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Abstract: The aim of this paper is to calculate the static eccentricity (SE) of a double rotor axial flux
permanent magnet (AFPM) machine by using a general analytical model. The flux density in the
air gap under healthy conditions is calculated firstly, where the axial and circumferential magnetic
flux densities are obtained using a coupled solution of Maxwell’s equations and Schwarz-Christoffel
(SC) mapping. The magnetic flux densities under SE conditions are calculated afterwards using
a novel bilinear mapping. Some important electromagnetic parameters, e.g., back electromotive
force (EMF), cogging torque and electromagnetic (EM) torque, are calculated for both SE and healthy
conditions, and compared with the finite element (FE) model. As for the double rotor AFPM, SE does
not contribute much effect on the back EMF and EM torque, while the cogging torque is increased.
At each calculated section, FE models were built to validate the analytical model. The results show
that the analytical predictions agree well with the FE results. Finally, the results of analytical model
are verified via experimental results.

Keywords: analytical model; axial flux permanent magnet (AFPM) machines; back electromotive
force (EMF); conformal mapping (CM); double rotor; static eccentricity (SE); Finite element (FE)
model; torque

1. Introduction

Axial flux permanent magnet machines (AFPMMs) have a number of distinct advantages over
radial flux permanent magnet machines (RFPMMs). Axial flux permanent magnet (AFPM) can be
designed to have a higher power-to-weight ratio, resulting in a need for less core material and reduced
complexity to adjust the air gap [1]. Moreover, because of the disc shaped rotor and stator structure,
an AFPM is smaller in size than its RFPMMs counterparts. This particular structural characteristic
makes it easy to address the space limitation in some applications such as electric vehicles (EV) [2],
hybrid electric vehicles (HEV) [3], wind turbos [4] and flywheel storage systems [5], etc.

However, due to the smaller contact surface between the rotor and the shaft, it is more difficult
to design a rotor-shaft mechanical joint with a high mechanical integrity [6], which makes AFPMMs
more susceptible to imperfect assembly issues such as static eccentricities (SEs), dynamic angular
misalignment [7] and static/dynamic eccentricity misalignment [8]. Under angular eccentric conditions,
the rotor is inclined and the air gap is asymmetric. If the rotor shaft assembly is sufficiently rigid,
which means that the level of static eccentricity (SE) does not change during periodic operation, the
axial force becomes unbalanced causing vibrations and unbalanced magnetic forces (UMFs). This
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leads to deterioration of both the machine’s performance and lifetime. The UMFs can also act on the
stator core, exposing the stator windings to unnecessary and potentially harmful vibrations and in the
most extreme case, causing the stator and the rotor to scrape [9]. It is therefore important to estimate
SE by measuring some suitable machine quantities.

Various techniques could be used for modeling AFPMMs under SE conditions, e.g., an analytical
model [10], finite element (FE) model [11], magnetic equivalent circuit (MEC) [12] or a combination
of these methods. The 3D-FE model can precisely model the influence of eccentricity owing to the
accurate computation of air gap region, but it is time consuming, thus, some references have proposed
alternative methods to reduce the computation time. The quasi-3D method, which is widely adopted
by AFPM designers, still takes a large amount of computation time for SEs [13]. Another alternative
approach is the field reconstruction (FR) method [14,15]. The FR method is a mixed analytical-FE
method and partly depends on the FE model. Although, it is much faster than the 3D-FE model, it
still takes a lot of time for modeling the different SE geometries. The analytical approach, due to its
fast and acceptable results, is regarded as an efficient and favorable method compared to the other
methods mentioned above.

Analytical solutions are categorized in different groups. One group is based on the MEC [12].
The MEC is not accurate enough for some qualities like cogging torque and forces because of the nodes
limit. In addition, the model needs to be rearranged at each simulation step due to the requirement of
alignment between stator and rotor reluctances. Moreover, it is more complex when dealing with the
non-uniform air gap. Other possible analytical solutions are appearing in the literature [16], but the
methods used in both papers ignored the circumferential flux density when modeling SE conditions.
The Conformal Mapping (CM) method has so far not been used for accurate magnetic field analysis
for AFPMSMs. In [17], Zarko used this method to calculate the relative permeability of the air gap
considering the slotting effect, but one of the main assumptions is that the motors have an infinite slot
opening which implies the shape of slot is ignored. Following this paper, Zarko improved this method
in [18] to handle this problem, but the computational complexity increases as well.

To overcome the aforementioned problems, this paper adopts an accurate and improved CM
method combined with the Schwarz-Christoffel (SC) method for the no-load and on-load conditions
under SEs. This method depends on the Matlab SC Toolbox instead of the FE model [19].

This paper is organized as follows: in Section 2, a description of double rotor prototype AFPM
with concentrated coil is provided. Section 3 introduces the electromagnetic calculations and SC
transformation used in this paper. SE and its effects on magnetic field are also described in this section.
Afterward, the models of both the healthy condition and the static eccentric magnetic distribution
are introduced in Section 4. In Section 5, the simulation results, e.g., the back electromotive force
(EMF), cogging torque and EM torque, are compared and validated through the simulations done by
the FE model developed by the commercial software JMAG (https://www.jmag-international.com/).
In Section 6, the experimental results verify the accuracy of this method, which is followed by a brief
summary and conclusion of the current study.

2. Description of the Prototype Axial Flux Permanent Magnet Machine

Figure 1a shows the construction of the test machine used in this paper. The AFPM machine
consists of two rotors and one segmented stator. Soft magnetic composite (SMC) is used for the stator
core and axially magnetized NdFeB permanent magnets (PMs) are mounted on the surface of each
rotor, which is made of #45 steel, the SMC modules are fastened by resin and holders. Three phase
concentrated windings are distributed on each stator segment to avoid overlapping. This machine
topology benefits from advantages including short end windings with high winding fill factor, small
stator iron loss under high-speed operation and a convenient manufacturing and assembly process,
plus reduced stator weight due to the absence of the stator yoke. The dimensions and specifications of
the investigated machine are shown in Table 1.

https://www.jmag-international.com/
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Figure 1. Construction of the investigated axial flux permanent magnet machine (AFPMM) (a) and 
the principle of quasi-3D method (b–d). 

Table 1. Parameters of the 6-Pole, 9-Slot axial flux permanent magnet machine (AFPMM). SMC: Soft 
magnetic composite; PM: Permanent magnet. 

Parameter Symbol Value Unit 
Rated power P 10 kW 
Rated voltage U 200 V 
Rated speed np 20,000 rpm 

Number of poles/slots p/Qs 6/9 - 
Stator outer radius Ro 70 mm 
Stator inner radius Ri 45 mm 

Air gap length g 3 mm 
Remnant flux density of PM Br 1.03 T 

Stator core - SMC - 
Permanent magnet - NdFeB - 

3. Calculation of the Magnetic Field 

In this paper, the Quasi-3D-method is adopted in the analytical model. The machine is divided 
into a certain number of layers. Thus, an axial machine could be considered as a combination of 
several individual linear machines, which allows separate analysis of each plane. One 2D model 
developed in 2D polar coordinates is shown in Figure 1d and the average radius of a particular ith 
layer is given by: 
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As for the magnetic flux calculation of air gap, the same approach in [20] is used to calculate the 
magnetic induction in the air gap caused by the magnets and the armature current. Moreover, to take 
the slot effect into account, the SC mapping [21] is adopted. 

By applying Maxwell’s equations on selected slice and by summing the air gap flux caused by 
the armature current and magnets, the flux distribution can be obtained. The following assumptions 
are made during calculations in order to reduce the complexity of the computations: 

(1) The magnetic material has a uniform magnetization and the relative recoil permeability μr is 
constant and has a value close to unity such as in NdFeB materials. 

(2) For the computation of armature reaction field, the magnet regions are regarded as free space. 

Figure 1. Construction of the investigated axial flux permanent magnet machine (AFPMM) (a) and the
principle of quasi-3D method (b–d).

Table 1. Parameters of the 6-Pole, 9-Slot axial flux permanent magnet machine (AFPMM). SMC: Soft
magnetic composite; PM: Permanent magnet.

Parameter Symbol Value Unit

Rated power P 10 kW
Rated voltage U 200 V
Rated speed np 20,000 rpm

Number of poles/slots p/Qs 6/9 -
Stator outer radius Ro 70 mm
Stator inner radius Ri 45 mm

Air gap length g 3 mm
Remnant flux density of PM Br 1.03 T

Stator core - SMC -
Permanent magnet - NdFeB -

3. Calculation of the Magnetic Field

In this paper, the Quasi-3D-method is adopted in the analytical model. The machine is divided
into a certain number of layers. Thus, an axial machine could be considered as a combination of several
individual linear machines, which allows separate analysis of each plane. One 2D model developed in
2D polar coordinates is shown in Figure 1d and the average radius of a particular ith layer is given by:

Rave,i = Ri +
Ro − Ri

2ns
(2i− 1) (1)

where ns is the number of slices.
To improve the accuracy of the results, six slices are considered to calculate the healthy and fault

conditions in this paper. The processes of quasi 3D method and two poles of a 2D model in Cartesian
coordinates are illustrated in Figure 1b–d.

As for the magnetic flux calculation of air gap, the same approach in [20] is used to calculate the
magnetic induction in the air gap caused by the magnets and the armature current. Moreover, to take
the slot effect into account, the SC mapping [21] is adopted.

By applying Maxwell’s equations on selected slice and by summing the air gap flux caused by the
armature current and magnets, the flux distribution can be obtained. The following assumptions are
made during calculations in order to reduce the complexity of the computations:

(1) The magnetic material has a uniform magnetization and the relative recoil permeability µr is
constant and has a value close to unity such as in NdFeB materials.

(2) For the computation of armature reaction field, the magnet regions are regarded as free space.
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(3) Magnetic saturation is absent and the rotor iron cores have infinite magnetic permeability.
(4) Eddy current effects are neglected, which avoids the need for the complex eddy current

field formulation.

3.1. Model of Permanent Magnets (PMs)

For NdFeB, the magnetic induction in the PMs is written as:

B = Br + µrecH = µ0Mr + µrecH (2)

where µrec = µ0 µr is the recoil permeability.
As shown in Figure 2, the magnetization vector is assumed to be along the axial direction and

may be described by Fourier series containing only cosine terms:

My(x) =
∞

∑
n=1,3,5...

Mn cos(
nπx
τp

) (3)

where τp is pole pitch in circumferential direction and αp is the ratio of magnet pole arc to pole pitch,
hm is axial thickness of magnets, L is the axial distance between rotor and back plates and Mn is shown
as follows:

Mn =
4Br

nπµ0
sin(

nπαp

2
) (4)

For a PM machine with linear demagnetization characteristic, the scalar magnetic potentials (ϕ)
in both the air space and the PMs are governed by Laplace’s equation when the rectangular coordinate
system is adopted [21].

∂2ϕ

∂x2 +
∂2ϕ

∂y2 = 0 (5)

The components of magnetic strength are related to ϕ by:

Hx = −∂ϕ

∂x
Hy = − ∂ϕ

∂y (6)

The following boundary conditions are applied to solution of Equation (5):{
HxI(x, y)

∣∣y=L = 0
HxI I(x, y)

∣∣y=0 = 0 ByI(x, y)
∣∣∣y=hm = ByI I(x, y)

∣∣∣y=hm

HxI(x, y)
∣∣∣y=hm = HxI I(x, y)

∣∣∣y=hm

(7)

By applying the previous boundary conditions, the axial and circumferential flux density (By and
Bx respectively) in region I and II are solved. For region I (the air space):

BxI = µ0HxI = µ0Mn

∞

∑
n=1,3,5,...

sinh(nπhm/τp)

∆
× sinh

{
nπ(L− y)

τp

}
sin(

nπx
τp

) (8)

ByI = µ0HyI = µ0Mn

∞

∑
n=1,3,5,...

sinh(nπhm/τp)

∆
× cosh

{
nπ(L− y)

τp

}
cos(

nπx
τp

) (9)

where:

∆ = µrcosh(
nπhm

τp
)sin

{
nπ(L− hm)

τp

}
+ cos

{
nπ(L− hm)

τp

}
sinh(

nπhm

τp
) (10)
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where L′ is the axial position of a typical armature winding current sheet as shown in Figure 4. 

Figure 2. Representation of field regions divided by magnets.

3.2. Model of Armature Reaction Current

Taking into account the armature winding current effect, the fractional slot windings are regarded
as thin wires. The current density J can be obtained by multiplying the value of current sheet
distribution of each phase shown in Figure 3, and dividing by the thickness of slot opening tso

as follows:
J = (JA · IA sin(ωt) + JB · IB sin(ωt− 2π

3
) + JC · IC sin(ωt +

2π
3
))/tso (11)

The current sheet spatial distribution of slots in the stator in per unit (JA, JB and JC) of each phase
is plotted in Figure 3 [21].
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Afterwards, the current density J is expressed by Fourier series to obtain the spatial distribution
of the current, which could be derived as:

J =
∞

∑
n=1,2,3

(An cos(
nπx
pτp

) + Bn sin(
nπx
pτp

)) (12)

where An and Bn are the coefficients obtained from Fourier series.
As shown in Figure 4, the scalar magnetic potentials ϕ due to the current also can be described by

Laplace’s equation. To solve the equation, the following boundary conditions are applied:{
HxI I I(x, y)

∣∣y=0 = 0
HxIV(x, y)

∣∣y=L = 0 HxI I I(x, y)
∣∣∣y=L′ − HxI I I(x, y)

∣∣∣y=L′ = J

HyI I I(x, y)
∣∣∣y=L′ = HyIV(x, y)

∣∣∣y=L′

(13)

where L′ is the axial position of a typical armature winding current sheet as shown in Figure 4.
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BxI I I = −
∞

∑
n=1,3,5,...

∆′sinh(
nπy
pτp

)(An cos(
nπx
pτp

) + Bn sin(
nπx
pτp

)) (14)

ByI I I = −
∞

∑
n=1,3,5,...

∆′cosh(
nπy
pτp

)(An sin(
nπx
pτp

)− Bn cos(
nπx
pτp

)) (15)

where:

∆′ =
µ0 cosh((nπ/pτp) · (L− L′))

sinh(nπ · L/pτp)
(16)

3.3. Model of Stator Slotting

The effect of stator slotting can be linked to the previous flux density by defining a vector potential
(λ) in each slot, the axial and circumferential components of flux density can be written in the form [18]:

BZ = BT · λ∗ = (By + j · Bx) · (Re(λ) + j · Im(λ)) (17)

To this aim, the CM method is used to calculate the λ by considering the slot effect in electrical
machines, but this method has a defect mentioned above. The numerical SC mapping and its Matlab
SC Toolbox could draw the real slot shape [22]:

λ = λy + jλx (18)

where λ0 is the slotless air gap complex permeance in the T-plane, λx and λy are the circumferential
and axial components of the complex relative air gap permeance in the original Z-plane. Furthermore,
K, T, Z and S represent the K-plane, T-plane, Z-plane and S-plane, respectively. It should be noticed
that logarithmic mapping is used for the axial flux electric machine to convert the circular geometry
in the S-plane to the Z-plane. However, the AFPM machines in the quasi 3D model (Figure 1) can be
regarded as linear permanent magnet machines presented by the Z-plane. Hence, the SC mapping
only transforms Z-plane to T-plane. However, in order to calculate the relative air gap permeance via
Hague’s solution, the complex K plane is introduced in this paper. Thus, the vector potential can be
deduced as:

λ =
∂K
∂T
· ∂T

∂Z
· 1
λ0

(19)

The SC transformation in this step maps one canonical domain (e.g., a rectangle, disk, bi-infinite
strip, or the upper (lower) half-plane) into the interior (exterior) of the corresponding polygon. This
transformation is defined as follows:

Z = f (T) = A
∫ n−1

∏
k=1

(t− tk)
−αt
π dt + C (20)
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where A and C are unknown complex constants, n is the number of polygon corners with interior
angle αt, t1, . . . , tk are the points in the canonical domain (in the T-plane) corresponding to the
polygon corners.

The analytical solution of Equation (20) is very difficult for geometries with more than three
vertices [22], therefore, the SC Toolbox provides a numerical solution by a library of command-line
functions which could be seen in [19]. In this paper, the rectangle domain (T-plane) is created by
calling f = correctmap (p, alpha), p is the point and alpha is the corresponding angle as shown in Figure 5.
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The next step aims to map the interior of annular domain in K-plane to rectangular domain in
T-plane. This mapping can be calculated analytically:

T(t) = j(log(K(k))
∆x
2π

+
∆y
2
− j

∆x
2
) (21)

With the determinate rectangular domain vertices by calling vt = evalinv (f, vz), the length (∆x)
and width (∆y) of the T-plane could be calculated.

Finally, Hague solution for magnetic field in an annular domain could be used, and the final
equation which maps the field solution from the K-plane to Z-plane is given as Equation (19), where
∂T/∂Z can be obtained in SC Toolbox by calling evaldiff (f, Z) and:

∂K
∂T

= j
∆x
2π

1
T

(22)

Afterwards, the magnetic flux density at slotted air gap field could be calculated by Equation (17).

3.4. Model of Static Eccentricity

SE is a misalignment condition of stator and rotor axis, thus, the rotor axis is deflected from that
of the stator which causes a non-uniform air gap. In a healthy state (Figure 6a), the air gap length g0

is uniform along the circumferential direction. However, with the occurrence of SE (Figure 6b,c), the
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rotor shaft experiences a deflection and the symmetry of the rotor deviates from that of the stator by an
angle β. The air gap varies from small to large around the circumferential of the stator but the relative
position does not vary with time. In other words, in the case of SE the position of the minimum air gap
length is fixed in space.
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The first step in modeling the eccentricity is to evaluate the air gap length in SE condition [23],
the SE factor can be defined as:

SEF =
r
g0
× 100% (23)

The air-gap length at mean radius Rmid can be written as follows:

gm(θ) = g0(1− SEF cos(θ− γ0)) (24)

where θ is the stator position measured from a reference point (γ0) of the minimal air gap. According
to Figure 6b, the air gap length in all positions can be understood as:

g(R, θ) = gm(θ)− g′(R, θ) (25)

where g’ is the air gap deviation at the Rmid:

g′(R, θ) = (R− Rmid)sinβcos(θ− γ0) (26)

Therefore, the air gap length in all positions can be written as follows:

g(R, θ) = g0(1−
R

Rmid
SEF · cos(θ− γ0)) (27)

Because of the high ratio of machine diameter to length in the AFPMs, 40% SEF means that the
maximum declined distance of rotor plate is 1.2 mm in this case, which is already a significant value
compared to the air gap length of 3 mm.

In this paper, as quasi-2D model processed in Figure 1, the minimal air gap happens at γ0 = 0 rad
and the maximum air gap at θ= π rad. Finally, the air gap length can be deduced as follows:

g(R, θ) = g0(1−
R

Rmid
SEF · cos(

πx
pτp

)) (28)

3.5. Bilinear Mapping

Bilinear mapping [24] is a particular mapping method which is used for the treatment of the
boundaries which are circular but eccentric or intersecting. The purpose of this process is to map the
pair of eccentric circles (E-plane) into a pair of concentric circles (S-plane). After mapping E-plane to
the S-plane, the following mapping could be done by previous study. The general form of this CM can
be defined as:

E(s) =
1

s + C
− K (29)
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HS = HE(
∂E
∂S

)
∗

(30)

where parameters C and K are determined by the rotor and stator radii and the magnitude of
eccentricity.

Markovic used this method to calculate a non-salient motor under SE. Bilinear maps preserve the
scalar magnetic potential but they cannot conserve the vector field potential (Ωv) because flux density
in concentric plane is coupled with the coordinate system. Since vector field potential calculation
is complex and it is very difficult to estimate the scale factor required to map magnetic field into
desired eccentric domain, in this paper, the following form is used to convert the air gap flux density
of concentric AFPM motor in Z-plane to the eccentric model in E-plane [25]:

BE = BZ · λe (31)

where λe is the relative permeance function due to the effect of SE and can be defined as:

λe(r, θ) = Becc(r, θ)/Bno−ecc(r, θ) (32)

The flux density in the slotless air gap with eccentricity (Becc) and without eccentricity (Bno-ecc) can
be estimated by modifying the air gap length in Equation (9).

The calculation processes can be seen in Figure 7.
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4. Simulation Verification

To validate the analytical model, an AFPMM with nine slots and six poles has been studied.
The basic parameters are shown in Table 1. The air gap flux distribution is one of the most important
characteristics in electrical machines because any change of this feature would affect the performance
of motor. In this section, as the first step of investigation, the air gap flux density under healthy
condition is presented. The results of the analytical model are compared with the results calculated by
FE model. As the second step, the flux density under SE at the same conditions is also compared with
the FE results. Moreover, the effect of eccentricity on air gap flux of AFPM will be discussed in the
final step.
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4.1. Air Gap Flux under Healthy Condition

The axial and circumferential components of complex relative permeance in the middle of air gap
are shown in Figure 8. It shows that, under healthy condition, the complex relative air gap permeance
is periodic for each slot pitch.
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With Equation (17), the axial and circumferential components of the flux density in the slotted air
gap are given by:

BZy = Byλy + Bxλx (33)

BZx = Bxλy − Byλx (34)

The axial and circumferential flux density at the center of air gap under no-load condition are
shown in Figure 9. Figure 10 shows the flux density at the rated current (10 A), 20 krpm. The figures
show that the analytical model is in a very good agreement with the FE model.
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4.2. Air Gap Flux Density under SE Condition

In order to verify the SE model, the rotor of AFPM is assumed with 40% eccentricity. It is shown
in previous section that the slotless flux density caused by PMs under SE and healthy condition could
be solved analytically, thus, the relative permeance function of SE can be determined. The FE model is
represented by two rotor disc to ensure the real flux distribution. The 3D FE model and its grid could
be seen in Figure 11. The rotor axis is set as shown in Figure 6a.
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Figure 11. The 3D FE model and its meshing.

The axial and circumferential components of one side rotor disk with 40% eccentricity under
no-load and rated load condition conditions are shown in Figures 12 and 13, respectively. It can be
seen that the axial and circumferential components of the flux density between the FE model and
analytical method do not agree well due to the interaction between the circumferential and axial flux
density, but the error still remains in a reasonable range. Overall, the proposed method in this paper is
an effective way to investigate the eccentric influence of AFPM.
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5. Results and Discussion

In this section, some important machine characteristics, e.g., back-EMF and torque, will be
presented and compared. Since these characteristics under different SE conditions only differ in
magnitude, the 40% eccentricity is chosen to carry out the analysis.

As shown in Figure 14, the flux passes from one rotor disc and enters the other rotor disc.
Therefore, the coils are assumed to be symmetrical with respect to the stator teeth axis. Hence, both
rotors contribute with the same amount of magnetic flux (ϕLk,ϕRk). Therefore, the flux linkage of the
kth tooth coil with Nc turns is simply given by:

ψk = Nc(ϕLk +ϕRk)/2 (35)
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5.1. Machine Main Characteristics under No Load Condition

The no-load air gap total flux density under healthy condition compared with 40% eccentricity
condition, the analytical results are shown in Figure 15.
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Comparing with the healthy conditions, it can be seen that the flux density near minimum air gap
has increased but the flux density near maximum air gap has decreased. This is owing to the partly
increased yet partly decreased air gap length around circumferential direction.

The back EMF and cogging torque are also important for PM machines. For this purpose, the
rotor movement should be modeled to calculate these parameters. The back EMF waveform of the
AFPM can be calculated from the axial component of the no-load flux density distribution (By) with the
knowledge of the armature winding distribution. The voltage induced in a single coil in each layers of
quasi-3D method can be calculated as:

Ec,i = −Nc
dψc,i

dt
(36)

where Ψc,i is the flux linkage of the coil in ith layer and is equal to the integral of the air gap flux
density distribution across one coil pitch, as given by:
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ψc,i =
Rave,i(Ro − Ri)

ns

θ0+θc∫
θ0

By,idθ (37)

where θ0 is the coil starting side angle from origin and θc is the angle of coil pitch, and By,i is the axial
component of flux density in ith layer.

The back-EMF per phase is calculated in all coils with the phase winding connected in parallel.
For phase A, according to the coils arrangement shown in Figure 3, the back-EMF in ith layer EA,i is
given by:

EA,i = −Nc
Rave,i(Ro − Ri)

ns

dψc,i

dt
(38)

And based on the quasi-3-D consumption, the back EMF for the whole machine is calculated as:

EA =
ns

∑
i

EA,i (39)

The back-EMF of the prototype AFPM with and without SE condition obtained from both FE and
SC methods are compared in Figure 16.

It can be seen that in healthy condition, the induced voltage of three coils have the same shape
and amplitude. However, monitoring back EMF is not an effective approach to detect eccentric fault
in double rotor AFPMs since the back EMF is not affected by eccentricity sufficiently in SE condition.
Eccentricity increases the air gap, but on the other hand, the air gap length of corresponding position of
the other rotor is decreased. These two effects seem to compensate each other, given the same results.
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Figure 16. Back electromotive force (EMF) of phase A. (a) Health condition; (b) SE condition.

The back EMFs and its fast Fourier transform (FFT) under SE condition varies from 0% to 65% is
shown in Figures 17 and 18 respectively. When the SE factor is increasing, the amplitude of back EMFs
is slightly increasing. Moreover, the SE has a strong impact on the first order of FFT.
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EMFs is slightly increasing. Moreover, the SE has a strong impact on the first order of FFT. 
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In the case of SE, the following differential flux linkages act on the phase loops [26], in this paper,
phase A is disconnected the parallel path (shown in Figure 16) and:

ψdl = ψl I −ψl I I (40)

where ψl I and ψl I I are magnetic flux linkages of two disconnected parallel paths of phase A.
By time deriving, the no-load loop EMF follows:

Edl = dψdl/dt (41)

Thus, monitoring loop EMF could be a practical approach to detect defects of AFPMs. Figure 19
shows the distribution of phase A loop EMF during one complete rotor revolution at rated speed. It
can be seen that the loop EMF fluctuates at each position.

The cogging torque is another important parameter for PM machines which occurs in slotted
AFPM machine due to the interaction between the PM magnetic field and the varying air
gap permeance.

By assuming negligible saturation, the cogging torque is independent of armature currents and
is created only by the PM magnetic field. The period of the cogging torque waveform is calculated
as follows:

Cogging torque period = 2π/LCM (Qs, 2p) (42)

where LCM (Qs, 2p) is the least common multiple of the stator slot number and the rotor pole number.
The cogging torque is calculated by the changing rate of total air gap co-energy including the

region of PMs [27]:

Tcog =
∂W
∂θ

=
∂

∂θ

(
y

τ

B2
t−totaldτ

)
(43)

It should be noted that the AFPM machine in this paper has two rotor disks, which means
that both rotors contribute to the cogging torque. Thus, the cogging torque of each disk should be
superimposed. The cogging torque waveforms obtained under healthy and SE condition are compared
in Figure 20. Comparing with the results obtained from FE model, we can see that the results obtained
by analytical model do not agree well, this is mainly due to the subtraction in Equation (40), but the
trend of analytical model is still in accordance with that of FE model.

In order to validate the results, 3D FEM calculation is also depicted, which shows a good
agreement with analytical simulations. From the simulation results and comparisons, the cogging
torque of each disk has the same shape and amplitude, but under SE condition, the cogging torque
is increased.
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5.2. Machine Main Characteristics under on Load Condition

The output torque is comprised of EM and cogging torque. Neglecting saturation, currents in
each phase are updated according to rotor position. The electromagnetic torque for each layer could be
calculated by integrating Maxwell stress tensor near the center of the air gap:

Tem,i =
R2

ave,i(Ro − Ri)

µ0ns

2π∫
0

Barmx,iBarmy,idθ (44)

The electromagnetic torque of machine is obtained as:

Tem =
ns

∑
i=1

Tem,i (45)

Also, the average electromagnetic torque can be simply calculated from

Tem =
3√
2

pNckwφ f I (46)

where kw is the winding factor, φf is the magnetic flux excited by the permanent magnet per pole and I
is the stator current. From pervious study, the magnetic flux of each phase can be compensated by the
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right and left magnetic flux, thus, SE does not have significant effects on the EM torque. This also can
be proved in Equation (46).

As shown in Figure 21, the results of the proposed method are in good agreement with the
simulation results of 3D-FE model.
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6. Experimental Results

The double rotor AFPM in Table 1 is the prototype machine investigated in this paper, as shown
in Figure 22a,b. The experimental set-up and devices are presented in Figure 22c. The AFPM motor
is driven by a frequency converter shown in Figure 22c to test its motor performance, and the
no-load parameters.
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The back EMF is measured by a driving motor via a belt and the drive speed is 300 rpm, the
measured back EMF is shown in Figure 23. The analytical model provides good correspondence with
the experimental results shown in Figure 16. Table 2 shows the back EMF coefficient obtained by
analytical model, FE model and experiment, respectively. However, there is a slight error between the
analytical results and the measured value which is mainly caused by the assembly process.

In terms of the computational time, the analytical model requires only 206 s to obtain the cogging
torque and electromagnetic torque with one mechanical cycle for SE condition. The 3D FE model, on
the other hand, requires almost 27 h to compute the performance in one electrical cycle. Although the
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analytical method shows a slight error compared to the experimental result, it is still acceptable and
thus, can be regarded as a meaningful approach which could save time and achieve a satisfying result.
Moreover, the analytical model could also be used for further calculation, e.g., optimization.Energies 2016, 9, 892 17 of 18 
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7. Conclusions

In this paper an approach for modeling double rotor AFPM with SE has been presented. To take
into account the intrinsic 3D nature of the AFPM machine, a quasi-3D method is used. The magnetic
field, cogging torque and output torque of AFPM machine under healthy and 40% eccentricity
conditions are quickly calculated with great accuracy compared to the 3D FE model and experimental
results. In addition, it can be found that the eccentricity plays no effects on the back EMF and the
electromagnetic torque. However, the cogging torque increases with SE. In addition, this paper makes
a remarkable contribution to the computational time savings while maintaining as much the high
accuracy the FE model can provide. Finally, an experimental validation has been carried out to verify
the accuracy of the simulation results obtained by the proposed method.
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