3u, 2NN — 2q>]k oM, nk) , Ci = 05, C, = 03, ng is the x; component

of the unit normal to the wall, d is the normal dlstance to the wall and C; = H3/ 4 /x where k = 0.4187
is the Von Kdrman constant.

! o]
Dissipation ¢;; = ZUax 7% I and it is modeled as gjj = 3 dijpe.

The turbulent viscosity is modeled as y; = pCV , turbulent kinetic energy is computed
as: k = ;u u; and the scalar d1551pat10n rate ¢ is computed from the following equations:
p% ( ) ai] [(;4 + ) | Cai — Calf with =009, 0 = 1, 0 = 0.82, Cer = 144, Ce = 1.92,
C = =0.6.

4. Standard k- Model and Extended k- Model

To evaluate the performance of the RSM, the standard k-¢ model and an extended k-¢ model
are also studied for comparison. The standard k-¢ model and the extended k-¢ model are briefly
introduced below. The standard k-¢ model solves the Navier-Stokes equations by introducing the
transport equations for the turbulence kinetic energy k and dissipation rate ¢ as [35]:

] 0 e\ ok
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where: Py = iy (aul + gx ) gZ‘ is the production of kinetic energy.

Sk is the source term for the turbulence kinetic energy and Sy = 0 for both the standard k-e model
and extended k-e¢ model in the present study. S, is the source term for turbulence dissipation. In present
study, S¢ = 0 for the standard k-¢ model and S, = g, for the extended k-¢ model described below.
C1e = 1.44 and Cy, = 1.92 are constants and ¢ = 1.0 and o, = 1.3 are the Prandtl numbers for k and ¢.

The extended ke model improves the performance in predicting the turbine wakes by introducing
artificial turbulence dissipation. As shown in Figure 1, an extra turbulence dissipation g, is added to
the volume upstream and downstream within approximately 0.25 D of the turbine.

] 0.5D
— Rotor
F———>
[a]
— I

Figure 1. Extended k-¢ model.
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The artificial turbulence dissipation g, is defined as:

P2
m:%ﬁ (6)

where C,4 is a parameterized constant set to be 0.37. For more specific details readers are referred to
Kasmi and Masson [21].

5. Turbine Modelling

The computation of the governing equations requires knowledge and modeling on the turbine
induced forces f;,,5. In this study, the turbine induced forces consists of two parts: the rotor induced
forces fiotor and the nacelle induced forces fyac.

The rotor induced forces frotor is modeled by ADM-R purposed by Mikkelsen [12]. This approach
models the real wind turbine rotor with a permeable disc of equivalent area and with the blade-induced
forces applied, as shown in Figure 2.

]
—__/_/ 1
! 1
: :
lnﬂow: .~ Actuator disc '
' :
UO : :
: :
! 1
! 1
! 1
e i
Stream tube TTTTe— !

(a)Front view (b)Side view

Figure 2. Schematic of the actuator disc, (a) front view; (b) side view.

The distribution of forces on the disc are calculated by the Blade Element Momentum theory
(BEM) [37]. The blade is divided into N elements. The induced forces on each blade element include
the drag forces and lift forces:

1
(L,D)zzipUiﬂAr(CLaﬂCDeD) @)

1
F= EpuzelCA}’ (CLeL + CDeD) 8)

where Cp and Cp are the lift coefficient and drag coefficient respectively extracted from tabulated
airfoil data, e, and ep are unit direction vectors, Ar is the radial length of blade elements and c is the
chord length. Uy = (Up (1 —a), Q, (1 —4a’)) is the relative velocity of incident flow. It composed of
the relative axial velocity Uy (1 — a) and relative tangential velocity Q, (1 — a’) of the incident flow
relative to the blade element. Uy is the velocity of the stream-wise approaching flow, Q) is the angular
velocity of the wind turbine, r is the distance from the hub to the points representing the blade elements.
a and a’ are the axial and tangential introduction factors, respectively. The angle of attack is defined as:

E=@—=7 )

where ¢ = tan™! [%} and 1 is the pitch angle of the blade element shown in Figure 3.
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Chord line .

Plane of rotation

Up(1—a)

(a)Blade element (b)Force analysis of blade element

Figure 3. Schematic of BEM, (a) blade element; (b) force analysis of blade element.

By applying the BEM, the axial and tangential introduction factors a and a” could be calculated
and the relative velocity of the incident flow U,,; can also be obtained. Considering the annular area the
blade element sweeps through in one rotation is AA = 27rAr and the number of blades is B, the forces
on each annular disc area can be calculated as:

_ B-F_ 1pU2Bc

rel (CLeL + CDeD) (10)

F =
AA 2 2mr

The body forces acting on the actuator disc are functions of the disc thickness Az:

f, F

rotor — Az (11)

In order to avoid singular behavior and numerical instability, body forces are gradually applied on

!

the actuator disc by taking convolution of the local body forces f, ;.

and the regularisation kernel 7,:

frotor - f;otor *15 (12)

where 1
Is = 5=5750%p |~ (1/0)’] (13)

and ¢ is a constant that serves to adjust the concentration of the regularized load. It is taken equal to
the value of a grid side length in this study, p is the distance between the grids points and the points
representing the blade elements.

Meanwhile, nacelle was modeled by porous media and the nacelle induced force is described as:

2
_ Frnac _lquCD,nace

£ — — 14
M ANz 2 Az x (14)

where Ay, is the front area of nacelle, 1 is the velocity at center of rotor, ey is unit vector in the stream
direction and Cp 4 = 1.0 is the drag coefficient of the nacelle which has a range of 0.8-1.2 [21,38].
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6. Numerical Experiment

6.1. Computation Domain and Turbine Specifications

To validate the RSM, simulation results will be compared with wind tunnel measurements
carried out by Chamorro and Porté-Agel in the St. Anthony Falls Laboratory atmospheric
boundary-layer wind tunnel [39]. The experiment studied a miniature turbine consisting of
a three-blade GWS/EP-6030 x 3 rotor and a small DC generator motor with rotor diameter of 0.15 m
and hub height of 0.125 m. The ratio of distance between ground and the bottom of the rotor to
the rotor radius is 0.67 which is of the same order as for real turbines of large capacity (>2 MW).
The cylindrical nacelle is of 0.015 m diameter and 0.03 m length. The effect of the tower is neglected
in the study. The computational domain is 4.32 m in stream-wise (Ly), 0.72 m in span-wise (L) and
0.46 m in height (L,) as shown in Figure 4. The wind turbine is placed at the center of the wind tunnel
in span-wise and six rotor diameters (0.9 m) behind the inlet in stream-wise.

Ly =0.72m Lx =432m

[~ > 3o
3 f——————> N
= l
S| e gy i )
I . R =0075m \ IR = 0.075m S
N —

~ - 3
j Hpup = 0.125m Y ’ IH,,ub =0.125m }

—
A
0.36m 0.36m 0.9m 3.42m
(a)Front view (b)Side view

Figure 4. Scheme of the computational domain, (a) front view; (b) side view.

The radial variation of the chord length and pitch angle are obtained from Wu and Porté-Agel [40].
The blade is modeled with a flat plate. The experimental results on the lift and drag coefficients on the
plate for different angle of attack are adopted [41].

The turbine rotated with an angular velocity of 1120 rpm with a tip speed ratio ~ 4 and an inflow
velocity of 2.2 m/s and turbulence intensity of 0.08 at the hub height. The tip speed ratio has been
modified to match that of the full-scale turbines, which is usually between 3 and 8 [42]. Other tip
speed ratio, within the range of 3 and 10, was also adopted in many wind-tunnel based studies of
wind-turbine wakes for single turbines as well as different configurations in wind farms [4]. The thrust
coefficient is 0.53 based on the calculation of axial force. The Reynolds number of the experiment
is about 4000. Though there is discrepancy between the experiment and the reality, it is capable of
the basic characteristics of the turbine wake [43]. All numerical settings are corresponding to the
experiment described by Chamorro and Porté-Agel [39] and Wu and Porté-Agel [40].

6.2. Boundary Conditions

The inflow has a logarithmic mean velocity profile and a turbulence intensity profile
corresponding to the experiment. The profile of turbulence dissipation rate is also given as ¢ = C;’/ 4@
where k is the kinetic energy, C;, = 0.09 and the turbulent length / = 0.15 m is equal to one rotor diameter.

The bottom layer has a no-slip wall boundary condition with 0.03 mm roughness height and

0.5 roughness constant. The Reynolds stress at the cells adjacent to wall are approximated in terms
of the kinetic energy as ‘4% = 1.098, 2 = 0.655, Y& = 0.247 and —“& = 0.255. Near wall regions
are approximated by a standard wall function [36] and the wall reflection is considered by adopting
the wall reflection term ¢;;;, in the pressure-strain as mentioned in Section 3. Reynolds stress model.
The outlet has a zero diffusion flux for all flow variables and an overall mass balance correction. All the

other boundaries are set to be zero-shear slip walls.
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6.3. Solution Methods and Grid Sensitivity

The Semi-Implicit Method Pressure Linked Equation (SIMPLE) algorithm is adopted as the
pressure-velocity coupling method to solve the Navier-Stokes equations. The momentum is discretized
using a second order upwind scheme. The turbulence kinetic energy, turbulent dissipation rate and
the Reynolds stresses are then discretized using a first order upwind scheme. All the calculation
is implemented by the Fluent software in the ANSYS 14.5 package. An Intel Xeon E5-2630 CPU
with 12 cores and 2.60 GHz is used. The RAM is 64 GB. Eight nodes are used in the Fluent for the
parallel computation.

The computational domain was uniformly divided by Nx x Ny x Nz grid points. The actuator
disc used to model the turbine rotor was covered by Ry x Ry grid points. To test the grid sensitivity
of the RSM model, three different mesh schemes were applied as shown in Table 1. For the densest
grid, it takes around 45 s for the calculation using standard k-¢ model and extended k-¢ model and
around 90 s using RSM.

Table 1. Mesh schemes.

Case Nx Ny Nz ILx(m) Ly(m) Lz(m) Elements Ry Rz
Coarse 106 29 19 4.32 0.72 0.46 52,920 7 7
Normal 136 43 27 4.32 0.72 0.46 147,420 10 10

Fine 186 67 43 4.32 0.72 0.46 512,820 15 15

7. Results and Discussion

The RSM is compared with the standard k-¢, extended k-e¢ model and the wind tunnel data from
Chamorro and Porté-Agel [39] and Wu and Porté-Agel [40] in simulating the turbine wakes velocity and
turbulence intensity. Kinetic shear stress —u’w’ is calculated by RSM and plotted against measurements

data to prove its accuracy. Then, the affected area, distribution, variation and recover tendency of
turbine wakes are investigated using the RSM. Finally, the grid sensitivity of RSM is discussed.

Due to intense velocity reduction and turbulence increase, two turbines are seldom found within
a distance of 3 D in most modern wind farms [4]. Therefore, the effects in the area beyond 3 D will
be considered. Specifically, they are cross-sections at 3 D, 5 D, 7 D, 10 D and 14 D downstream.
More detailed studies at —0.7 D, —0.6 D ... 0.6 D, 0.7 D relative to a cross-section downstream at 5 D
of the turbine are also conducted.

7.1. Vertical Distribution of Stream-Wise Velocity

Figure 5 shows the vertical distribution of stream-wise velocity of the approaching flow and
turbine wakes. It indicates a loss of velocity appearing right after the air flowing over the turbine,
and the maximum loss occurs at the hub height. The RSM presents good prediction of the wakes
velocity, and there is just slight difference between the simulation results and measurements data.

19

O exp
= = std k-e
= =etd k-e
— RSM

Figure 5. Vertical distribution of stream-wise velocity obtained from: standard k-e¢ model (std. k-e),
extended k-¢ model (etd. k-e) RSM and wind tunnel experiments (exp. data obtained from Wu [40]).
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The extended k-¢ model showed acceptable performance, but not as good as the RSM. The recovery
of velocity was insulfficient due to the artificial turbulence dissipation added in the extended k- model.
The standard k-¢ model, as expected, failed to simulate velocity of turbine wakes, especially in the area
within 10 D. The characteristics of the diffusive wake of over-estimating the recovery of wake velocity
are presented as mentioned in the introduction. Two parameters—5 points averaged relative error (J5))
and maximum relative error (J,;4x) are defined to quantify the performance of different simulations.
Osp = Yo (’ViEXP — V5IM | /VEXP) /5 is the average of relative error at the height of: (D top of the
rotor, @) middle of upper half rotor, @ hub, @ middle of lower half rotor and () bottom of the rotor
(see Figure 6), which are typical heights to define a wake profile. 8y, = (|[VEXP — VSIM|/VEXP)
is the maximum relative error within the height from @ the top of the rotor to (& bottom of the
rotor (see Figure 6). VEXP V5IM is the value from the
CFD simulation.

is the value from wind tunnel experiments and

3D 5D 7D 10D 14D
Figure 6. Vertical positions of five points.

Figure 7 shows the five points averaged relative error and maximum relative error on the velocity
simulated by standard k-¢ , extended k-¢ model and the RSM. Same remarks as for Figure 5 could be
made, i.e., the standard k-e model fails to predict the turbine wake velocity with 5]5:;5 ranging from 5%
to 20% and 65 between 8% and 41%. On the other hand, the extended k- model reduces 5g<;smi to
around 5% and X% to 10%-15%. Finally, the RSM performs well to predict the wake velocity with

5§;M around 2% and SR5M under 10%. The latter is only 4% of 5 D downstream.

20% & 50%
N —A-std k-e [ -std k-
N o | A =A=-std k-e
\k =& etd k-e L \ £ etd k-e
~ —-RSM 0% - -e-RSM
10% | Sa I A
~ - ~
~A 20% - \A
-
-aj <
‘--...-‘.'_'_."'*--.- 10% - == - =V - ____'_:e
.——.\.__’—.\. L . .
0% ‘ : 0% T hd B
3D D 7D 10D 14D 3D D 7D 10D 14D
(a)5 points averaged relative error (b)Maximum relative error

Figure 7. Simulation’s relative error of velocity, (a) 5 points averaged relative error; (b) maximum
relative error.

7.2. Lateral Distribution of Stream-Wise Velocity

Figure 8 shows the contours of stream-wise velocity at 5 D downstream. The position ranges
from —0.7 D-0.7 D (0.0 corresponds to axial centerline of the turbine) horizontally and 0.2 D-1.6 D
(0.0 is at the ground) vertically and the dash line represent border of rotor rotation. From the result
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of wind tunnel measurements, we can see that wakes velocity distributes asymmetrically in both
vertical and horizontal directions. The vertical asymmetry results in logarithmic mean velocity profile
of the approaching flow and the horizontal asymmetry results in swirl of the turbine wake. Clearly,
standard k-e model failed to simulate the swirl of wake. On the other hand, both the extended k-¢ model
and the RSM capture the swirl of flow. The extended k- model slightly under-estimates the velocity of
turbine wake at 5 D while the RSM performs well.

23 -
— 2.2
7 TN
/7 21N |
v S
[ \\
/ 2 S
! !
\ {
\ 1.9 /
\ // 7
A
\\\4 ////
L= - 4
0.6 0. 0 03 0.6 0.6 (13 [ 0.3 0.6 0.6 3 0 0.3 [1X33 0.6 0.3 0 ¢.3 0.6
YiD Y/D m/s YiD YD
(a)Experiment(Wu 2011) (b)Standard k-c (c)Extended k-¢ (d)RSM

Figure 8. Contours of stream-wise velocity at 5 D downstream, (a) experiment data (obtained from
Wu [40]); (b) standard k-¢ model results; (c) extended k-¢ model results; (d) RSM results.

The horizontal distribution of wake velocity is also of interest, especially in the transition zone and
its total area. Figure 9 shows the horizontal profiles of stream-wise velocity of the approaching flow
and turbine wakes at hub height. With a lack of experimental data, only the RSM simulation results are
presented. The velocity of air is greatly reduced due to the wake effect. The maximum reduction occurs
at the center of the wakes and it decreases in radial direction away from the central plane. The profile
of wakes velocity approaches a Gaussian distribution. Meanwhile, the area with velocity reduction is
expanding with the stream-wise distance, but limited within & D in the across-wind direction (0.0 is
the hub position). The asymmetry of wakes is seen again, but it is not significant after 5 D.

15
=—=RSM

Figure 9. Horizontal distribution of stream-wise velocity simulated by RSM.

7.3. Vertical Distribution of Stream-Wise Turbulence Intensity

Figure 10 shows the vertical distribution of stream-wise turbulence intensity (TI) of the
approaching flow and turbine wakes. TI takes up different definition in different models: In wind
tunnel measurements, T is defined as 0, /Uj,;,,. In RSM, Tl is defined as Vi’ / Upyp- In the standard
k-e model and the extended k-e¢ model, TI is approximated by the kinetic energy using the assumption
of isotropic turbulence as (k/ 1.5)V2 /1. In the present study, wind tunnel measurements show that
the highest Tl appears at the top of rotor tips and it decreases with down-stream distance. The standard
k- model can capture the peak location of the TI, in general. However, it fails to predict the distribution
and over-estimates the whole TI profile. The feature of the diffusive wake shown indicates the failure
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to simulate the distinct peak of TI. The extended k-¢ model can predict the trend of TI declining and
shows distinct peak of TI. But it under-estimates the TI due to the artificial turbulence dissipation zone
added. The RSM shows acceptable performance in predicting the highest level of TI and the smooth
profile of TI, and the simulation results are clearly better than those from the standard k-¢ model and
the extended k-¢ model. It should be noted that all three kinds of model underestimate the TI close to
ground. This is because both the k-¢ model and the RSM approximate the kinetic stresses at ground by
using the kinetic energy whereas the actual boundary condition of the kinetic stresses are unknown.
The 5 points averaged relative error and maximum relative error are plotted as Figure 11.
Though the prediction in the wake velocity is good, yet the extended k-¢ model fails to simulate
the turbine wake turbulence velocity with error 5é<;smi bigger than 20% and error 6X% up to 41%.
On the contrary, the standard k-¢ model fails to predict the wind turbine wake velocity accurately,
but it shows an acceptable performance in predicting the TI, especially at locations beyond 7 D with
error 5’;;8 varies from 4% to 28% and less than 10% beyond 7 D. However, the error 65 65-¢ is 57%

because the TT at 3 D downstream is extremely over-estimated. Finally, the RSM shows good ability to
simulate the profile of TI with error §§;M around 10% and error 683M around 20%.
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Figure 10. Vertical distribution of stream-wise turbulence intensity obtained from: standard k-¢ model
(std. k-e), extended k-¢ model (etd. k-e) RSM and wind tunnel experiments (exp. data obtained
from Wu [40]).

20% 50%
\ —A-std k-e I “A=-std k-e
\ 40% - A
N -&- etd k-e I \ =£)- etd k-¢
i ~e-RSM 30% AR -6-RSM
10% S » A
~ -~ 20% ~ -
~b - <U70
.-._._...-—'-.—-_,_' 10% - =g = - -‘-"':6
*‘.\.—-———.\. - o~
0% 1 1 1 1 1 0% 1 1 ~ 1 Y L £
3D 5D 7D 10D 14D 3D 5D 7D 10D 14D
(a)5 points averaged relative error (b)Maximum relative error

Figure 11. Simulation’s relative error of TI, (a) 5 points averaged relative error; (b) maximum
relative error.

7.4. Lateral Distribution of Stream-Wise Turbulence Intensity

Figure 12 shows the contours of TI at 5 D downstream. The biggest TI from experiment appears
at the upper half border of the rotor. Due to the interaction between the blade tip and air that produces
vortices, the TI at this area has a sudden jump. Also due to the non-uniformity of the approaching flow,
the fluctuating wind speed at great height is higher than that at lower height when wind blows over
the turbine resulting in the non-asymmetry of TI in the vertical direction. Similar to the velocity, the TI
is also horizontally non-asymmetric distributed. Simulation results show that the standard k- model
fails to capture this feature with incorrect TI estimates. The extended k-e¢ model can basically capture
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this feature of the TI distribution, but it grossly under-estimates the TI. Simulation results of RSM
shows good agreement with wind tunnel results, i.e., both vertical and horizontal non-asymmetry in
the velocity and TI are observed, the TI amplification due to the tip-air interaction and good estimates
in the values.
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Figure 12. Contours of stream-wise turbulence intensity at 5 D downstream, (a) experiment data
(obtained from Wu [40]); (b) standard k-e¢ model results; (c) extended k-¢ model results; (d) RSM results.

Similarly, the horizontal profiles of stream-wise turbulence intensity of the approaching flow and
turbine wakes at hub height is presented as Figure 13. Again, due to the lack of experiments data,
only the RSM simulation results are presented. Results show that the turbulence intensity is bimodal
distributed with two peaks at R and —R, accounting for the tip-air interaction. The two peak values
are different due to the air rotation. The asymmetry is noted less significant after 5 D.
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Figure 13. Horizontal distribution of turbulence intensity simulated by RSM.

7.5. Spatial Distribution of the Kinetic Stresses

The vertical distribution of kinetic shear stress —u/w’ of the approaching flow and turbine
wakes are shown as Figure 14. RSM is the only model amongst the three ones studied that assumes
an anisotropic turbulence stress. Therefore, only the RSM results are compared with the wind tunnel
data. Similar to the turbulence intensity, a strong shear occurs at the top of rotor tip, and a large
negative shear is noted at the bottom of the rotor tip. This is because the tip of blade has the largest
velocity relative to air resulting in the strongest shear between the blade and air. The RSM simulates
this phenomenon well, and the magnitudes of simulation results are slightly higher than that from
the wind tunnel experiments. The difference decreases further downstream. Figure 15 shows the
contour of kinetic shear stress —u/w’ at 5 D. The experimental data shows a tilted distribution of the
turbulence stress. This asymmetry, once again, is due to rotation of air. The RSM results give a similar
distribution but to a less tilted extend. This is because the ADM is unable to simulate accurately the tip
vortex which can maintain the rotation of the wake. By simulating the kinetic shear stress —u’w’ of the
wake, the RSM features a good ability to predict the turbulence kinetic stress with consideration of
anisotropy of the turbine wakes.
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To evaluate the anisotropy of the turbine wakes, the kinetic stresses u/u’, v'v/ and w'w’ are
simulated by the RSM. Figures 16 and 17 show the vertical and horizontal distribution of these
three kinetic stresses. It is noted that the approaching flow (1 D ahead of turbine) has been assumed
isotropic, except close to ground where the friction will cause some anisotropy.

14D

VZib)

0.04 -0.04 0 i -0. .04 -0.! 0.04
m?/s?

Figure 14. Vertical distribution of —u'w’ obtained from: RSM and wind tunnel experiments
(exp. data obtained from Wu [40]).

Z/D

Y/D B
(a)Experiment{Wu 2011) (b)RSM

Figure 15. Contours of —u’w’ at 5 D downstream, (a) experiment data (obtained from Wu [40]);
(b) RSM results.

When air flows over the turbine, a strong anisotropy is shown at the tip area. Stress u'u’ is
dramatically amplified by the tip-air interaction and is much larger than stress v/’ and w’w’ with
wu' > v'v > w'w'. This anisotropic feature of turbine wake accounts for the under-estimation of the
turbulence intensity by the extended k- model where isotropy of Reynolds stresses is assumed.
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Figure 16. Vertical distribution of u/u/, v/’ and w'w’ simulated by RSM.
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Figure 17. Horizontal distribution of #/u/, v'v’ and w'w’ simulated by RSM.

7.6. Recovery of the Turbine Wake

Figure 18 shows the stream-wise velocity and turbulence intensity at hub height. The wake
velocity drops quickly immediately after the air flows over the turbine and it picks up the velocity
gradually. The recovery of wakes velocity can reach 90% at around 10 D and at the final 91% at
around 16 D. The wakes turbulence intensity increases gradually with downstream distance and
reaches the maximum at around 5 D. The recovery of wake turbulence intensity slowed down
after 15 D and then reached the same level with approaching flow.
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Figure 18. Recovery of the wake (at hub height), (a) stream-wise velocity; (b) stream-wise TI.

7.7. Grid Sensitivity of RSM Model

To test the grid sensitivity of RSM model, three different mesh schemes are prepared as Table 2.
Simulation results of the turbine wakes velocity, turbulence intensity and kinetic shear stress —u'w’
are presented as Figures 19-21. The RSM showed low sensitivity to the grid resolution. Three kinds of
mesh schemes yield similar results in the wakes velocity and kinetic shear stress —u/w’. Only less than
10% difference is noted when using a coarse grid scheme to predict the turbulence intensity.
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Figure 19. Vertical distribution of stream-wise velocity simulated by different mesh schemes.
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Figure 20. Vertical distribution of stream-wise turbulence intensity simulated by different mesh schemes.
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Figure 21. Vertical distribution of —u/w’ simulated by different mesh schemes.

A “normal” dense grid resolution (actuator disc is covered by 10 x 10 grid points) is considered
sufficient to model the turbine wakes velocity, turbulence intensity and turbulence stress for
engineering purpose. When simulating a wind farm with several turbines with other complicated
conditions, the amount of calculation will increase quickly. A “coarse” dense grid resolution
(actuator disc is covered by 7 x 7 grid points) may yield acceptable results with less computation effort.

8. Conclusions

The standard k-e¢ model has been used to simulate ABL flowing through wind turbines in recent
years for many different cases. Most of them yield inaccurate predictions in either the turbine wakes
velocity or turbulence intensity. Based on The standard k-¢ model, many modified k-¢ models are
proposed to improve the simulation results. Many of them adopted non-equilibrium turbulence in the
model and resulted in better prediction of wake velocity. But the simulation on the wake turbulence
intensity is still inaccurate on the near wakes or far wakes. Because most of these modified k-e models
are still based on the isotropic Reynolds stresses assumption. But existing researches had also noted
the anisotropic turbine wakes. To account for this feature, Reynolds Stress Model (RSM), coupled
with actuator disc model with rotation (ADM-R) are used in this study to simulate the wake velocity,
turbulence intensity and kinetic shear stress of a miniature wind turbine. The simulation results are
compared with wind tunnel test data, and simulation results from the standard k-¢ model and a well
noted extended k-¢ model.

Simulation results showed that the RSM is capable to accurately predict the turbine wakes velocity,
turbulence intensity and kinetic stress in presented circumstance. The asymmetric features of the
miniature wind turbine wakes due to non-uniform inflow and wake rotation are also captured by RSM.
In contrast, the standard k-¢ model fails to predict wakes velocity and it over-estimates the turbulence
intensity before 10 D. Moreover, it fails to simulate the rotation of wakes. The extended k-¢ model
has good prediction on the wakes velocity, but it under-estimates the wakes turbulence intensity as
expected due to the isotropy of Reynolds stresses.

Both the RSM simulation results and experimental data show that the wind velocity decreases
after air flowing over the miniature turbine and the maximum reduction occurs at hub height while
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the turbulence intensity is greatly amplified at the blade tip. The recovery of wake velocity will attain
90% at around 10 D downstream and achieves a steady 91% at around 16 D. The wake turbulence
intensity increases gradually and reaches a maximum at around 5 D. The recovery of wake turbulence
intensity slows down after 15 D and eventually the turbulence intensity merges in with that as the
approaching flow. Further investigation by RSM shows that the horizontal profile of wakes velocity
can be approximated with a Gaussian distribution, and that for the turbulence intensity can be
approximated with a bimodal distribution. The horizontal asymmetry of wake is minimal after 5 D
and the influence of wakes effect is limited within £ D in the across-wind direction. The anisotropy of
turbine wakes is also affecting the distribution of the kinetic stresses 11/, v/’ and w'w’ in the RSM.
Results show that the wake of the miniature turbine is clearly anisotropic, especially at the blade
tip. Stress u/u/, and was obviously larger than v'v’ and w'w’, accounting for the under-estimation of
turbulence intensity with the extended k-e model.

Finally, the RSM shows low sensitivity to grid resolution—an actuator disc covered by
10 x 10 grid points is considered sufficient to simulate turbine wakes velocity, turbulence intensity
and kinetic stresses, and an actuator disc covered by 7 x 7 grid points can also yield similar results.
In addition, for the densest grid, it takes around 45 s for the calculation using standard k-¢ model and
extended k-¢ model and around 90 s suing RSM. Though RSM takes twice the computational effort as
k- models, the actual difference is really small and is totally acceptable.
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