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Abstract: This paper proposes a new approach to hybrid forecasting methodology, characterized
as the statistical recalibration of forecasts from fundamental market price formation models. Such
hybrid methods based upon fundamentals are particularly appropriate to medium term forecasting
and in this paper the application is to month-ahead, hourly prediction of electricity wholesale prices
in Spain. The recalibration methodology is innovative in seeking to perform the recalibration into
parametrically defined density functions. The density estimation method selects from a wide diversity
of general four-parameter distributions to fit hourly spot prices, in which the first four moments are
dynamically estimated as latent functions of the outputs from the fundamental model and several
other plausible exogenous drivers. The proposed approach demonstrated its effectiveness against
benchmark methods across the full range of percentiles of the price distribution and performed
particularly well in the tails.
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1. Introduction

In contrast to the extensive research on methods of forecasting electricity spot price expectations,
the full predictive specification of price density functions has received much less attention. Point
forecasts, unlike probabilistic forecasts, even when they are very accurate, provide no information
on the range of risks. Yet the risks of extreme price excursions and episodes of high volatility have
important managerial implications for trading, operations, and revenue planning, and this is becoming
increasingly so as the technology mix shifts towards intermittent renewable power. Whilst high spiking
prices in scarcity conditions have been well-documented, low price events, at times of high wind,
solar, or hydro outputs, are increasingly adding to the complexity of risk management and operational
control. Thus, to undertake thorough risk simulations or stochastic optimizations of alternative
decisions under conditions of price risk, inputs of the full price density functions will generally be
required. Furthermore, it is not the case that price densities can be reliably estimated as stable residual
distributions around well-specified models for price expectations. The shape of the price density
distribution often changes distinctly over the separate intraday trading periods as well as seasonally
and with structural changes in the market. These distinctive densities are a function of the fundamental
demand/supply drivers and market conduct together with the stochastic persistence of shocks. The
task of predicting the price densities is particularly challenging, therefore in practice, the starting point
is often a deterministic fundamental model of the supply stack and the price formation process. Such
market models do not easily accommodate time series specifications and are generally recalibrated ex
post to actual data (two exceptions are [1,2]). This two-stage process is often referred to as a “hybrid”
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adjustment to merge the statistical characteristics more fully with the market fundamental model in
order to improve forecast accuracy. This is because by combining fundamental and statistical models,
it is possible to incorporate the impact of both the projected fundamental changes in the market (such
as generation expansion, mothballing of generation units, subsidies, or drops in energy demand) and
the empirically revealed behavioral aspects (such as strategic and speculative behavior). However,
such hybrid processes have typically focused only upon adjusting the mean bias and not the full
density specifications. It is with this motivation, therefore, that we investigate the forecasting ability of
a novel, fully parametric model for hourly price densities, which is sufficiently flexible in specification
to accurately recalibrate the forecasts from a fundamental market model.

In a wide-ranging review on electricity price forecasting, [3] notes the paucity of research on
density methods and moreover observes that even within the limited focus on predictive distributions,
most of the work has been upon interval estimates or estimating specific quantiles rather than on
fully parametric specifications of the density functions themselves. Quantile regression in particular
has become effective in estimating specific percentiles of the predictive distribution as functions of
fundamental exogenous variables (e.g., fuel prices, demand, reserve margin, etc.). Effective applications
of this approach to electricity prices include [4–6], but as [7] notes, a focus upon distinct quantiles
has limitations compared to a fully parametric specification and in particular, as observed by [8],
the quantile regression estimates in the tails of the distribution tend to be less reliable than those
generated by parametric methods. Most importantly, perhaps, is the absence of a closed form of
analytic representation of the predictive distribution, as might be required for example in asset pricing,
options valuation, or portfolio optimization [9].

As an alternative to quantile regression, we therefore investigate several fully parametric
specifications for hourly electricity prices (from the Spanish market) to find a distributional form that
not only fits all observed density shapes acceptably well but is also expressible in terms of its first four
moments. These four moments can, under an appropriately specified distribution, in turn be capable
of being estimated as dynamic latent variables from a Linear Additive Model (following [10]) linking
them to one or more exogenous variables (e.g., the forecasts from a fundamental market model). In this
respect, this is an extension to the approach taken by [11], who used a Johnson’s U distribution with
time varying means and variances, but constant skewness and kurtosis, to predict short-term electricity
prices in the California Power Exchange and the Italian Power Exchange. However, by focusing upon
the first four moments, we seek to additionally capture the changing skewness and fat tails that have
added to the riskiness of power prices and furthermore to calibrate all four moments to the forecasts
from a fundamental model. Whilst the dynamic estimation of the first four moments is primarily being
sought to facilitate the full specification of a predictive density function, we should observe that these
moment estimates are valuable in their own right. Thus, [12], for example, demonstrated that forward
prices can be expressed as a Taylor expansion involving the moments of the spot price distribution.

We develop this methodology in the context of medium term electricity price forecasting, which
is also relatively under-researched compared to the short term, as noted by [13]. By medium term, we
consider horizons of weeks and months, over which substantial operational planning, fuel procurement,
sales, and financial modelling need to be supported by forecasts and risk management. Regarding
density forecasting in the medium term, the authors are only aware of the methodologies proposed
in [4,14–17]. In [17], the focus is only on predicting the probability of extremely low prices given
a threshold, and not on the full density function The analysis of [14] is limited to a 95% prediction
interval, computed using a seasonal dynamic factor analysis, without accounting for exogenous
variables, and focusing upon a short period of one week during which there were no structural
changes. Furthermore, in [16], the lead time is for up to four weeks (which is a short- to medium-term
horizon) and only 90% and 99% prediction intervals are given. In our work, we extend the fundamental
market modelling of [4,15], and the non-parametric hybrid approach of [2], as a basis for a hybrid
formulation leading to a fully parametric density specification with dynamic latent moment estimates
for mean, variance, skewness, and kurtosis. Therefore, to the best of the authors’ knowledge, the work
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presented here is the first study that evaluates real out-of-sample density forecasts in the medium
term from a wide diversity of parametric models with time-varying higher moments. In addition,
none of the existing works focus on the medium term and use a hybrid framework in which not only
probabilistic fundamental information from a market equilibrium model is incorporated, but also
information coming from statistical techniques. As a pragmatic extension, this work is furthermore
innovative in combining the probabilistic forecasts from several competing parametric distributions.

The paper is structured as follows. In Section 2, an overview of the hybrid method is described, as
well as theoretical details and empirical applications are presented. In Section 3, forecast combination
techniques are examined to investigate increased accuracy. In Section 4, we conclude with a summary
and some critical comments.

2. The Hybrid Recalibration Process

2.1. Overview of the Methodology

Following [4], we use a market equilibrium model (“MEQ”) for hourly wholesale electricity
prices in Spain as the starting point for the recalibration process. We do not describe this model
in detail since it is well documented elsewhere (see [18,19]) and the research focus of this paper is
upon the recalibration process. Briefly, this is a detailed optimization formulation in which each
generating company tries to maximize its own profit ([19] subject to conjectural variations on the
strategic behavior of the other market agents. In addition, therefore to the fundamentals of demand,
supply, fuel costs, and plant technical characteristics it also estimates market conduct. Thus, this model
is able to adequately represent the operation and behavior of the Spanish electric power system. Monte
Carlo simulations based upon input distributions for the uncertain variables then provide probabilistic
hourly predictions of the hourly prices. The means and selected percentiles of these MEQ derived
prices are then used, alongside other exogenous variables including the production of the generating
units, the international exchanges and the net demand, as regressors in the recalibration model.

The novel approach presented here comprises different blocks. On the one hand, the hybrid
approach uses the probabilistic forecasts obtained as the outputs of the fundamental model (MEQ) as
inputs to several general four-parameter distributions for hourly prices. The first four moments of
these distributions are dynamically estimated as latent state variables and furthermore modeled as
functions of several exogenous drivers. We refer to this as the two-stage approach.

Beyond this, a three-stage approach is proposed in which the percentiles of the price cumulative
distribution functions of the fundamental model are firstly recalibrated with quantile regression (as
suggested in [4]), and in a subsequent stage, incorporated into the two-stage forecasting approach.
Finally, we investigate if, in the presence of multiple probabilistic forecasts of the same variable, it is
better to combine the forecasts than to attempt to identify the single best forecasting model (Section 3).
A general overview of the hybrid framework is indicated by the flowchart represented in Figure 1.
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Figure 1. Overview of the methodology.

2.2. Implementation of the Proposed Methodology

The case studies in this paper use a data set that has been constructed from executions of the
market equilibrium model for the Spanish day-ahead market for the period ranging between 1 May
2013 and 30 June 2014. It is sometimes observed that that the Spanish market is one of the most difficult
to predict (see [20]) and certainly in this period of time it is particularly challenging with various
structural and regulatory interventions.

With the objective of realistic medium-term predictions, 14 executions of the fundamental model
(MEQ) have been accomplished, one per month. The forecasting horizon varies from one to two
months. More precisely, for hourly predictions for month m, each execution of the fundamental model
is carried out in a single step in the first hour of month m-1.

It should be noted that real ex ante forecasts of the probability distributions for all the exogenous
risk factors such as the demand, wind generation, the unplanned unavailabilities of the thermal power
units or fuel prices have been carried out using historical data. This set of distributions was generated
in cooperation with the risk management team of a major energy utility active in the Spanish market
at that time. In the case of fuel costs, the distribution functions were centered on the forward market
expectations. The data corresponding to the Spanish market are available from the Iberian Energy
Market Operator ([21]).

As for implementing the density recalibration model, in the second stage, the data set ranging
from 1 May 2013 to 30 November 2013 that has been constructed with real ex ante predictions of the
fundamental model was used for in-sample estimation of parameters, with the out-of-sample forecast
evaluations being taken from 1 January 2014 to 30 June 2014. In order to thoroughly compare the
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forecasting capabilities, a series of multi-step forecasts with re-estimation of model parameters in
an expanding window of one month was undertaken. In order to check the appropriateness of the
specification of window length, we also experimented with rolling windows from 7 to 12 months.
Thus, for making predictions for January 2014, the data set from 1 May 2013 to 30 November 2013
was used for estimation. Thereafter, in order to make forecasts for February 2014, the models were
estimated from 1 May 2013 to 31 December 2013 and so on until June 2014.

The criterion used to evaluate the overall quality of the probabilistic forecasts is based on counting
the number of observations that exceeds in each period of the out-of-sample data set the defined target
percentiles: 1%, 5%, 30%, 50%, 70%, 95%, and 99%. The density recalibration model is essentially a
multifactor adaptation of the Generalized Additive Model for Location, Scale, and Shape (“GAMLSS”).

2.3. Generalized Additive Model for Location, Scale, and Shape

GAMLSS is a general framework that was proposed by [10] to overcome some relevant limitations
of the well-known Generalized Linear Models (GLM, as proposed by [22]) and Generalized Additive
Models (GAM, as introduced in [23]). The highly flexible GAMLSS models assume that the response
variable presents a general parametric distribution (a GAMLSS model is parametric in the sense that it
requires a parametric distribution assumption for the response variable, but this does not mean that
the functions of explanatory variables cannot involve non-parametric smoothing functions such as
splines). F (µ,σ,υ, τ) (these distributions will be explained in detail in Section 2.4) in which µ and σ are
location and scale parameters and υ and τ represent the shape parameters. These parameters can be
characterized by means of a wide number of functional forms and can change over time as a function
of several covariates. From a mathematical point of view, let YS be the vector of yh independent
observations of the response variable for the hour h = 1, ..., S, with distribution function FY (yh; θkh),
where θkh are the distribution parameters to predictors ηkh for k = 1, 2, 3, 4. Let gkh be a known
monotone link function relating the distribution parameters to explanatory variables and stochastic
variables (random effects to deal with extra variability that cannot be explained by these explanatory
variables) through

gkh (θ
s
kh) = ηs

kh = Xkhβk +
Jk

∑
j=1

Zjkγjk (1)

where θS
kh and ηS

kh are vectors of length S; Xkh is a known matrix of regressors of order S × Jk; βk
is a vector of coefficients of length Jk; Zjk is a fixed known S × qjk design matrix and γjk is a qjk
dimensional random variable. The first term represents a linear function of explanatory variables and
the second one represents random effects. It should be noted that Equation (1) can be equally extended
to nonlinear functional terms. In order to restrict the possible combinations of structures of the general
formulation, Equation (1), the functional relationship between the moments of the distributions and the
covariates used in the proposed models (described later) was assumed linear, without random effects.

The estimation method for the vector of coefficients βk and the random effects γjk is based on
the maximum likelihood principle through a generalization of the algorithm presented in [24], which
uses the first and (expected or approximated) second and cross derivatives of the likelihood function
with respect to the distribution parameters, θS (µ,σ,υ, τ). Due to the fact that computation of cross
derivatives is sometimes problematic when the parameters θS (µ,σ,υ, τ) are orthogonal (this is to say,
the expected values of the cross derivatives in the likelihood function are null), a generalization of the
algorithm developed in [25,26] has been used. This algorithm, which does not compute the expected
values of the cross derivatives, is more stable (especially in the first iterations) and faster than the one
developed by [24].

Thus, if in Equation (1) a distribution function of four parameters for the price
Yi∼D (yi|µi,σi,υi, τi) without random effects is considered, the likelihood to be maximized with
respect to the βk coefficients is represented as:
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L (β1,β2,β3,β4) =
S

∏
i=1

f (yi|β1,β2,β3,β4) (2)

where S is the number of observations. The likelihood is then maximized with an iterative algorithm
that has both an outer and an inner cycle (the former one calls repeatedly the last one). The outer
cycle is in charge of fitting the model of each distribution parameter θS (µ,σ,υ, τ) while the rest of the
distribution parameters are fixed at their latest estimates values. Then, for each fitting of a distribution
parameter θS (µ,σ,υ, τ), the inner cycle ckecks the maximization of the whole likelihood with respect
to the βk coefficients, for k = 1, 2, 3, 4. The outer cycle is continued until the change in the likelihood
is sufficiently small. It should be noted that this algorithm requires initialization of the distribution
parameter θS

0 (µ0,σ0,υ0, τ0), but does not need initial values for the βk parameters.
Following this approach, very occasional difficulties (less than 1% of the time) have arised

regarding algorithm convergence. Mainly, these problems have occurred when: (i) the parametric
distribution function for the electricity price is not adequate or not flexible enough; (ii) the starting
values of the variables are not correctly defined; (iii) the structure of the functional form chosen is
overspecified and too complex, particularly when trying to fit the higher moments υ and τ (which
were the most challenging); and (iv) the step length in the Fisher’s scoring algorithm is too wide. Some
of these problems can be easily solved by fitting a series of models of increasing complexity. Thus,
for instance, simpler models can provide starting values for the more complicated ones, as proposed
in [10]. Moreover, the absence of multiple maxima has been also guaranteed by using several widely
varying starting values. This point is particularly critical when the data set is small. Overall, the
algorithm has been found to be fast and stable, especially when explicit derivatives are used (note that
numerical derivatives can be used instead, but this results in higher computational time), which is
coherent with [10].

2.4. Density Selection

Selecting the appropriate density function is a crucial aspect of the recalibration model. In this
study, 32 continuous density functions with two, three, and four parameters among those listed by [27]
were considered. Some distributions which have been widely used in the econometric literature were
intially discarded.as being inappropriate. This is particularly the case with symmetric distributions (i.e.,
the t-distribution or the power exponential) since the flexible representation of skewness is important
in this application. This is also the case with other distributions with three parameters (such as the
skew normal), that do not show enough flexibility.

Overall, as expected, four-parameter distributions, which are able to model both skewness and
kurtosis in addition to the location and scale parameters, demonstrated the best fit in terms of the
global deviance criterion (which is defined as the negative of twice the fitted log likelihood function).
As a basis for comparison in the later out of sample forecast validation, we retained the best four
fitting densities, namely: the Box-Cox power exponential (BCPE), the Skew t type 3 (ST3) and the Skew
exponential power types 2 and 3 (SEP2 and SEP3). These are all descrided in detail in [28]. For the
sake of clarity, the basics of these density functions are presented in the Appendix.

2.5. Selection of the Regressors

One of the beneficial features of this approach is that the exogenous variables can be different
for each of the four latent moment estimations. For the regressors, we considered both the expected
values and the percentiles of the cumulative distribution function of the variables which included
MEQ price, Demand, Net Demand (defined as demand less renewable production, which is a measure
of the demand on the thermal price-setting generators), Wind generation, Exports, and Imports. The
conventional stepwise procedure of moving from a more general model to a more specific one was
followed (e.g., [29,30]). With backward elimination, we retained only statistically significant regressors
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at a 5% significance level, using the standard Chi-squared test, which compares the deviance change
when the parameter is set to zero with a χ2

0.05 critical value.
The signs of the significant variables are summarized in Tables 1 and 2, for two representative

models. These results present in general a coherent interpretation, mostly consistent with plausible
expectations. In particular, it is noteworthy that a direct relationship between the percentiles of the
MEQ price and the moments of the parametric distributions was evident across all the tested windows.
In addition, Net Demand, Exports, and Wind generation output were also significant, out testing
from a large range of exogneous variables. It is interesting that the kurtosis measure, which in risk
measurement practice is usually taken to be an indicator of the fatness of the tails of the distribution,
in the case of BCPE distribution is dependent on the 1st and 99th percentiles of the fundamental
price. This is coherent and very similar to the interpretations in many quantile-based measures of
peakedness [31–33] (for instance, in [33] the coefficient of kurtosis is given by: KR = q4−q0

q3−q1
− 2.91

where q0 = F−1 (0.025), q1 = F−1 (0.25), q3 = F−1 (0.75), q4 = F−1 (0.975) and F (y) ≡ P0 [Yt < y] is
the unconditional cumulative distribution function CDF of Yt). Note also how the 99th percentile
of the Net Demand, which is associated to demand shocks, has a negative impact in the kurtosis of
SEP2 distribution. Regarding skewness, which conceptually describes which side of the distribution
has a longer tail, it is also appealing to observe its direct relationship with the left tail of the MEQ
distribution. This fact is related to a certain extent with some centile based measures of skewness
proposed in the literature (for example, the Hinkley’s measure of skewness [34], which is independent
of position and scale and is given by: S = (qα+q1−α)/2−q0.5

(qα−q1−α)/2 where qα = F−1 (α) and F (y) ≡ P0 [Yt < y]
is the unconditional CDF of Yt. Note that a common value widely used for the α is 0.75). In addition, it
seems that the expected wind production, which is a significant variable in the SEP2 distribution for
increasing skewness, helps to justify changes in the skewness between different hours. Finally, it can
be seen that the MEQ price and the net demand variables (both mean and median) are positive on
price levels, indicating adaptive behavior.

Table 1. Summary of significant signs from the proposed multifactor model-BCPE.

Variable µ σ υ τ

MEQ Price P50 +
Net Demand P50 +

MEQ Price P1 - + -
MEQ Price Mean +
MEQ Price P30 -
MEQ Price P99 +

Intercept - - + +

Notes: +/- means that the variable has a positive/negative influence on the distribution parameter.

Table 2. Summary of significant signs from the proposed multifactor model-SEP2.

Variable µ σ υ τ

MEQ Price Mean +
Net Demand Mean +

Exports Mean -
MEQ Price P1 - +

MEQ Price Mean +
Wind Mean +

MEQ Price P30 +
Net Demand P99 -

Intercept + + - +

Notes: +/- means that the variable has a positive/negative influence on the distribution parameter.
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2.6. Performance Analysis

In this subsection, the accuracies of the best four hybrid models are empirically evaluated when
making ex ante forecasts for each hour of the validation period (1 January 2014 to 30 June 2014).

First, we illustrate the flexibility of these models in capturing a wide diversity of shapes of the
probability density function (PDF). For example, Figure 2 presents the predicted hourly PDF for the
particular case of the BCPE model during one week of June 2014. As can be seen, this approach is able
to encompass, among other characteristics, the features of asymmetry and fat tails.
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Figure 2. Predicted probability density function for a representative week-BCPE.

In addition to this, Figure 3 shows the PDFs that have been estimated on an hourly basis with
the SEP2 model. The color scale ranges from white (null probability) to blue (the highest predicted
probability). It is evident that the actual price always falls within the range of predicted prices.
Moreover, the actual price for most days is near the mode value, and the model assigns a high
probability of occurrence to it.
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Figure 3. Comparison between the predicted PDF using SEP2 model and the actual price during the
period from 1 January 2014 to 30 June 2014.

Table 3 shows the exceedence rate for the seven target percentiles throughout the validation sample
for each of the models. The proposed recalibration process is benchmarked against the uncalibrated
market equilibrium model MEQ percentiles and the hybrid approach based upon recalibrations using
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conventional quantile regression (denoted as MEQ-QR), which performed best in [4]. Overall, as seen
in Table 3, the proposed methodology is not outperformed by the nonparametric MEQ-QR benchmark,
which furthermore does not offer analytical solutions, but would have been expected to estimate the
percentiles more precisely. Moreover, the extreme quantiles appear to be better calibrated with the
proposed parametric approach, which is crucial in risk analysis. This is consistent with the well-known
underperformance of quantile regression in the extreme tails because of the scarcity of data points.
Regarding the purely fundamental model (MEQ), it is evident that it does not fully capture all of the
important characteristics of the electricity price series, particularly in the tails of the price density
function where behavioral factors are apparently more relevant than basic fundamentals. Overall,
these results validate the proposed parametric recalibration process as an effective methodology to
capture not only the projected fundamental changes in the market, but also behavioral aspects.

Table 3. Forecasting results for the target percentiles in terms of the exceedance rate.

(%) P1 P5 P30 P50 P70 P95 P99

BCPE 93.43 81.95 55.50 34.63 19.86 0.18 0.02
SEP2 96.20 90.27 56.29 38.48 11.61 0.42 0.05
SEP3 91.82 85.84 56.64 39.00 22.38 3.34 0.11
ST3 91.93 84.71 58.17 40.57 22.77 4.02 0.16

MEQ 77.97 70.06 48.20 37.34 28.01 12.34 7.65
MEQ-QR 93.14 80.43 61.81 36.76 30.92 8.20 2.39

Note: The best value obtained in each target percentile is highlighted in bold.

3. Combinations for Increased Accuracy

In this section, we investigate if further modelling combinations can increase accuracy. We first
observe that the MEQ-QR values could be taken as inputs to the GAMLSS recalibration process instead
of the basic MEQ values. This approach has been indicated previously as the three-stage hybrid
approach. Table 4 reports a summary of the exceedance rates across the target quantiles. These findings
demonstrate, perhaps not surprisingly, that the effectiveness of the hybrid recalibration technique is
apparently increased if both quantile regression and GAMLSS recalibrations are used in sequence for
additional refinement in model specification. Note that this three-stage hybridization scheme allows a
relaxation of the constraints imposed to avoid the crossing between the quantile curves (since the most
common approach to estimate quantile regression curves is to fit a function for each target percentile
individually, the quantile curves can cross when multiple percentiles are estimated. This can lead to a
lack of monotonicity and therefore, to an inconsistent distribution for the response) as these restrictions
are naturally forced in the parametric distributions. Consequently, this fact leads to a major flexibility
and a reduction in possible bias.

Table 4. Forecasting results for the target percentiles in terms of the exceedence rates.

(%) P1 P5 P30 P50 P70 P95 P99

MEQ-QR-BCPE 94.54 82.19 56.22 32.18 21.93 4.19 0.53
MEQ-QR-SEP2 95.30 93.04 64.85 47.06 28.91 6.84 2.57
MEQ-QR-ST3 95.19 93.29 77.19 58.45 31.65 4.72 0.91
MEQ-QR-SEP3 95.59 94.74 79.23 58.61 32.45 3.06 0.27

BCPE 93.43 81.95 55.50 34.63 19.86 0.18 0.02
SEP2 96.20 90.27 56.29 38.48 11.61 0.42 0.05
SEP3 91.82 85.84 56.64 39.00 22.38 3.34 0.11
ST3 91.93 84.71 58.17 40.57 22.77 4.02 0.16

MEQ-QR 93.14 80.43 61.81 36.76 30.92 8.20 2.39

Note: The best value obtained in each target percentile is highlighted in bold.
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Also perhaps not surprising is that there is no clear winner amongst the different density models
presented. It is appealing to observe that the three-stage approach with SEP2 distribution improves
the forecasting accuracy in the center of the distribution, but loses precission at the tails in comparison
to the two-stage approach. It is also of interest to note that a distribution such as ST3, that is not
able to model platykurtosis in certain hours, gains accuracy in the upper tail of the distribution. This
observation naturally leads to a proposal for combining the probabilistic forecasts.

It is well known for both point [35] and density [36–38] forecasting that combinations of forecasts
may offer diversification gains and can provide insurance against possible model misspecification,
data sets that are not sufficiently informative and structural changes (see [39]). Although the idea of
combining forecasts in itself is not new, it has been barely touched upon in the context of electricity
spot prices (see the discussion of [3]). Thus, we test different combination schemes on the methods
(MEQ-QR-SEP2, MEQ-QR-SEP3 and MEQ-QR-ST3). Note that including MEQ-QR-BCPE, which is
the worst model, in the combinations leads to poor forecasting performance. This is consistent, as
expected, with [40] and others who have observed that it is advisable to restrict combinations to a few
good models.

Unlike [41,42], we used the probabilistic forecasts instead of the point predictions. As stated
in [35], combinations of probability density forecasts impose extra requirements beyond those that
have been highlighted for combinations of point forecasts. The fundamental requirement is that the
combination must be convex with weights restricted to the zero-one interval so that the probability
forecast never becomes negative and always sums to one. Consistently with this prerequisite, we
test equal weighting, as that is generally advocated as the most robust, and one performance-based
weighting. For the latter, we use weights which are inversely proportional to the least absolute
deviation (LAD).

The most natural approach to forecast averaging is the use of the arithmetic mean of all forecasts
produced by the different models. This scheme, which is denoted as Equally Weighted Combination,
EWC, is robust and is widely recommended in forecast combinations (see e.g., [43–45]). In Equation
(3) the EWC scheme is represented, where W is the number of methods used (three in the case study
here presented: MEQ-QR-SEP2, MEQ-QR-SEP3, and MEQ-QR-ST3), ŷαh,w is the forecast of the price
in hour h for the percentile α from parametric method w (i.e., ŷαh,w = F−1

h,w (α), in which Fh,w is the
unconditional CDF) and ŷαh,EWC is the final weighted prediction for the percentile α and hour h.

ŷαh,EWC =
1

W

W

∑
w=1

ŷαh,w (3)

The other method for combining distributions we considered is based on the LAD, which
hereinafter will be referred to as quantile regression averaging (QRA), and proceeds as follows:

(1) As in the previous combination approach, for each proposed parametric distribution function
w (MEQ-QR-SEP2, MEQ-QR-SEP3, and MEQ-QR-ST3), the corresponding quantile functions
ŷαh,w are derived for the usual target percentiles, so that ŷαh,w = F−1

h,w (α). Note as the distribution
functions vary with time (i.e., as the information set of explanatory variables evolves) so will the
quantile functions.

(2) The predicted quantile functions ŷαh,w are combined for each percentile α using the asymmetric
absolute loss function to yield the LAD regression. The LAD regression may be viewed as a
particular case of quantile regression and intuitively, this method assigns specific weights for each
percentile depending on the inverse of the absolute deviation error, so that larger weights are
given to models that show smaller deviation error during the in-sample data set. Recall that the
weights are sequentially updated after each additional moving window. As constructed quantile
functions are sample unbiased, then we might expect that the weights’ sum to unity and there is
strong intuitive appeal for omitting the constant (see [46]).
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Table 5 reports the accuracy metrics for the combinations. Again, there is not a clear winner in
terms of forecasting performance. However, it seems that model averaging, following the discussion
of [47] and the findings of [48] (in this reference, it is shown that simple combination schemes
perform better than more sophisticated rules relying on estimating optimal weights that depend
on the full variance-covariance matrix of forecast errors) and [35] can capture different aspects of
market conditions (particularly when the different approaches contain distinct information), provide
a model diversification strategy that can improve forecasting robustness. As might be expected,
this improvement is more apparent in the central percentiles than in the tails. Nevertheless, the
improvements from these more elaborate combining methods are not huge and if the focus is upon tail
risks it is better to find the best method instead of a combination. In these results, the indications are
that ST3 is the most accurate for the high tails, and SEP3 for the low tails. All of this further vindicates
the basic recalibration process based upon GAMLSS methodology.

Table 5. Forecasting results for the target percentiles in terms of the excedance rates.

(%) P1 P5 P30 P50 P70 P95 P99

QRA 95.14 90.46 74.52 52.38 31.80 3.53 1.97
EWC 95.36 93.61 72.94 54.57 30.73 5.80 1.59

MEQ-QR-SEP2 95.30 93.04 64.85 47.06 28.91 6.84 2.57
MEQ-QR-ST3 95.19 93.29 77.19 58.45 31.65 4.72 0.91
MEQ-QR-SEP3 95.59 94.74 79.23 58.61 32.45 3.06 0.27

Note: The best value obtained in each target percentile is highlighted in bold.

4. Conclusions

The parametric recalibration methodology, as presented in this paper, offers a potentially
valuable technique for the practical use of fundamental market models and their translation into
well-calibrated density forecasts. The recalibration process improves accuracy compared to state of the
art baseline techniques and is not substantially outperformed by more elaborate combining methods.
Especially for the tail percentiles, where risk management is most crucial, the GAMLSS recalibration
procedure—allied to the selection of an appropirate four parameter density function—would appear
to offer the most accurate and analytically attractive approach to price density forecasting. In addition,
the dynamic estimation of the first four moments is potentially beneficial in many analytical models of
derivative pricing and portfolio optimization.

We did not discuss in detail the underlying fundamental model that was being recalibrated.
In principle, the density recalibration process as presented, is applicacable to outputs from
any fundamental model, whether such a model is a simple supply function stack or a
computationally-intensive market equilibrium model. One would expect, however, that with simpler
fundamental predictors, the scope for recalibration would be greater and that more exogenous
variables would be significant in the dynamic estimation of the regressor coefficients for the latent
moments. Nevertheless, selecting the appropriate regressors is a delicate process and overfitting
should be a crucial concern in applying this methodology. Extensive out-of-sample validation testing
is clearly required.
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Appendix A. Density Functions

Appendix A.1. Box-Cox Power Exponential

The Box-Cox power exponential family distribution, which is denoted by BCPE(µ,σ,υ, τ), was
introduced by [49]. It provides a model for a response variable exhibiting both skewness (positive or
negative) and kurtosis (leptokurtosis or platykurtosis). The four distribution parameters define the
shape of the curve. For the sake of clarity, Figure A1 plots the BCPE(µ,σ,υ, τ) distribution for different
values of the parameters.

An identity link function has been assumed for g1 (·) and g3 (·), whereas logarithmic link functions
have been assumed for g2 (·) and g4 (·) to ensure positivity for the parameters σ and τ of hourly prices.
Remember that the terms gk (·) for the k moments were previously defined in Equation (1).
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Appendix A.2. Skew Exponential Power Type 2

This distribution, which is flexible enough to incorporate a wide range of shapes, was introduced
by [50] as his type 2 distribution and was further developed by [51]. Figure A2 shows the flexibility of
this distribution for representative values of each one of the four parameters.
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An identity link function for g1 (·) has been used, whereas logarithmic link functions have been
assumed for g2 (·), g3 (·), and g4 (·) to ensure positivity for the σ, υ, and τ of hourly electricity prices.
Figure A3 reflects some representative shapes of SEP3 distribution for different parameter values.Energies 2016, 9, 959 13 of 15 
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