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Abstract: This article provides plain and handy expressions to decide the most suitable analytical
model for the thermal analysis of the ground source in vertical ground-coupled heat pump applications.
We perform a comprehensive dimensionless analysis of the reciprocal deviation among the classical
infinite, finite, linear and cylindrical heat source models in purely conductive media. Besides,
we complete the framework of possible boreholes model with the “hollow” finite cylindrical heat
source solution, still lacking in the literature. Analytical expressions are effective tools for both
design and performance assessment: they are able to provide practical and general indications on
the thermal behavior of the ground with an advantageous tradeoff between calculation efforts and
solution accuracy. This notwithstanding, their applicability to any specific case is always subjected to
the coherence of the model assumptions, also in terms of length and time scales, with the specific
case of interest. We propose several dimensionless criteria to evaluate when one model is practically
equivalent to another one and handy maps that can be used for both design and performance analysis.
Finally, we found that the finite line source represents the most suitable model for borehole heat
exchangers (BHEs), as it is applicable to a wide range of space and time scales, practically providing
the same results of more complex models.

Keywords: ground-source heat pump systems; ground heat transfer; analytical models; infinite
linear heat source; infinite cylindrical heat source; finite linear heat source; finite cylindrical heat
source; purely-conductive media; dimensionless analysis

1. Introduction

Ground-source heat pump systems (GSHPs) are one of the most promising high-efficiency
technologies in the heating and cooling sector [1,2]. However, the diffusion of these systems is
still limited by the relevant installation cost of the ground-coupled apparatus and the uncertainties on
the final energy performances. Hence, a proper sizing and control optimization is needed to make
GSHPs efficient and economically viable [3,4].

The topic of the GSHP optimization has been addressed by several authors in the literature through
different approaches and methods (see, for instance, [3,5–10]). Among the others, we consider the
so-called “simulation-based optimization methods” [11] as a very promising methodology to improve
the energy performance of any energy system (GSHP included) through the research of optimal
design and management strategies and possible technological development [12]. The just-mentioned
technique is based on the prediction of the behavior of the system during its operative lifetime, thus
requiring proper simulation models and techniques.
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As well is known, the temperature evolution of the ground source is one of the main drivers
for the efficiency of the overall energy conversion process. In other words, we need to evaluate the
evolution of the temperature field around the ground heat exchangers (GHEs) according to the actual
geometrical, thermo-physical and operative conditions of the ground-coupled apparatus.

Despite the recent development of computer science and numerical methods (see, for instance, [13,14]),
analytical models are able to provide useful, practical and general indications of the thermal
behavior of the ground source with an appropriate tradeoff between implementation efforts and
solution accuracy [3,15]. The advantage of the numerical approach, at least in theory, is the great
variety of geometry, boundary conditions, length and time scales that could be analyzed. They are
particularly appropriate to investigate the short-time behavior of shallow heat exchangers, often
characterized by a relevant heat capacity (i.e., energy piles) [16]. However, result accuracy is
always dependent on the accuracy of the input parameters (i.e., boundary conditions, geometry
and thermo-physical properties) [17]. A high level of accuracy is typically unavailable at the initial
stages of the design process; therefore, the use of complex and time-consuming numerical tools could
result in the very same outcomes of simplified analytical models. Moreover, numerical results are
typically limited to the specific case under analysis, without providing general indications on the
simulated phenomena or other similar systems. On the contrary, the short computational time and
the flexibility in parametric designs make analytical models particularly appropriate for feasibility
analysis, technical standards for GSHP design, simulation and optimization algorithms [3,18–20].

In this work, we deal with the ground modeling in the case of vertical ground-coupled heat
exchangers or borehole heat exchangers (see Figure 1). According to [15,21], after time periods longer
than tb = αgt/r2

b (a few hours for standard BHEs), the heat transfer process within and outside a
BHE can be decomposed into two distinct subsystems: the ground heat exchanger can be assumed as
a pure resistance body (i.e., a thermal resistance), while the surrounding soil can be analyzed through a
time-dependent model in which the BHE is replaced by a Neumann boundary condition (i.e., imposed
heat flux). The general relationship between the mean temperature of the circulating fluid, T f , the
undisturbed temperature of the soil, T0

g , and the heat transfer at the BHE surface, Q̇b, is given by
Equation (1) [21].

 𝑄𝑏

 𝑞𝑏𝐻𝑏
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Figure 1. Schematic diagram of a typical borehole heat exchanger.
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T f − T0
g =

Q̇b
Hb

[
Rb + G

(
x, t, αg, λg

)]
(1)

In this work, we only deal with the the so-called “G-function”, G, without analyzing the thermal
behavior of the ground heat exchanger (i.e., Rb evaluation). However, it is necessary to specify which
ground heat exchanger is considered, because it affects the the geometrical characteristics of the heat
source/sink in the ground domain. The name “G-function” derives from Eskilson’s work [22], and
many other works have dealt with its evaluation (see, for instance, [21,23,24]); however, with minor
adjustments, it is always possible to identify G with the dimensionless temperature evolution within a
semi-infinite medium around a unitary-strength linear (or cylindrical) heat source.

The analytical models of borehole heat exchangers can be classified according to the geometry
of the heat source (i.e., infinite or finite linear or cylindrical heat source) and according to the
physical phenomena considered in the ground modeling (i.e., purely-conductive medium and
saturated porous medium). Table 1 presents a summary overview of the just-mentioned models.

Table 1. Classification scheme and acronyms for analytical ground heat transfer models in GSHP.

Geometry Purely-Conductive Media Saturated Porous Media

Infinite axial extension

MICS
ILS ICS MILS Moving infinite

Infinite line source Infinite cylindrical source Moving infinite line source cylindrical source
(not yet developed)

Finite axial extension

MFCS
FLS FCS MFLS Moving finite

Finite line source Finite cylindrical source Moving finite line source cylindrical source
(not yet developed)

In this work, we take into account only the purely conductive group, leaving the discussion on the
effect of the groundwater movement to future works. The first contribution to the thermal modeling
of the ground heat exchangers comes from Lord Kelvin, who developed the ILS (infinite line source)
theory in 1882 [25]. The classical works of Carslaw and Jeager [26] and Ingersoll et al. [23] applied
Kelvin’s work to ground heat exchangers, developing the other two classical models, i.e., the ICS
(infinite cylindrical source) model and the FLS (finite line source) model. These three models are still
used in current design methodologies, such as the ASHRAE one [19,27].

In Sections 2–4, we will illustrate an exhaustive analysis of classical ILS, FLS and ICS models,
in order to assess their validity ranges in a global and dimensionless form. Then, in Section 5,
we introduce and discuss the “hollow” finite cylindrical model (still lacking in literature) in order to
analyze the concurrent effects of the radial dimension and the finite depth of the heat source.

For each model, we present a dimensionless map to evaluate the ground temperature in the
proximity of the BHE and the thermal interference with other ground heat exchangers. Besides, we
provide some quantitative expressions to find in which conditions one model is basically equivalent to
another one. For instance, we will present an expression that relates the dimensionless radial position
r/rb to the minimum Fourier number Fob = αgt/r2

b after which the deviation between ICS and ILS
models is negligible; in other words, we provide a dimensionless criterion to evaluate the time and the
space scales in which the actual radial dimension of the BHE, rb, does not affect the thermal evolution
of the ground.

In Section 7, we will illustrate how the proposed expressions and maps can be used to analyze
the thermal performance of the BHE fields subjected to an arbitrary time-dependent thermal load by
means of the time and space superposition techniques. An illustrative example is also provided in
Section 8 in order to better illustrate how the proposed maps and expressions result in a plain and
handy tool to determine the temperature of the ground source at any time and distance, helping for
the proper sizing of the BHE field. Finally, we will present a summary list of the ranges in which
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each model is practically equivalent to another one, helping the reader to decide which model is more
appropriate for his/her purposes.

2. ILS—Infinite Line Source Model

ILS is the simplest model for borehole heat exchangers. It consists of an infinite linear heat source
embedded in a semi-infinite homogeneous medium with constant and isotropic properties (Figure 2).
The heat flux is applied at the center of the borehole, and only the radial dimension is considered.
The mathematical formulation of the ILS problem reads:

αg

(
∂2Tg
∂r2 + 1

r
∂Tg
∂r

)
=

∂Tg
∂t

Tg (r → ∞, t) = T0
g

Tg (r, t = 0) = T0
g

q̇ (r → 0, t) = − (2πr) λg
∂Tg
∂r

∣∣∣
r→0

= q̇b

(2)

 𝑞𝑏

𝑟

𝑇𝑔
0

Figure 2. Schematic representation of the infinite line source model.

The dimensionless solution to the problem (2) is given in Equation (3) [23,26].

Θg(For) =
1

2π

∫ ∞

r/2
√

αgt

exp
(
−β2)
β

dβ =
1

4π
Ei
(

1
4For

)
(3a)

Θg(p) =
1

4π

(
− ln (p)− γ−

∞

∑
k=1

pk

k!k

)
(3b)

where:
For =

αgt
r2 p =

1
4For

Θg =

(
T0

g − Tg

)
λg

q̇b
γ ≈ 0.577216

We note that the dimensionless temperature, Θg, depends only on Fourier number. At small p
(i.e., large time scales), the high-order terms in the series (3b) can be neglected, thus obtaining the
classical Expression (4) [22,28].

Θg (p) =
1

4π
(p− ln (p)− γ) (4)
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The approximate expression (4) can be used when For ≥ 1. For typical ground thermal diffusivities
and BHE radii, this condition corresponds to a time period of about 3–5 h.

3. ICS—Infinite Cylindrical Source Model

This model represents the heat source as an infinitely long hollow cylinder embedded in a
semi-infinite homogeneous medium with constant and isotropic properties (Figure 3). The heat flux q̇b
is imposed at the surface (r = rb). Similar to the ILS model, only the radial dimension is taken into
account. In this case, the energy equation reads:

αg

(
∂2Tg
∂r2 + 1

r
∂Tg
∂r

)
=

∂Tg
∂t

Tg (r → ∞, t) = T0
g

Tg (r, t = 0) = T0
g

q̇ (rb, t) = − (2πrb) λg
∂Tg
∂r

∣∣∣
r=rb

= q̇b

(5)

 𝑞𝑏

𝑟

𝑇𝑔
0

𝑟𝑏

Figure 3. Schematic representation of the infinite cylindrical source model.

The dimensionless solution to the problem (5) is given in Equation (6) [23,26].

Θg

(
Fob,

r
rb

)
=

1
π2

∫ ∞

0

exp
(
−β2Fob

)
− 1

J2
1 (β) + Y2

1 (β)

[
J0

(
r
rb

β

)
Y1(β) + J1(β)Y0

(
r
rb

β

)]
dβ

β2 (6)

where J0 and J1 are Bessel functions of the first kind of order zero and one, respectively, Y0 and Y1 are
Bessel functions of the second kind of order zero and one, respectively. The thermal field depends
on two dimensionless groups: the Fourier number at the borehole radius, Fob = αgt/r2

b , and the
dimensionless radial distance, r

rb
.

Equation (6) can be hard to evaluate numerically. Ingersoll et al. [23] provides a table of reference
values in the range 0.1 ≤ Fob ≤ 25.000 and r/rb = {1, 2, 5, 10}. Another equivalent and handy
expression of the ICS solution can be found in [24,29].

Figure 4 shows the dimensionless profile of Θg evaluated through both the ILS and
ICS expressions. We note that the deviation between the two models is negligible at sufficiently
large Fob. Besides, increasing the r/rb value (i.e., increasing the distance from the heat source), the two
models overlap at even smaller Fob. That means that the ICS model is more accurate only in the
proximity of the ground heat exchanger or at small time scales. Ingersoll et al. [23] and Eskilson [22]
state that the ICS model should be used only for For ≤ 20 and For ≤ 5, respectively. Figure 4 shows
also the graphical representation of the two above-mentioned criteria.
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Ingersoll and Eskilson referred to the borehole surface (i.e., r/rb = 1); however, as shown in
Figure 4, at larger radial coordinates, both criteria are too precautionary. Thus, we developed a novel
correlation to find the maximum Fob beyond which the relative deviation between ICS and ILS models
is lower than 5 % (see Figure 4). However, for r/rb ≥ 5, the absolute deviation between the two models
is so small that we can use the ILS model at any Fob.

Figure 4. Dimensionless temperature, Θg, given by the ILS (gray lines) and ICS models (black lines).
The expression Fob ≥ 3.1 (r/rb) + 7.1 evaluates the maximum Fob beyond which the relative deviation
between ICS and ILS models is lower than 5 %.

For typical ground thermal diffusivities and BHE radii, Ingersoll and Eskilson criteria, at r/rb = 1,
correspond to a time period of about 1–7 days and 5–48 h, respectively. Depending on the r/rb value,
the 5% deviation occurs in a time period of about 12 h to some days.

4. FLS—Finite Line Source Model

The FLS solution is able to consider the axial effects of the heat transfer process, occurring at long
time scales [24]. The original formulation by Ingersoll et al. [22,23,26] has been improved in the last
few decades by several authors (see, among others, [30–32]).

The FLS model is based on the following assumptions: the borehole is represented by a linear
heat source of length Hb with the top corresponding to the soil surface (see Figure 5); the ground is
a semi-infinite homogeneous medium with constant and isotropic properties, and the soil surface
is taken to be equal to T0

g . It is worth recalling that the actual evolution of the surface temperature

can be neglected below a depth of z > 3
√

αg
ω , where ω is the main angular frequency of the surface

temperature evolution [33]. This limit corresponds to a depth of about 5–8 m [22]; thus, for typical BHE
depths, the actual evolution of the surface temperature does not significantly affect the heat transfer
process. The validity of this assumption has to be verified for shallow systems (e.g., energy piles).
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Figure 5. Schematic representation of a finite line heat source model. The surface temperature is
fixed to T0

g .

In the FLS model, the energy equation reads:

αg

(
∂2Tg
∂r2 + 1

r
∂Tg
∂r +

∂2Tg
∂z2

)
=

∂Tg
∂t

Tg (r → ∞, z, t) = T0
g

Tg (r, z→ ∞, t) = T0
g

Tg (r, z = 0, t) = T0
g

Tg (r, z, t = 0) = T0
g

q̇ (r, 0 ≤ z ≤ Hb, t) = − (2πr) λg
∂Tg
∂r

∣∣∣
r→0

= q̇b

(7)

The dimensionless solution of the FLS problem is [32]:

Θg(FoH , Z, R) =
1

4π

∫ 1

0

[
1

d/Hb
er f c

(
d/Hb

2
√

FoH

)
− 1

d′/Hb
er f c

(
d′/H

2
√

FoH

)]
dZ′ (8)

where:
FoH = αgt/H2

b Z = z/Hb R = r/Hb Z′ = z′/Hb

d/Hb =
√

R2 + (Z− Z′)2 d′/Hb =
√

R2 + (Z + Z′)2

In engineering practice, it is convenient to have only one effective BHE temperature. Some authors
take this reference value as the one at the middle depth (z = Hb/2); others prefer the integral average
temperature along the borehole depth. At long time scales, the former option overestimates the average
temperature of the borehole surface (see, for instance, [24]); therefore, we always refer to the second
alternative (Equation (9)).

Θg =
∫ 1

0
ΘgdZ (9)

Claesson and Javed [31] present a useful and fast expression to evaluate Θg (see Equation (10)).
Besides, they extend the generality of the FLS model by considering an arbitrary position of the line
heat source, namely D < z < D + Hb. Equation (8) refers to the case in which D = 0.

Θg =
1

4π

∫ ∞

1/
√

4FoH

exp
(
−R2β2

) Ils

(
β, D

Hb β

)
β2 dβ (10)
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where:
Ils (h, d) = 2 · ier f (h) + 2 · ier f (h + 2d)− ier f (2h + 2d)− ier f (2d)

ier f (x) =
∫ x

0
er f (β)dβ = x · er f (x)− 1√

π

[
1− exp

(
−x2

)]
Equation (10) introduces an additional dimensionless group with respect to Equation (8), i.e.,

D/H, that accounts for the depth of installation of the active part of the GHE. However, in this work,
we analyze only the case in which D = 0, in order to have a proper comparison with the other models.

Figure 6 shows the average dimensionless temperature, Θg, as a function of the Fourier number,
FoH , and dimensionless radial distance R = r/Hb evaluated through the ILS and FLS solutions.
As expected, the deviation between the two models becomes significant at large FoH values.
The “Eskilson criterion” represents the classical limit for the applicability of the ILS solution as
defined in [22], i.e., FoH = 1/90. For typical ground thermal diffusivities and BHE depths, the Eskilson
criterion corresponds to a large range of time of about 1–7 years. However, the just-mentioned criterion
does not account for the actual evolution of the ground temperature at different radial distances,
resulting in a relative deviation between FLS and ILS models that varies from about 15% down to
3% at large and small R values, respectively. On the contrary, Figure 6 provides also a more general
criterion to assess the deviation between FLS and ILS models: the bold dashed lines represents the
maximum FoH beyond which the relative deviation between the two models is higher than 5%.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.E-8 1.E-7 1.E-6 1.E-5 1.E-4 1.E-3 1.E-2 1.E-1 1.E+0 1.E+1 1.E+2

Θ
g

FoH

R = 1 / 400

R = 1 / 200

R = 1 / 100

R = 1 / 40

R = 1 / 20

R = 1 / 10

R = 1 / 5

Eskilson criterion

FoH = 3E-4 R -0.674

ILS
FLS

Figure 6. FLS solution: the average dimensionless temperature, Θg, evaluated through the FLS model
(solid lines) and the ILS model (dashed lines). The bold vertical line represents the Eskilson criterion,
i.e., FoH = 1/90. The bold dashed line represents the limit beyond which the relative deviation between
FLS and ILS models is higher than 5%.

In contrast with the ILS model, the FLS solution has a steady state value, “... although it may take
a long time to reach this state” [23]. According to [23,24], Θg,s reads:

Θg,s(Z, R) =
1

4π

∫ 1

0

[
1

d/Hb
− 1

d′/Hb

]
dZ′ (11)
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Figure 7 shows the value of Θg,s depending on the R value and the Fourier number, FoH,s,
corresponding to Θg = 0.95Θg,s. As mentioned above, we need a very long period of time to reach the
steady condition: e.g., for a typical BHE of a 100-m depth, the resulting FoH,s may even correspond
to 250 years, depending on the soil thermal diffusivity.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.E-4 1.E-3 1.E-2 1.E-1

R

Θg,s ≈ -0.36 log10R - 0.13

FoH,s ≈ -7.83 R2 + 3.84 R + 0.10

Figure 7. FLS model: steady state Θg,s and FoH,s as a function of R.

5. FCS—Finite Cylindrical Source Model

The FCS solution does not belong to the group of traditional analytical models (i.e., ILS, ICS
and FLS). To our knowledge, the only available analytical expression of the FCS model was provided
by Man et al. [28,32]. However, the proposed solution is based on a different geometry with respect to
the above-described ICS model: specifically, the heat source is not assumed as a hollow cavity, but
it consists of a cylindrical surface embedded in the soil domain. Man et al. named this model the
“solid cylindrical source”, aiming at modeling those ground heat exchangers in which the internal
material plays a significant role in the heat transfer process (e.g., energy piles).

In this work, we deal with the “hollow” finite cylindrical source; in other words, we refer to the
geometry shown in Figure 8, where no material is considered within the heat generation surface. In this
way, we provide a coherent comparison with the above-illustrated models, investigating possible
improvements of the BHE modeling also in those cases where the grouting material can be assumed as
a purely resistive body (i.e., when Equation (1) is applicable). The equations of the problem read:

αg

(
∂2Tg
∂r2 + 1

r
∂Tg
∂r +

∂2Tg
∂z2

)
=

∂Tg
∂t

Tg (r → ∞, z, t) = T0
g

Tg (r, z→ ∞, t) = T0
g

Tg (r, z = 0, t) = T0
g

Tg (r, z, t = 0) = T0
g

q̇ (rb, 0 ≤ z ≤ Hb, t) = − (2πrb) λg
∂Tg
∂r

∣∣∣
r=rb

= q̇b

(12)
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Figure 8. Schematic representation of the “hollow” finite cylindrical source model.

As mentioned above, an analytical solution of the problem (12) is not available in the literature.
According to the dimensional analysis of the model, the FCS solution can be expressed through the
following dimensionless groups:

Θg =

(
T0

g − Tg

)
λg

q̇b
FoH = αgt/H2

b Z = z/Hb

R = r/Hb R′ = rb/Hb

In this work, we derived the evolution of Θg through a numerical FEM analysis using COMSOL
Multiphysics R© 5.2 [34]. The software was used for geometry design, meshing and the resolution of
the transient heat conduction equation from zero to FoH = 102. We used a 2D-axial symmetric domain
with an unstructured triangular mesh. The axial and the radial extension of the domain was set equal
to four-times the characteristic length of the problem (i.e.,

√
αgt) in order to reproduce the behavior

of a semi-infinite medium. The number of elements varies from about 20,000–90,000, depending on
the dimension of the heat generation cavity. In particular, we performed a sensitivity analysis of
the mesh dimension at the BHE wall: the resulting minimum element size to ensure the coherence
between the imposed heat flux and the evaluated thermal gradient is equal to rb/2. The upper bound
of the element size is 10 m. The simulation time stepping was based on the standard COMSOL BDF
algorithm with a maximum step size corresponding to FoH = 1. The standard COMSOL PARDISO
solver was employed obtaining residuals always lower than 10−6.

We performed many numerical simulations by varying R′ in the range of the typical BHE values
(see Figure 9). Similarly to the FLS model, we refer to the average value of Θg between zero and Hb (see
Equation (9)); therefore, Z is not taken into account. The resulting Θg profiles are shown in Figure 9.
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(a) (b)

(c) (d)

(e)

Figure 9. Dimensionless temperature, Θg, as a function of FoH , BHE aspect ratio, R′ = rb/Hb, and
dimensionless radial distance from the BHE, R/R′ = r/rb. (a) R′ = 1/2000; (b) R′ = 1/1330;
(c) R′ = 1/1000; (d) R′ = 1/800; (e) 1/400.

Figure 10 compares the FCS and FLS models. It can be seen that, after a sufficient period of time,
the FCS curves become equivalent to the FLS ones. Figure 11 shows in detail the case of 1/R = 1000:
all of the lines at different R′ tend to the same FLS profile given by the specific R value.
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Figure 10. Dimensionless temperature Θg evaluated through the FCS (black lines), FLS (gray lines)
and ICS models at different R = r/Hb and R′ = rb/Hb values.

0.0

0.1

0.2

0.3

0.4

0.5

1.E-08 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03

Θ
g

FoH

FLS

R' = 1 / 1000

R' = 1 / 1330

R' = 1 / 2000

ICS

1/R = 1000

Figure 11. Dimensionless temperature Θg evaluated through the FCS and FLS models for R = r/Hb = 1/1000.

It is possible to define a “critical” value, FoH,c, as a function of R′ and R, beyond which FCS and
FLS models become practically equivalent. Here, we consider FoH,c as the Fourier number after which
the relative difference between FCS and FLS models is less than 5% (see Figure 12).
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Figure 12. FoH,c as a function of R and R′. FoH,c corresponds to the time after which the relative
difference between the FCS and FLS models is less than 5%.

The FoH,c value for a typical BHE with a depth of 100 m and a radius of 0.05 m, at the BHE surface
(i.e., R/R′ = 1), corresponds to a few hours or days, depending on soil thermal diffusivity. At the
typical distance between two BHEs, say 10 m (i.e., R/R′ = 200), FoH,c corresponds to a few months
or years still depending on soil thermal diffusivity. However, we note that for R ≤ 100, the actual
deviation between the FCS and FLS models is practically negligible. This value corresponds to 0.5–1 m
for typical boreholes; therefore, we can conclude that FLS model is sufficiently accurate at long time
scales or to evaluating the thermal interference within a BHE field.

The FLS model can be used also to evaluate the FCS behavior at the steady state. In fact,
as shown in Figure 10, for the typical aspect ratio of BHEs (i.e., 1/2000 ≤ R′ ≤ 1/400) and R values
(i.e., 1/2000 ≤ R ≤ 1/5), FoH,c is lower than the corresponding FoH,s evaluated for the FLS model.
Thus, we can extend Equation (11) and Figure 7 to the steady state of the FCS model.

With reference to the ICS model, we note a minor deviation with respect to the FCS profile only at
low FoH (i.e., FoH ≈ 1× 10−8) for R/R′ = 1 (see Figure 10 and 11). This deviation becomes practically
negligible at FoH ≥ 1× 10−7 for any R and R′. For typical BHEs, this time scale corresponds to a
few hours; in other words, we are in the same order of magnitude of the lower temporal limit of the
applicability of the “G-function”, tb. Therefore, for practical purposes, we can neglect this deviation.
Regarding long time scales, as we discussed in Section 4, after a sufficiently long time period (see
Figure 6), the ICS model behaves like the ILS one. Therefore, we can extend the same considerations
about the FLS and ILS deviation also to ICS and FCS models (see Section 4) without further analyses.

6. Summary List of the Proposed Dimensionless Criteria

For the sake of readability, in this section, we present a short summary of the proposed deviation
criteria among the ILS, ICS, FLS and FCS ground models. The reader may refer to the following list
to chose readily the most appropriate model for his/her specific analysis. We recall that the term
“practically equivalent” refers to a relative deviation lower than 5%.
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• The ILS model is practically equivalent to the ICS one when:

Fob ≥ 3.1 · (r/rb) + 7.1

• The ILS model is practically equivalent to the FLS one when:

FoH ≤ 3× 10−4 · R−0.67

• The ICS model is practically equivalent to the FCS one when:

FoH ≥ 1× 10−7

• The FLS model is practically equivalent to the FCS one when:

FoH ≥ 6.3× 10−2 · (R/R′)2 + 5.4× 10−2 · (R/R)′ + 17.8

Following the above list, the FLS model results in being the most suitable model for the thermal
analysis of borehole heat exchangers. In fact, it can be successfully applied in a wide range of time and
space scales, practically providing the same or better results than the other models.

7. Superposition Techniques

All of the above-described analytical models refer to the ground response when a constant
heat pulse is imposed at a single borehole surface. The operative conditions of real GSHPs are
different: first, a typical BHE field is made of several boreholes, any of which exchanges a time-variable
thermal power. The actual evolution of the heat flux q̇b depends on several factors: e.g., building
thermal load profile, instantaneous COP/EER of the heat pump unit, heat transfer effectiveness of
each borehole, supply temperature and the instantaneous value of the ground temperature resulting
from previous heat exchanges. Only a complete simulation model, taking into account the behavior of
each GSHP subsystem, is able to evaluate the actual heat flux at each borehole surface [3].

In this section, we describe the mathematical techniques to obtain the analytical expression of
the ground temperature when more than one time-dependent heat source is considered, i.e., the time
superposition and space superposition techniques.

7.1. Time Superposition Technique

The solution to heat transfer problems with time-dependent boundary conditions can be
related to the solution of the same problem with constant boundary conditions by means of the
Duhamel’s theorem [33]. In other words, we evaluate the ground temperature response to an arbitrary
time-dependent q̇b(t) through the “fundamental solution” of the same problem to a single, constant,
unitary heat pulse.

All of the Θg(x, t) expressions illustrated in the previous sections (i.e., the ILS, FLS, ICS and FCS
models) are fundamental solutions. Therefore, according to Duhamel’s theorem, the ground response
to a time-varying term q̇b(t) reads:

Tg(x, t)− T0
g

λg
=

[∫ t

0
Θg(x, t− β)

q̇b
dt
(β) dβ

]
+ Θg(x, 0) · q̇BHE(0) (13)

where x is the generic spatial coordinate, β is the auxiliary time variable, and Θg corresponds to
Equations (3), (6) and (8) or Figure 9, depending on the employed model.

For practical purposes, the GSHP analysis is typically based on a quasi steady-state formulation [3]:
in other words, the actual evolution of the physical quantities (e.g., temperature and energy exchanges)
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is approximated by a series of constant average values (see Figure 13a). Thus, the general expression
of Duhamel’s theorem (Equation (13)) can be modified as follows:

Tg(x, t = n∆t)− T0
g

λg
=

n

∑
i=1

[
Θg(x, t = i∆t)

(
q̇n−i+1

b − q̇n−i
b

)]
(14)

where Tg(x, t = n∆t) corresponds to the ground temperature at the end of the n-th time step and q̇0
b = 0.

The physical interpretation of Equation (14) is shown in Figure 13b. The basic heat pulse q̇1
b

is applied for the entire duration of the analysis (four time steps in Figure 13b). Successively, we
superimpose other “effective pulses”, namely: q̇∗2 = q̇2

b − q̇1
b for three time steps, q̇∗3 = q̇3

b − q̇2
b for

two time steps and q̇∗4 = q̇4
b − q̇3

b for the last step.
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Figure 13. Superposition of piecewise heat steps. The actual pulses q̇1, q̇2, q̇3, q̇4 are superimposed in
time as “effective pulses” q̇∗1 , q̇∗2 , q̇∗3 , q̇∗4 . (a) Actual thermal pulses; (b) effective thermal pulses.

7.2. Space Superposition Technique

If we assume that the radial dimension of each BHE is negligible with respect to the size of the
field, the ground temperature at a given coordinate x is obtained by summing up all of the individual
temperature alterations caused by each borehole, namely:

Θg(x, t) =
Nb

∑
j=1

Θg,j
(∣∣x− xj

∣∣ , t
)

(15)

where Nb is the boreholes number and xb is the position of the j-th borehole.
Considering both time and space superposition, the final expression of the ground thermal

field reads:

Tg(x, t = n∆t) = T0
g −

Nb

∑
j=1

n

∑
i=1

Θg
(∣∣x− xj

∣∣ , t = i∆t
)

λg

[
q̇n−i+1

b,j − q̇n−i
b,j

]
(16)

8. Illustrative Examples

In this section, we propose two brief application examples of the proposed expressions and maps:
the first one compares the above-described models in order to show the coherence between the
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numerical results and the above-mentioned considerations; the second example shows how the
proposed charts can be conveniently and successfully used to evaluate the necessary spacing and
avoid the thermal interference between two BHEs.

8.1. Example #1

In this first example, we compare the deviation among the ILS, ICS, FLS and FCS models in
terms of ground temperature evaluation. Specifically, we analyze the relevance of the axial dimension
(finite depth models) and the actual BHE radius (cylindrical models). We refer to two configurations,
whose parameters are presented in Table 2. The configurations have the same BHE radius, rb, but
different Hb: the first one has a greater depth (low aspect ratio, R′) with respect to the others.
The thermal evolution of the ground source is evaluated at six different time scales (i.e., after one
day, one week, one month, one, five and ten years) and at three different radial position (i.e., on the
BHE wall, 5 m and 10 m away from the BHE axis) in order to analyze both the thermal behavior of
the borehole and its interference with adjacent ground heat exchangers. Different radial positions
allow also the evaluation of the relevance of axial dimension at different time scales. Tables 3 and 4
summarize all of the results for the two above-mentioned configurations.

Table 2. Parameters for the two analyzed configurations.

Parameter Configuration #1 Configuration #2

Ground thermal conductivity, λg W·m−1·K−1 1.5 1.5
Ground thermal diffusivity, αg m2·s−1 4.8× 10−7 4.8× 10−7

Borehole radius, rb m 0.075 0.075
Borehole depth, Hb m 100 60

With regard to the cylindrical models, as predicted by Figures 4 and 10, we note that in the
two configurations, both ICS and FCS models deviate from ILS and FLS models only at short time
scales (i.e., daily period) and R/R′ = 1. No significant effects occur at greater radial distances.
As expected, the axial dimension becomes significant only at long time scales in accordance with the
criteria in Figures 4 and 12. The higher the aspect ratio R′, the higher the deviation among infinite and
finite models.

8.2. Example #2

In this second example, we show how the proposed maps can be conveniently and
successfully used to properly size a BHEs field according to the specific thermal load and ground
thermo-physical properties.

Suppose that we want to determine the minimum distance between two BHEs (say, A and B) in
order to avoid the thermal interference among them. We choose a a temperature increase of 0.5 K as
the maximum alteration that A can produce on B, and vice versa. The thermal load can be assumed as
constant and equal to q̇b = 35 W·m−1. The period to be taken into account is four months. The ground
thermo-physical properties and BHEs geometrical characteristics are shown in Table 2.

According to the above-mentioned parameters, we want to maintain the dimensionless
temperature Θg lower than 0.5×1.5

35 = 0.02. The FoH corresponding to four mounts (i.e., 120 days)
is 5× 10−4. We can use these two values as coordinates in the FLS map (Figure 6), obtaining the
dimensionless radial distance R = 1/20. This value corresponds to 5 m for a 100-m BHE depth.
Obviously, the just-described procedure does not represent an actual and complete design strategy,
but we showed how the proposed maps can be used for quick preliminary or verification analyses.
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Table 3. Configuration #1: comparison among the Θg values evaluated through different analytical models. rb = 0.075 m, Hb = 100 m, R′ = 1/1330.

r 0.075 5 10

t 1 Day 1 Week 1 Month 1 Year 5 Years 10 Years 1 Day 1 Week 1 Month 1 Year 5 Years 10 Years 1 Day 1 Week 1 Month 1 Year 5 Years 10 Years

For 7.4×100 5.2×101 2.2×102 2.7×103 1.3×104 2.7×104 1.7×10−3 1.2×10−2 5.0×10−2 6.1×10−1 3.0×100 6.1×100 4.2×10−4 2.9×10−3 1.2×10−2 1.5×10−1 7.6×10−1 1.5×100

FoH 6.9×10−6 4.8×10−5 2.1×10−4 2.5×10−3 1.3×10−2 2.5×10−2 6.9×10−6 4.8×10−5 2.1×10−4 2.5×10−3 1.3×10−2 2.5×10−2 6.9×10−6 4.8×10−5 2.1×10−4 2.5×10−3 1.3×10−2 2.5×10−2

ILS 0.23 0.38 0.49 0.69 0.82 0.88 0.00 0.00 0.00 0.05 0.16 0.21 0.00 0.00 0.00 0.01 0.07 0.11
ICS 0.24 0.38 0.50 0.69 0.82 0.88 0.00 0.00 0.00 0.05 0.16 0.21 0.00 0.00 0.00 0.01 0.07 0.11

FLS 0.23 0.38 0.49 0.68 0.80 0.84 0.00 0.00 0.00 0.05 0.15 0.19 0.00 0.00 0.00 0.01 0.06 0.10
FCS 0.34 0.38 0.49 0.68 0.80 0.84 0.00 0.00 0.00 0.05 0.15 0.19 0.00 0.00 0.00 0.01 0.06 0.10

Table 4. Configuration #2: comparison among the Θg values evaluated through different analytical models. rb = 0.075 m, Hb = 60 m, R′ = 1/800.

r 0.075 5 10

t 1 Day 1 Week 1 Month 1 Year 5 Years 10 Years 1 Day 1 Week 1 Month 1 Year 5 Years 10 Years 1 Day 1 Week 1 Month 1 Year 5 Years 10 Years

For 7.4×100 5.2×101 2.2×102 2.7×103 1.3×104 2.7×104 1.7×10−3 1.2×10−2 5.0×10−2 6.1×10−1 3.0×100 6.1×100 4.2×10−4 2.9×10−3 1.2×10−2 1.5×10−1 7.6×10−1 1.5×100

FoH 1.2×10−5 8.1×10−5 3.5×10−4 4.2×10−3 2.1×10−2 4.2×10−2 1.2×10−5 8.1×10−5 3.5×10−4 4.2×10−3 2.1×10−2 4.2×10−2 1.2×10−5 8.1×10−5 3.5×10−4 4.2×10−3 2.1×10−2 4.2×10−2

ILS 0.23 0.38 0.49 0.69 0.82 0.88 0.00 0.00 0.00 0.05 0.16 0.21 0.00 0.00 0.00 0.01 0.07 0.11
ICS 0.24 0.38 0.50 0.69 0.82 0.88 0.00 0.00 0.00 0.05 0.16 0.21 0.00 0.00 0.00 0.01 0.07 0.11

FLS 0.23 0.38 0.49 0.68 0.78 0.82 0.00 0.00 0.00 0.05 0.14 0.17 0.00 0.00 0.00 0.01 0.06 0.09
FCS 0.37 0.38 0.49 0.68 0.78 0.82 0.00 0.00 0.05 0.05 0.14 0.17 0.00 0.00 0.00 0.01 0.06 0.09



Energies 2016, 9, 890 18 of 21

9. Conclusions

In this work, we dealt with several analytical models for the ground source in the GSHP context.
Specifically, we reviewed and discussed the traditional infinite, finite, linear and cylindrical models
for borehole heat exchangers. Besides, we developed the “hollow” finite cylindrical source model
that was still missing in the scientific literature. After a brief discussion of the assumptions and the
characteristics of each model, we performed some dimensionless analyses of the evolution of the
ground thermal field in order to figure out some universal and general criteria to decide which model
should be employed in any specific case. These criteria are summarized in Section 6.

In conclusion, FLS seems to be the most suitable model both for BHE design and multi-year
operative analyses. The ILS model tends to overestimate the temperature level of the ground source,
especially at high values of the dimensionless distance from the borehole (i.e., R/R′). Cylindrical
models are particularly suitable to investigate the temperature evolution near the ground heat
exchanger at short time scales, but, for the typical analyses in the GSHP context, we deal with
time and space scales in which both ICS and ILS models are practically equivalent to the ILS and FLS
ones, respectively. Moreover, it is worth recalling that all of the analyzed models can be applied only
for times longer than tb (generally a few hours), while they are not able to predict very short-time
responses that are related to the transient behavior of the ground heat exchanger. For typical BHE
geometries, the time scale beyond which the cylindrical models deviate from the linear ones is very
close to tb, making ICS and FCS models ineffective. In short, the FLS model represents a proper
tradeoff between modeling accuracy and computational effort for all of the typical BHE design and
simulation contexts.

In this work, we do not consider groundwater movement. Future works will be aimed at
finding similar dimensionless criteria to evaluate in which time and space scales the fluid advection
significantly affects the thermal response of the ground source. In other words, we will develop a
quantitative relationship between the Fourier and the Péclet numbers to assess when purely-conductive
molds have to be replaced by the “porous media” theory. Besides, we will extend our analysis to other
ground heat exchangers, e.g., horizontal configurations and shallow heat exchangers, such as energy
piles or baskets.
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Nomenclature

Acronyms

ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers
BHE Borehole heat exchanger
COP Coefficient of performance of the heat pump in heating mode
EER Coefficient of performance of the heat pump in cooling mode
FCS Finite cylindrical source model
FLS Finite line source model
GHE Ground heat exchanger
GSHP Ground-source heat pump system
ICS Infinite cylindrical source model
ILS Infinite line source model



Energies 2016, 9, 890 19 of 21

Symbols

D BHE installation depth
Ei Exponential integral function
For Fourier number referred to the radial coordinate
Fob Fourier number referred to the borehole radius
FoH Fourier number referred to the borehole depth
G “G-function” or dimensionless soil temperature
Hb Borehole depth, m
Nb Boreholes number
Q̇ Thermal power, W
R Dimensionless radial coordinate
R′ BHE aspect ratio
Rb Borehole thermal resistance, m·K·W−1

T Temperature, K or ◦C
Z Dimensionless axial coordinate
er f Gauss error function
q̇ Linear heat flux, W·m−1

r Radius, m
rb Borehole radius, m
t Time, s
tb Borehole characteristic time, s
x Position vector, m
z Axial coordinate, m

Greek Letters

α Thermal diffusivity, m2·s−1

β Auxiliary integration variable
λ Thermal conductivity, W·m−1·K−1

γ Euler’s constant
Θ Dimensionless temperature

Subscripts

b Borehole
g Ground source
f Circulating fluid within BHE ducts
s Steady state

Superscripts

¯ Mean value
0 Initial time
n Current time step
i Generic time step
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