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Abstract: The design and implementation of management policies for plug-in electric vehicles
(PEVs) need to be supported by a holistic understanding of the functional processes, their complex
interactions, and their response to various changes. Models developed to represent different
functional processes and systems are seen as useful tools to support the related studies for different
stakeholders in a tangible way. This paper presents an overview of modeling approaches applied
to support aggregation-based management and integration of PEVs from the perspective of fleet
operators and grid operators, respectively. We start by explaining a structured modeling approach,
i.e., a flexible combination of process models and system models, applied to different management
and integration studies. A state-of-the-art overview of modeling approaches applied to represent
several key processes, such as charging management, and key systems, such as the PEV fleet, is
then presented, along with a detailed description of different approaches. Finally, we discuss several
considerations that need to be well understood during the modeling process in order to assist
modelers and model users in the appropriate decisions of using existing, or developing their own,
solutions for further applications.
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1. Introduction

As a special kind of distributed energy resource (DER), a plug-in electric vehicle (PEV) is
a dynamically configurable mobile energy storage unit, with its spatial-temporal load profile primarily
determined by its drivers. According to [1], the worldwide sales of PEVs for Q1-2016 reached 180,500,
which is 42% higher compared to the same period in 2015. This rapid increase of PEVs is primarily
due to its particularly noteworthy link to renewable energy. On the one hand, PEVs can substantially
contribute to a reduction in CO2 emissions if the vehicles are powered by electricity produced from
renewable sources [2]. On the other hand, intelligent charging and discharging of PEVs may help
mitigate renewable generation intermittency by taking advantage of the energy storage capability of
PEVs [3,4]. Moreover, providing ancillary services may enable additional revenue streams to PEV
owners that help reduce the cost difference between gasoline vehicles and PEVs [5–7].

Aggregating PEVs into a PEV fleet (PEVF) is currently one of the most widely recognized
approaches for exploiting the synthesized value of PEVs [8–11]. This approach is also referred to as
a virtual power plant and aggregation-based management/integration approach. In comparison to
operating a PEV individually, the development of a community/company/national fleet could: (1) offer
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a more cost-effective charging management of PEVs by taking advantage of the central intelligence of
fleet operators (FOs) (such as optimal charging of PEVs in a certain period considering electricity price
variation and capacity limitation of charging infrastructure); (2) offer add-on services to PEV owners
(such as energy-efficient PEV routing and range maximization); (3) acquire additional value streams
by meeting special requirements (such as the minimum size of the bid) of the energy/ancillary service
market; (4) lower the cost of PEVs’ purchases; and (5) support better planning of PEV infrastructure.
The new aggregation-based entities could be independent or integrated in an existing business function
of energy suppliers or grid operators (GOs).

The design and implementation of management and integration policies for aggregation-based
PEVs need to be informed by a holistic understanding of involved systems (e.g., PEVF system, power
system and energy market), various functional processes (e.g., scheduling and control), as well as
their complex interactions. Such models, developed to represent systems and functional processes,
are useful tools to support the actions of different stakeholders. However, the inherent complexity
of different systems and processes, the ambiguous dependencies between them, and the very high
diversity of modeling perspectives, pose significant challenges to modelers and model users who are
in this field. Such complexity and diversity can be briefly explained by Figure 1, where integration and
management of PEVs are performed in a market-based environment, for example the Nord Pool Spot
serving Scandinavia [12]. Although the involved stakeholders are few, namely GOs (i.e., transmission
system operators and distribution system operators) and FOs, as depicted in Figure 1, the related
issues and the angles from which the investigations are established can be many. Taking the FOs as
an example, the related functional processes can include, for example, energy procurement from the
electricity market following different time frames; selling flexibility as ancillary services that must comply
with the corresponding technical requirements; and charging management of PEVs from the phase of
scheduling to real-time dispatch. The related disciplines vary from technical to economic. The related
considerations vary at both temporal (e.g., real time to long term) and spatial scales (e.g., distribution
system to transmission system). The same concerns over complexity are valid for the GOs when they
perform various tasks, such as requesting different kinds of ancillary services, ensuring the energy plans
comply with grid constraints and validating the technical performance such as through metering, etc.
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This paper presents a review of key aspects included in various models developed to investigate
aggregation-based PEV management and integration. This paper has two major contributions:
(1) a structured approach is proposed to model the systems and the processes related to PEVFs,
enabling a flexible combination of models and modeling approaches for various applications;
(2) a state-of-the-art overview of modeling approaches concerning both macroscopic and microscopic
aspects. In addition, several important issues that need to be considered during the modeling process
are discussed, in order to assist modelers and model users in the proper choice of existing models or
the development of their own solutions for further applications.

2. Structure of Modeling Aggregation-Based PEVF

A model-based representation of a PEVF can be developed from many different angles. In this
paper, we categorize the relevant models into two basic groups, i.e., process models (PMs) and
system models (SMs), which are explained in this section. In most studies, the two groups need to be
combined in different structures in order to establish a study for supporting design and implementation
of management and integration policies. Figure 2 presents an abstracted overview of PMs and SMs
with two layers of abstraction for each group.
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2.1. System Models

System models are built to represent static and dynamic features of a system. In most of the
studies related to PEVFs, there are three primary-level systems that can be identified, i.e., PEVF’s
characteristics, markets and commodities, and the power system. Among the three, SMs of a PEVF are
essential, while the other two SMs can be added to enhance the context of the related studies.

System models developed to represent a PEVF usually contain a number of characteristics, such
as size of the fleet, type of PEVs, battery information and controllability. Each feature can be modeled
with further details. For instance, when the controllability is to be modeled, there is a number of
options that can be considered at the fleet level where different control algorithms, such as direct and
indirect control, can be modeled [13]. At the individual PEV level, the options can also vary from
on/off control [14], modulation [15], and vehicle-to-grid [16]. Regarding the types of PEVs, there is
also a variety of features of individual PEVs that can be modeled as either parameters or variables,
such as driving range, battery information, and charging power.

With respect to modeling the power market and related commodities in a PEVF study, the
modelers can select to model incentives/prices or the framework and mechanisms of markets for
both energy and ancillary services, as well as the variety of products offered by the two markets [17].
The fundamental difference between the modeling approaches is whether the PEVF is a price-taker
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or a price-maker in the market setup. Currently, because of the relatively low penetration of PEVs in
power markets, the “price-taker” assumption is generally accepted in the majority of studies [18,19].
When the influence of PEVs on the electricity market prices is under consideration, then studies can be
performed from the perspective of energy planning [20].

Similar to market models, power system models provide another kind of envelope to the
PEVF-related studies that are often structured from the grid integration perspective. The two groups
of power system models include system (often including network, generation and demand as well as
power system operation schemes) or network models, used for examining the grid impact, and ancillary
service models that target more on finding solutions or developing better integration strategies.

2.2. Process Models

Process models, in this context, refer to actions that are modelled in order to achieve a particular
functional need which can also be understood as the objective of modeling. The PMs illustrated in
Figure 2 contain some high-level functional needs, such as charging management and integration
analysis, which can have a strong dependency of the time scale. One schematic function-based example,
adapted from [21], is shown in Figure 3 to illustrate various functional needs between different stages.
The time-related decomposition describes the functional needs of each stakeholder at five stages,
namely planning, operational planning, scheduling, operation, and settlement. These stages model
a logical sequence based on the assumption that each stage is based on the completion of the previous
stage to simplify the illustration. In practice, the five stages are usually organized as a closed loop with
information exchanged among them on a regular basis.
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operators (GOs) (adapted from [21]).

Starting from the final stage, settlement refers to the aftermath of the process: recordings
(measurements, sent commands, etc.) of executed operations are consolidated and financial responsibility
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is allocated. The stage of operation refers to the process of executing actions on real-time, based on triggers
according to the schedules made at the earlier stage. For executions that require manual intervention,
triggering is not necessarily immediately translated to an action. For instance, the activation of manual
frequency restoration reserve from the GO’s perspective is done by sending activation signals up to 15 min
before the real-time response [22]. The scheduling stage can, in time, be closely coupled with operation
(e.g., charging scheduling with a 5 min resolution) or extend hours or days ahead of it [23], typically
depending on the time frame of the electricity market. At this stage, available resources are best known
based on market transactions, which are agreed at the stage of operational planning. In comparison to
the scheduling stage, operational planning handles uncertainties over longer time horizons (i.e., from
medium-term to short-term) by recursively updating the related information/forecasts and performing
bidding/offering actions in different markets. For FOs, the markets can be both the energy market
and the ancillary service market, wherein optimal product/service portfolios and trading strategies
are developed to maximize their revenues. For GOs, the ancillary service market is the place where
they can acquire resources for maintaining reliable grid operation; meanwhile, a continuous update
of the energy production/consumption plans is given to the GOs by market platforms to support
their operational planning. Finally, the first stage planning has been distinguished from operational
planning and aims at exploring the opportunities or addressing the uncertainties associated with PEVs’
management and integration at a more strategic level. Unlike the other stages where the analyses
and decisions are made on a regular basis, the analyses made at this stage can have long intervals
in between.

2.3. Combined Models Driven by Different Views of GOs and FOs

Modeling a complicated process of aggregation-based PEVs in many studies requires
a combination of PMs and SMs. The structure of the model is defined by the objectives of the
processes and the systems that are involved. Different views of GOs and FOs, as well as their business
structure can result in different problem formulations [24].

For FOs, the general objective is to create a profitable business by developing competitive products
or services. Typically, aggregation-based studies performed by FOs aim at ensuring the energy
requirement of PEVs are met at a minimum cost by recurrently executing a number of functional
processes, e.g., charging-demand forecast, energy procurement, charging scheduling, and settlement.
When additional value streams, such as ancillary services, are taken into account, the studies performed
by FOs then have to consider both the technical requirements and the economic potential for that
service that they expect to provide; therefore, modeling these requirements and the associated economic
potential become necessary.

For GOs, the objective is to ensure secure and reliable grid operations. In the field of modeling
aggregation-based PEVF, this means the network impacts of a PEVF have to be well understood, and
minimized if the impacts are negative or maximized if the impacts are positive. Therefore, power
system models are always needed to support the impact assessment, proactively dimensioning the grid
for better accommodation of PEVs, and strategic decisions that would consider using the flexibility of
PEVs as alternatives to conventional grid planning and operational solutions.

2.4. An Illustrative Example of Combing System Models and Process Models

This subsection demonstrates an example concerning the ancillary services between FOs and GOs,
wherein a number of interactive processes are involved in different stages. Each process may require
more than one PM and SM at a certain level of detail. For instance, from the FO’s perspective, the
provision of ancillary services needs six further PMs in different stages, which, among others, include
demand forecasting and market product selection; these PMs are shown in Figure 4. Furthermore, as
the dashed arrow indicates, the process of demand forecasting of a PEVF at the stage of operational
planning needs the SM of a PEVF’s characteristics, which includes the size of the fleet, the types of
PEVs, the driving pattern, and the controllability information.
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Figure 4. Process models and system models combined for ancillary services coordination between
FOs and GOs.

At the same stage, when GOs would like to acquire the ancillary service, six PMs are also needed
to reach the purpose as listed in different stages in Figure 3. These PMs are shown in Figure 4,
including ancillary service development, procurement of ancillary service, etc. Similarly, as the
arrow indicates, the grid security analysis and estimation process needs the support of the power
system/network models.

It is noted that FOs and GOs interact with each other during most of the stages, such as in
stage II operational planning, where FOs and GOs reach an agreement via the market contracting
process. Furthermore, in Stage IV, GOs send the ancillary service activation signals to FOs via the
ancillary service control signals process. These interactions are shown by the wide double arrow in
Figure 4. Moreover, SMs of ancillary services (economic) become the third necessity when the process
of contracting coordinates the ancillary services exchange between FOs and GOs. During services
provision, if the FOs perform charging management through scheduling and control to realize the
contract, the GOs only need to send the ancillary service signals to the FOs when the services need to
be activated. Typically, when such a process involving multiple actors is to be modeled, an agent-based
approach can be utilized to model the information flow and the process of decision-making by the
different actors.

3. Methods Applied to Model the Key System Models and Processes

The task of modeling a group of PEVs can be carried out from either the microscopic or
macroscopic perspective, or sometimes a combination of the two, resulting in different modeling
approaches of a PEVF and its related applications. Taking SMs as an example, an aggregation model
which aims at representing the grouped behavior of a large number of PEVs may choose a statistical
representation of the aggregated driving needs; therefore, the requirements of routing and charging
of an individual PEV is not necessary to be elaborated. The difference between microscopic and
macroscopic aspects can also be found when the processes are modeled, which is also reflected by the
example shown in Figure 3.

If the process of charging is under investigation, a transient-dynamic continuous model that
models the dependency between current and voltage electrical equivalent circuits simulate the charging
dynamics at a time scale from sub-seconds to minutes, thus supporting the analysis related to
power management of PEVs. When discrete-time/steady state models are applied, in most cases the
corresponding analysis is related to the energy management of PEVs at a time scale from minutes
to an hour; therefore, the fast transient dynamics caused by different real-time charging schemes
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(e.g., constant voltage and constant current) are neglected. From the computational perspective,
models developed with microscopic properties are more appropriate for analyzing problems that
have a limited number of properties but are orientated towards capturing a high level of detail, such
as controlling a relatively small number of PEVs that are connected along one low voltage feeder.
On the contrary, macroscopic models are developed to analyze the behavior of a large number of
PEVs and their interactions with other systems, e.g., market and power systems, which also involve
a large number of systems and processes. In this section, different modeling methods considering
these various modeling aspects are comprehensively reviewed.

3.1. Models of an Individual PEV Characteristics

A single PEV is the fundamental element of a PEVF. The approaches used to model the
characteristics of a single PEV can usually contribute a lot to the PEVF modeling, especially with respect
to the PEV battery and its dynamic characteristics during charging and discharging. Several reviews,
such as [25–27], have categorized PEV battery models into three groups, namely (1) electrochemical
models; (2) equivalent electric circuit (EEC) models; and (3) mathematical models that model the
dynamic flow of charge.

In general, these models are derived from an understanding of a battery’s chemical processes
and are more appropriate for investigations carried out from the battery or battery management (such
as lifetime estimation) perspective. Therefore, detailed battery models are only occasionally applied
in modelling the aggregated behavior of a PEVF when a continuous time scale analysis is needed
or the detailed impact analysis to the PEV battery needs to be investigated. In [28], a model which
captures the current and temperature dynamics of an EV battery is proposed, and in [29] two battery
equivalent models are compared. Such models can be combined with inverter-charger models, to
describe the behavior of the two main components of a PEV. A simplified representation is used in [30]
to validate the services provision of a number of PEVs, where their power response to a control signal
is modelled as a time delay; in [31] a first-order response is assumed. Among the three groups of
PEV battery models, EEC models can often meet such needs better than the other two groups due
to a reasonable tradeoff between accuracy and granularity. Further, the EEC model of a battery can
include the inverter models of PEV chargers, therefore providing detailed transient dynamics for the
charging and discharging process.

Considering the high-level need of PEV management is often based on the charging management,
a further abstracted mathematical model based on the discrete time energy balance (DTEB), described
in Equations (1)–(6), has been applied in many studies [15,32,33]:

Et = E0 +
k=t

∑
k=1

{
∆Ec,k·u1,k − ∆Ed,k·u2,k − Ed,k·u3,k

}
, ∀ t ∈ [1 . . . N] , (1)

δmin·Enom ≤ Et ≤ δmax·Enom, ∀ t ∈ [1 . . . N] , (2)

Ed, t+1·u3, t+1 ≤ Et, ∀ t ∈ [1 . . . N] , (3)

0 ≤ ∆Ec,t ≤ Pc,max·ηc·∆t, ∀ t ∈ [1 . . . N] , (4)

0 ≤ ∆Ed,t ≤
Pd,max

ηd
·∆t, ∀ t ∈ [1 . . . N] , (5)

u1,t + u2,t + u3,t = 1 ∀ t ∈ [1 . . . N] , (6)

where the charging period is divided into N time intervals, t denotes the time step, and ∆t the duration
of each interval. The charging and discharging efficiency of the battery charger are represented by
parameters ηc and ηd, whereas parameters Pc,max and Pd,max denote the maximum charging and
discharging power, respectively. Parameters Enom and E0 represent the nominal energy capacity
and the initial energy of the battery in a charging period. ∆Ec,t, ∆Ed,k and Ed,k represent the energy
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charged into and discharged from the battery during a time step and the energy demanded by driving,
respectively; the three statuses are indicated by the binary variables u1,t, u2,t and u3,t. The parameters
δmin and δmax applied in Equation (3) denote the recommended range of the state of charge (SOC).

The DTEB of a PEV battery can also be formulated in many other ways, such as in [34,35],
where SOC is dynamically calculated to represent the energy status of the PEV, or in [36] the battery
degradation factor is included in the cost function when an optimal schedule of charging is under
concern. However, the basic idea of these models is the same. Given that the parameters can be
found from the specifications of the PEV, DTEB is used to represent the energy status variation of the
PEV over time, for different processes (from planning to operation). Since the three time-dependent
variables ∆Ec,t, ∆Ed,k, and Ed,k relate the energy variation of the PEV to the processes of charging,
discharging, and driving, DTEB easily enables the creation of combined models wherein various
optimal charging management strategies and driving behaviors can be included to model the dynamic
energy characteristics of the PEV.

3.2. Aggregation Models for PEVF Representation

Based on a combination of PMs and SMs, the aggregation models are developed to mainly support
decisions that are made at different stages by FOs and GOs. One of the most important characteristics
is the size the controlled fleet of an aggregator. Although there are models developed to forecast the
market size of PEVs [37], the size of the fleet, as well as the capacity of the PEVF, are often randomly
selected due to the lack of practical information.

The most basic and straightforward approach is to use a DTEB model for each individual PEV of
a portfolio and, thus, represent them on an aggregate level [33,38,39]. In [38], where optimal bidding
was cast as a two-stage stochastic linear programming problem and multiple scenarios were used to
represent the uncertainty (driving pattern). The problem with such approaches is scalability, because
optimization problems become intractable when the PEVF is large. Moreover, in practice, this approach
might be limited by the unavailability of information, e.g., scenarios for the individual driving patterns
based on historical data.

An aggregation model that is often used is a virtual battery, or else referred to as lumped battery
model, which clusters the PEVs and represents them as one battery [35,40,41]. By using such a model,
probabilistic driving patterns can be applied, as described in more detail in Section 3.3, and typically the
battery’s parameters are set equal to the mean values of individual batteries’ parameters. These works
neglect the dynamic phenomena associated with charging and discharging and consider that the
PEVs are always in a steady state and DTEB equations are used to describe the evolution of the
virtual battery’s energy content. Such models are appropriate for optimization problems but not
for impact assessment on the grid on a short time-scale (e.g., for power quality studies or dynamic
frequency studies).

If the load dynamics are important but still an aggregate representation of the PEVs is required
(mainly for computational reasons), then dynamic aggregate models must be used. In [42], an EEC
virtual battery model was developed and applied to analyze the impact of vehicle to grid (V2G) to
load frequency control (LFC) in Western Denmark, and the parameters of the virtual battery (such as
energy capacity) were derived deterministically based on simple assumptions that 50% of PEVs in the
fleet is always available for delivering V2G. In [43] a PEVF is used to simultaneously offer primary
and secondary frequency control. The dynamic response of a single PEV is represented as a first-order
transfer function and a participation factor for each PEV is used to indicate its availability for primary
control. On an aggregate level, an average participation factor is calculated (where a probability
distribution function of the estimated SOC is used) and an hourly index is used to represent the
aggregate hourly availability; an average transfer function constant is used for the loads’ dynamics.
In [44] a similar, but more advanced, method is used to aggregate PEVs on a bus level, to be used
for more detailed studies including the distribution network characteristics. In a similar manner,
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in [31] the response of a PEVF consists of a time delay (corresponding to communication delays) and
a first-order delay, both having the average values of the population’s parameters.

Another aggregation model was introduced in [45]. Starting from a first-order model for
describing the energy content evolution of a PEV as in [46], then a charging requirement index was
introduced, as the ratio of the required charging time at full capacity over the user-defined remaining
time for charging. Then the authors used the concept of state bins used in characterizing the dynamics
of thermal loads [47] to partition the domain of this index into bins and derive a non-linear model to
describe the aggregate dynamics.

Another approach that can be used for representing the aggregated flexibility more precisely is
Minkowski summation [48–50]. Constraint sets for the charging rate and the battery storage volume
of PEVs are represented as polytopes in high-dimensional Euclidean space. Minkowski summation,
formed by adding together the vector of each polytope, is derived to represent the aggregated flexibility
in a more generic, mathematical manner. As shown in Figure 5, the flexibility of the two PEV batteries
(IC1 and IC2), represented by their constraints, can be summed together to form the representation
of the aggregated flexibility [49]. This modular approach supports both visualization of aggregated
flexibility of PEVs and applications that use the aggregated flexibility to power system operations
through charging management [51]. However, compared to using the lumped battery approach, the
computational cost of Minkowski summation can be very high.
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3.3. Driving Pattern Modeling

Driving information is the essential part of estimating the energy demand and the flexibility
of a PEVF. Today, the driving information is either modeled based on data collected from gasoline
cars [32,52] or based on real measured PEV data [53]. In case there is little data available, Monte Carlo
methods are applied to populate the collected data according to the needs [54] or, as in [34],
a stochastically-generated driving pattern is applied to dynamically represent the average SOC of
the PEVF. From the FO’s perspective, key driving information of its fleet includes: (1) the number of
vehicles arrived at the charging destinations; (2) energy status (e.g., SOC) of the vehicles arrived at the
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charging destinations; (3) the number of vehicles departing from the charging destinations; and (4) the
number of vehicles connected to the grid [35]. The last two information items can be also modelled as
one, i.e., the available duration of charging, to further simplify the representation [40,55,56].

Due to the stochasticity of driving, parametric stochastic models are often used to represent the
probability distribution of the information related to driving and charging. Markov chain models [57,58],
as probabilistic, stochastic modelling approaches, are currently widely used to model the transition
dynamics among driving, parking, and charging. An example from [58] is given in Figure 6 to illustrate
the basic idea of a Markov chain model, wherein four different event states (i.e., M-driving, R-parking
in residential area, C-parking in commercial area, and I-parking in industrial area) are considered as
cyclostationary properties. The corresponding probability functions can be derived based on historical
data, if possible; therefore, different kinds of distribution exist. For instance, the dynamic process of
a vehicle arriving and leaving a parking lot is described as a Poisson process in [34,59], is assumed
to be uniformly-distributed in [33], is presented as a truncated Gaussian distribution in [40,59], and
is also represented exponentially for testing its practicality [60]. These parametric models require
a further process of parameterization in order to find the corresponding parameters.

Energies 2016, 9, 968 10 of 18 

 

based on historical data, if possible; therefore, different kinds of distribution exist. For instance, the 

dynamic process of a vehicle arriving and leaving a parking lot is described as a Poisson process in 

[34,59], is assumed to be uniformly-distributed in [33], is presented as a truncated Gaussian 

distribution in [40,59], and is also represented exponentially for testing its practicality [60]. These 

parametric models require a further process of parameterization in order to find the corresponding 

parameters. 

 

Figure 6. An example of discrete state and discrete time of a Markov chain model for modelling the 

driving pattern of a plug-in electric vehicle fleet (PEVF). 

In contrast to parametric stochastic models, non-parametric approaches have also been 

developed to represent the dynamics of the driving and charging of a group of PEVs. These 

approaches vary from histogram-based or non-parametric bootstrapping representations of PEVs’ 

temporal charging durations [61,62] to a fuzzy neural network model [53]. Compared to the 

parametric models, which assume a finite set of parameters and, thus, complexity is bounded, non-

parametric models can often be defined by assuming the information function has a non-fixed 

dimension. This allows more flexibility during the modelling process; however, the associated 

complexity can also increase dramatically. 

3.4. PEVs in an Aggregator’s Portfolio with other Flexibility Sources 

The synergistic value achieved via aggregating a group of PEVs with diversified 

characteristics can be extended when other flexible sources are added into the portfolio. In [63], a 

large population of PEVs and domestic heat pumps (HPs) are represented by a lumped PEV model 

and a lumped HP model respectively, and controlled together to offer LFC. The lumped model of 

PEVs takes into account the number of PEVs that enter or leave the controlled portfolio and is 

updated every 30 s, enabling a straightforward dynamic representation of the aggregated 

flexibility. The change of the total power consumption after HPs begin to start/stop heating is 

approximated by a normal distribution function that emulates the heat demand. During control, 

the flexibility of PEVs is utilized according to the SOC of each PEV, i.e., a PEV with a high SOC is 

preferred to be discharged first and a PEV with a low SOC is preferred to be charged first; a similar 

approach is applied to control the HPs. 

This approach developed for modelling and controlling a large number of PEVs is also applied 

in other works, such as [64,65]. In [64], the flexibility of PEVs, thermostatically-controlled loads 

(TCLs) and a co-generation plant in an urban area are coordinated by an aggregator to provide LFC 

through receding-horizon optimization, while considering both operational constraints of energy 

networks and dynamic behavior of appliances. A more generic representation of the aggregate 

dynamic behavior of a number of TCLs is given by using a differential equation. In [65], an 

In Movement

Parked in 
Residential Area

Parked in 
Industrial Area

Parked in 
Commercial Area

RPt
R  IP t

I  CP t
C 

MPt
R 

RPt
M 

IPt
M  MP t

I 

CPt
M 

MPt
C 

Figure 6. An example of discrete state and discrete time of a Markov chain model for modelling the
driving pattern of a plug-in electric vehicle fleet (PEVF).

In contrast to parametric stochastic models, non-parametric approaches have also been developed
to represent the dynamics of the driving and charging of a group of PEVs. These approaches vary
from histogram-based or non-parametric bootstrapping representations of PEVs’ temporal charging
durations [61,62] to a fuzzy neural network model [53]. Compared to the parametric models, which
assume a finite set of parameters and, thus, complexity is bounded, non-parametric models can often be
defined by assuming the information function has a non-fixed dimension. This allows more flexibility
during the modelling process; however, the associated complexity can also increase dramatically.

3.4. PEVs in an Aggregator’s Portfolio with other Flexibility Sources

The synergistic value achieved via aggregating a group of PEVs with diversified characteristics
can be extended when other flexible sources are added into the portfolio. In [63], a large population
of PEVs and domestic heat pumps (HPs) are represented by a lumped PEV model and a lumped HP
model respectively, and controlled together to offer LFC. The lumped model of PEVs takes into account
the number of PEVs that enter or leave the controlled portfolio and is updated every 30 s, enabling
a straightforward dynamic representation of the aggregated flexibility. The change of the total power
consumption after HPs begin to start/stop heating is approximated by a normal distribution function
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that emulates the heat demand. During control, the flexibility of PEVs is utilized according to the SOC
of each PEV, i.e., a PEV with a high SOC is preferred to be discharged first and a PEV with a low SOC
is preferred to be charged first; a similar approach is applied to control the HPs.

This approach developed for modelling and controlling a large number of PEVs is also applied in
other works, such as [64,65]. In [64], the flexibility of PEVs, thermostatically-controlled loads (TCLs)
and a co-generation plant in an urban area are coordinated by an aggregator to provide LFC through
receding-horizon optimization, while considering both operational constraints of energy networks and
dynamic behavior of appliances. A more generic representation of the aggregate dynamic behavior of
a number of TCLs is given by using a differential equation. In [65], an aggregator’s portfolio including
PEVs and controllable loads, together with a microgrid, are managed in real-time to provide automatic
generation control service to the TSO. The controllability of PEVs is extended by combining different
types of charging infrastructures that include slow charging, fast charging, and battery swapping.

3.5. Modeling the Related Systems: Energy Markets and the Power System

Charging management strategies are often modelled to represent the interactions between a PEVF
and related systems, i.e., the energy market and power system. When describing these systems, there
are considerations of treating their granularity in different ways.

Considering the power system, there are essentially two dimensions that have to be considered
when modeling a power system, i.e., space and time. When considering the space factor in a power
system model, three levels of granularity can be selected: (1) Lumped models that provide a single set
of outputs for the entire system. This can be understood as a single bus system with load/generators
modeled to simulate the system behavior w.r.t load curves or frequency signals [42]; (2) Zonal models
that provide outputs for homogeneous subareas of a total area. Often, these models include the
information of multi-machines and demand in each zone, and also the network features that connect
the zones together [66]. Such models can be used to represent both transmission and distribution
systems; and (3) Nodal models that provide a more detailed outlook of the power system within a zone
area, often with detailed network information. The nodal models can also be applied to represent either
transmission or distribution systems. However, when a nodal system is applied to the PEVF-related
studies, the objective is often to provide a more detailed understanding of the impacts on a specific
network [67–69]. Typically, if the modeled nodal system has a voltage level above 0.4 kV, the PEVs
have to be modeled using aggregate models.

When considering time in modeling a power system, the granularity level differs from application
to application. The process example given in Figure 3 already, to certain degree, illustrates how time
discretization can be relevant in most PEVF applications. However, for some fast power system
applications (up to a few seconds), such as spinning reserve, primary frequency control, power quality,
etc., the time step in the power systems simulation models has to be very small, implying the need
of modeling the system dynamics at high detail. If the PEVF is used in such analyses, or to provide
such kinds of services, the corresponding models of the PEVF have to adapt to the time requirements
and the corresponding dynamics can be modeled using EEC-based models, which can include the
transient dynamics of PEV chargers [68,70].

Considering the power market, when the interaction between the PEVF and the power market is
modeled as a process, such as bidding, the granularity of a market model can also be treated in different
ways: (1) As a price signal that assumes the time-series electricity prices are known ahead either as
fixed prices or forecastable. In most of the studies that use price signals, the developed strategies
assume the PEVFs are price-takers; (2) Lumped market models that model the market framework and
certain level of price dynamics. For instance in [33], the relationship between the electricity spot price
and the load is assumed to be linear, implying the charging scheduling of the PEVF could impact the
electricity price; and (3) Detailed market models usually include both bidding and market clearing in
order to represent how the electricity prices are derived while considering the uncertainty factors such
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as price and volume. A typical approach applied to model a detailed bidding process is to use game
theory, as in [71], which models the different risk-averse bidding strategies.

3.6. Charging Management Strategies

Since the driving needs determine the expected amount of energy consumption which has to
be met by executing a control process through charging management, when modeling the PEVF, the
controllability of the individual PEVs is a very important factor that has to be considered. At the
PEV level, two categorizations exist: on/off control vs. continuous modulation and unidirectional
vs. bidirectional charging. At the aggregator level, it is purely dependent on which type of charging
management strategy is used by the aggregator. The review given in [72] presented a good overview of
how different charging management strategies can be modeled and implemented, as seen in Figure 7.
When the process of charging management is included in the PEVF model, it would, to a large degree,
affect the dynamic characteristics of the PEVF.
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Charging management as a high-level process can cover both charging scheduling and charging
control. Depending on the perspective (FOs or GOs), the process of charging management can be
formulated as different optimization problems. Mathematically, these problems are modeled and
solved using different approaches, such as linear programming, quadratic programming, dynamic
programming, mixed-integer programming, nonlinear programming, stochastic programming, robust
optimization, heuristic and meta-heuristic algorithms, and model predictive control, which have been
intensively reviewed by several articles [72,73]. In this part, we only briefly review the objectives of
different charging strategies and elaborate on what additional constraints (with respect to SMs) need
to be considered when modeling the charging strategies based on the basic characteristics of the PEVF.

(1) Optimal queueing: Except for battery swapping, charging a PEV to the expected energy level
can be heavily time-consuming in many occasions. Given the assumption that the charging
infrastructure has limited capability, either temporal (i.e., one charging station) or spatial (i.e.,
more than one charging stations that are geographically distributed), or both, queues might occur
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at charging stations. Optimal solutions to this issue, as in [58,74], are developed to ensure PEVs
are charged to their expected levels of SOC as much as possible by charging them sequentially in
a given period, which typically considers the stochastic pattern of arrival and departure of PEVs.
This problem is also sometimes known as optimal routing, when the spatial influence, such as
the distance between charging stations [75,76] and traffic jams, are modeled [77]. In addition to
including the driving needs and the basic characteristics of the PEVF, the formulation of optimal
queueing or routing often takes into account the capacity of charging infrastructures as additional
constraints. The corresponding objectives also cover one or more of the following: shortest path,
minimum energy consumption during driving and waiting, shortest waiting time, etc., which
complement the fundamental needs of charging, i.e., energy. The solutions derived by optimal
queueing or routing can be used not only by FOs to manage the charging of their PEVF, but can
also be used for charging infrastructure planning in relation to both sizing and siting [78].

(2) Charging cost minimization: As one of the fundamental and essential objectives that a FO
wants to achieve, cost minimization often refers to the operational cost of charging the PEVF.
If the electricity is bought from the wholesale market, then the cost minimization implies the
FOs needs to come up with optimal bidding strategies that can ensure the operational cost
is minimized while considering both the uncertainty of market prices and the uncertainty
of energy consumption [35,79]. If the electricity price is already known ahead of time (e.g.,
dynamic tariff), for achieving the same objective, only the intermittency of charging needs
to be considered [35,55,56]. In some cases, additional cost items, such as the cost for battery
life reduction [33], is also included in the objective, incurring the need of having additional
considerations to represent the cost formulation and the related control scheme.

(3) Profit maximization can be formulated by FOs who aim at maximizing the profit of using PEVs to
provide one or more ancillary services. In contrast to charging cost minimization, profit maximization
is based on the assumptions that the flexibility of PEVs is managed to meet the technical requirements
of ancillary services. Typically, this process is combined with cost minimization because trading
energy and trading ancillary services are closely related to each other, such as in [40,61], where the
day-ahead energy trading is combined with regulation services and manual reserves, respectively.
Additional constraints in such groups of problems are usually about market regulations and
bidding strategies that would result in optimal schedules of the PEVF.

(4) Minimization of negative impacts: When PEVs are passively connected to a power system,
this new form of intermittent demand may result in a number of issues, such as network
congestion [67,80,81]. Both FOs and GOs intend to minimize the corresponding negative impacts
as much as possible by either controlling the charging of PEVs at the phase of operation directly or
setting charging limits (temporal and spatial) to the PEVs. Such problems often require additional
constraints (network operational requirements) and other kinds of generation/load models in
order to model the negative impacts from the PEVs and to find the corresponding solutions.

(5) Maximization of the technical flexibility of the PEVF: With properly-designed charging
management strategies, the flexibility of the PEVF can be used to address various kinds of power
system challenges, such as frequency support and congestion management. In contrast to profit
maximization, which considers the provision of ancillary services from the economic perspective,
the models that fall into this category are built from the technical perspective and used for assessing
the technical benefits. The optimality part of this work is on maximizing the flexibility utilization
to meet the technical requirements of ancillary services, especially control-wise (reaction time
and ramp rate), while considering the intermittency of the PEVs. In [66] the PEVs are controlled
to offer primary, secondary, and tertiary reserves using a hierarchical model predictive control
(MPC) structure. In [82], congestion management is modeled as a service offered by the FOs
to optimally allocate the charging flexibility of the PEVF. Additional constraints are, therefore,
mainly modeled from the power system side (e.g., modeling the variation of frequency signals
and network performance) for formulating the system context of ancillary services.
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Most of the optimization problems, in practice, also have to deal with multi-objectives.
When multiple-objective-oriented charging management strategies are modeled, SMs of different market
commodities and different power systems are often both included. For instance, Moradijoz, M. et al. [83]
formulated an ambitious multi-objective optimization algorithm using a heuristic technique to
maximize V2G revenue and to improve grid reliability by minimizing the system disruption cost, as
well as reducing the power losses. In [84] the power purchase cost, emission cost, and operational cost
of a distribution grid with a large number of PEVs are minimized.

4. Discussion and Concluding Remarks

As a complicated task, fleet management can be modeled from different perspectives. To reduce
the level of diversity, this paper classifies them into two types of models, i.e., process models and system
models. The former are action representations, whereas the latter describe features and principles.
With a flexible combination of the two types of models, different models can be developed for studying
the integration and management of PEVs. This paper reviewed the current state-of-the-art modeling
approaches applied to modeling several key SMs and PMs.

Currently, the majority of studies use a lumped battery model to represent the aggregated
characteristics of PEVs. When the applications of the model are discrete-time based, the lumped battery
is often modelled as DTEB-based mathematical models that use a difference equation together with
a number of constraints to represent the dynamic energy balance and thresholds of the fleet’s power
and energy. Depending on how the driving pattern is represented and how the forecasting is done,
the dynamic status of the lumped battery can be either modeled stochastically or in a deterministic
manner. The reason for the majority to select this approach to model the aggregated behavior is mainly
due to the convenience of extending the mathematical formulation towards various kinds of charging
management strategies. For the cases when a PEVF is controlled to provide fast ancillary services
which require continuous time simulations, an EEC-based PEVF model is chosen due to the possibility
of modeling the transient dynamics of PEV chargers and batteries.

When the models of the PEVF are applied to a specific context, i.e., either the power system or
the market, the granularity of the two SMs are treated in different ways. The challenge to integrated
modeling is to understand the objectives and capture the advantages of different approaches while
overcoming some of their limitations, possibly through the development of hybrid models. Models of
charging management are already developed in different ways to show how this challenge can be
addressed in different ways. However, most of the models are built from the research perspective and
the purpose is, therefore, often for knowledge development/conceptualization. From the application
perspective, this implies that the majority of aggregation-based models are more appropriate for
long-term planning. When more in-field information is collected over time, and the business models
for the PEVF become clearer, it can be perceived that the effectiveness of different models will be tested
and validated.

Finally, it is clear that there are many approaches available for supporting the investigations of
management and integration of PEVs. The related models are often developed based on a consideration
of issues across multiple disciplines (e.g., the power system and markets), integration of processes
and models, and spatial and temporal scales. Moreover, these three types of integration are not
mutually exclusive. A modeling framework that can achieve an appropriate combination of SMs and
PMs in order to reach a good compromise between representing individual systems/processes in
detail and representing the range of the over systems/process would facilitate the work of model
development. Further development of generic/taxonomized approaches that can represent the
dynamics (or flexibility) of populations through time and across geographic areas, theoretically, is
another important research element. This will facilitate the development of various PEVF applications
that rely on optimization and allow for synergy maximization among various flexibility resources.
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