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Abstract: In this paper, a Rankine cycle test system is established to recover exhaust energy from
a 2.0 L gasoline engine. Experiments on the system’s performance are carried out under various
working conditions. The experimental results indicate that the recovery power of the expander is
strongly related to the load and speed of the gasoline engine. It is found that when the output
power of the gasoline engine is 39.8–76.6 kW, the net power of the expander is 1.8–2.97 kW,
which is equivalent to 3.9%–4.9% of the engine power. The performance simulation shows that
the mass flow rate, power output, and isentropic efficiency of the piston expander are directly
determined by the intake valve timing. Selecting a suitable intake valve timing can optimize the
performance of the expander. The simulation results show that a 1 kW increment in power can be
obtained only by selecting an optimum intake open timing. The experimental results further verify
that the single-valve piston expander, because of its small dimensions, simple structure, and high
speed, is appropriate, and has great potential for energy recovery of gasoline engine exhaust and has
good prospects for engineering applications.
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1. Introduction

With the increasing use of technology, the demand for energy is surging at an unprecedented
rate [1]. This offers significant opportunities to save energy and protect the environment [2]. Internal
combustion engines (ICEs) are the major source of mobile power in the world, and will likely continue
to be for some decades [3]. However, on average, two-thirds of the energy obtained from the fuel used
is still wasted through exhaust gases and coolants and lost in the form of heat [4,5]. Recovering this
wasted energy, particularly energy wasted through exhaust is, therefore, of great significance [6,7].
There are several technologies for the recovery of wasted energy from an ICE [8]. One solution is to
integrate a waste heat recovery system based on a Rankine cycle [9–12] into the engine, which this
paper addresses.

In the 1970s, the idea of recovering waste heat from automotive ICEs using the Rankine cycle
was conceived [13]. However, the idea was discarded owing to its mechanical complexity and the
loss in power-to-weight ratios that would inevitably result. Today, many researchers recognize that
recovering waste heat from engine exhaust has the potential to decrease fuel consumption without
increasing emissions, and recent advances in technology have made these systems viable and cost
effective [14]. Many researchers have concluded that the Rankine cycle system is highly effective in
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recovering waste heat from ICEs [15–17]; thus, research in this area has become significant worldwide.
Hajabdollahi et al. [18] built a model of a Rankine cycle system for diesel engine waste heat recovery
and analysed the thermal efficiency and total annual cost of the system. Gunnar et al. [19] discussed
experimental results and practical challenges while utilizing a waste heat recovery system in the
exhaust gas recirculation system of a truck engine. Zhang et al. [20] designed an integrated Rankine
cycle system and used a screw expander to recover waste heat from a diesel engine. When the diesel
engine operated at 250 kW, the output power of the single screw expander was 10.38 kW.

In the waste heat recovery system of a Rankine cycle system, one of the key parts is the expander,
which has an important influence on system performance. There are many types of expanders for a
Rankine cycle system [21]. Vane expanders are likely choices because they can provide high expansion
ratios and acceptable performance over a wide range of operations with a simple design and low cost.
In addition, it is relatively easy to scale them down over a wide range of 1–10 kW. The rotary vane
expander is a good option when the required power output is lower than 2 kW [22]. Kolasinski et al.
conducted experimental and numerical analyses on a rotary vane expander used in a micro-organic
Rankine cycle (micro-ORC) system. The experimental results showed that the rotary vane expander
could be adopted in micro-ORC systems if its sealing and bearing issues were solved [23].

Gnutek et al. analysed the use of a vane rotary expander with a low-boiling working fluid
for small-capacity ORC systems. The experimental results revealed that the system could generate
approximately 1.2 kW, which was equivalent to approximately 10% of the net conversion efficiency.
Moreover, the experiment proved that the ORC system power and efficiency are dependent on the
working fluid mass flow [24].

The turbo expander, which is widely used in industrial power generation, is not suitable for
cases with a small gas flow rate because its miniaturization results in reduced efficiency and increased
cost. Large-scale systems above approximately 50 kW employ turbo expanders because of their
relatively high expansion efficiency at higher power ratings [25]. When the power is below 50 kW,
the performance of turbo expanders begins to deteriorate until unacceptable efficiencies are reached at
10 kW [26]. Moreover, their units are very expensive and their reliability has yet to be proven [27,28].

However, a piston expander has higher thermal efficiency under low steam-flow-rate conditions
and a good power output/size ratio. This type of expander is generally built or renovated based
on existing commercial IC engines [29–34]. Endo et al. [35] studied a piston expander used in a
Rankine cycle system to recover waste heat from hybrid electric vehicle exhaust. In this study,
the use of a recovery device increased the overall recovery system efficiency from 28.9% to 32.7%.
Yulia et al. [36] proposed a steady-state semi-empirical model to study the performance of a piston
expander. The results indicated that the piston expander has relatively high entropy and mechanical
efficiency and is suitable for engine waste heat recovery. Chiong et al. [37] used a nozzle piston
expander instead of a conventional expander to recover exhaust energy. Simulation results showed
that the nozzle piston expander could increase output power from a minimum of 0.73 kW to a
maximum of 4.75 kW, and has the potential to improve engine system level efficiency.

The single-valve expander is a type of piston expander. Due to its reliability, simple structure, and
high compression ratio, this type of piston expander has been widely used in compressed-air energy
storage systems and small cooling equipment. However, it has not yet been used in engine waste
heat recovery systems. Therefore, in this study, a single-valve piston expander is applied to a waste
heat recovery system and is tested to assess system performance using several indices. In addition,
an optimization method is proposed.

2. Experimental System for Waste Heat Recovery

In the system being studied, a Rankine cycle system employs a single-valve piston expander
to recover exhaust heat from a 2.0 L Naturally aspirated (NA) gasoline engine. Experiments are
conducted to evaluate the performance of the expander.
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2.1. Experimental Principle and Bench Description

The test bench for the waste heat recovery system is shown in Figures 1 and 2. The system consists
of a dynamometer, gasoline engine, Rankine cycle system, control system, and data acquisition system.
The dimensions of the Rankine cycle system are 0.95 × 0.57 × 0.50 m3. The parameters for the main
equipment of the test system are listed in Table 1.
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Figure 2. Test bench of the waste heat recovery system.

In a waste heat recovery system, water is chosen as the working fluid. In a Rankine cycle system,
which recovers only exhaust heat, water is the most efficient refrigerant. It is also the best working
medium when the exhaust temperature of a gasoline engine ranges between 500 and 800 ◦C [38,39].
Water is pumped to the recuperator by a high-pressure pump and then heated by exhaust gas.
The water converts to steam at a high temperature and pressure. One side of the expander output
shaft connects to the generator to produce electrical power; the other side connects to the working
fluid pump to drive it and produce pressure. The exhaust steam then condenses in the condenser,
and the water flows into the working fluid tank. The recuperator is located behind and close to a
three-way catalyst.
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Table 1. Parameters for the main instruments of test system.

Instruments Type Parameter

Gasoline engine 2.0 NA Table 2
Expander Customization Table 3

Recuperator Customization Multilayer spiral tubes Heat transfer area 1 m2

Generator 8SC3238VC Regulated DC 28 V/150 A

Table 2. Parameters of the 2.0 NA gasoline engine.

Parameter Unit Value

Cylinder number - 4
Bore mm 83

Stroke mm 91
Compression ratio - 10.3

Rated power kW 110
Rated speed r/min 6300

Maximum torque Nm 183
Speed at maximum torque r/min 4500

Table 3. Parameters of the expander.

Parameter Unit Value

Cylinder number - 1
Bore mm 50

Stroke mm 50
Connecting rod length mm 100

Speed r/min 1000–4000

2.2. Test and Data Acquisition System

The test and data acquisition system includes cylinder pressure sensors, temperature sensors,
speed sensors, back-pressure sensors, and an output power meter. The sensor placement is shown in
Figure 1. An NIPCI-6132 (National Instruments, Austin, TX, USA) card is used in the data acquisition
system. K-type thermocouple temperature sensors are used to measure the temperature of the exhaust
and working fluid. A 6056A pressure sensor is used to measure the expander cylinder pressure,
and its sampling frequency is 10,000 Hz. The back-pressures at the recuperator and outlet of the
exhaust are measured by back-pressure sensors. The output power meter measures the output power
of the generator. Since the flow rate of the working fluid is mainly related to the pump speed, the mass
flow rate of the working fluid is measured on a pump test bench.

3. Experimental Results and Analysis

In a waste heat recovery system, the output power of the expander is closely related to the running
state of the engine. Variations in engine speed and load will vary the heat of the exhaust, resulting in
steam pressure and temperature variations in the expander, thereby affecting the expander speed and
output power. In this experiment, four conditions (listed in Table 4) of the gasoline engine are chosen
to evaluate the waste heat recovery performance. Figure 3 shows a T-S diagram of the Rankine cycle
for case 1.
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Table 4. Test results of the Rankine recovery system.

Rankine Cycle
System Parameter Unit Case 1 Case 2 Case 3 Case 4

2.0 NA
Gasoline engine

Speed r/min 4000 4000 4000 5500
Load Nm 94.5 108.6 133.7 133

Power kW 39.6 45.5 56.0 76.6
Exhaust temperature at inlet of recuperator ◦C 721 740 765 805

Exhaust temperature at outlet of recuperator ◦C 411 398 390 445
Exhaust mass flow kg/s 0.052 0.058 0.067 0.093

Expander
Steam pressure in expander cylinder MPa 3.87 4.23 5.24 6.69

Speed r/min 1352 1426 1640 1978
Working fluid mass flow kg/s 0.0053 0.0055 0.0064 0.0078

Electrical power kW 0.515 0.784 1.393 2.152
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3.1. Recuperator Influence on the Gasoline Engine

Variations in the operating state of the engine will affect the output power of the waste heat
recovery system, and the recuperator in the exhaust tube has an impact on the back pressure of the
exhaust gas. If the exhaust gas back pressure is too high, it will decrease the power of the engine;
thus, both the back-pressure and exhaust temperature are measured. The measurement results are
shown in Figure 3.

As can be seen in Figure 4, the drops in exhaust temperature between the recuperator inlet (ET1)
and outlet (ET2) are remarkable, reaching 300–380 ◦C. The recuperator in the exhaust tube increased
the back-pressure by a maximum of 9.4 kPa for all four conditions. In addition, test results for fuel
consumption are listed in Table 5. The fuel consumption only increased by 0.20% when the recuperator
was present in the exhaust tube.
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Table 5. Comparison between fuel consumption without and with the recuperator.

Case Fuel Consumption without
Recuperator (kg/h)

Fuel Consumption with
Recuperator (kg/h)

Fuel Consumption
Increasing Rate

1 13.12 13.14 0.15%
2 15.33 15.36 0.20%
3 19.59 19.63 0.20%
4 27.96 28 0.14%

3.2. Performance of Expander and Recovery System

The pressure sensors installed in the expander cylinder head can measure the pressure variation
with a crank angle and obtain an indicator diagram, as shown in Figure 5. This diagram indicates
how the expander cylinder pressure changes with the crank angle and volume when the engine is
operating as per Case 4 (76.6 kW, 5500 r/min).
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Based on the indicator diagram, the powers of the four test cases can be calculated.
They are 2.23, 2.63, 3.44, and 5.06 kW, respectively. As generator power and efficiency were measured,
the shaft power of the expander can be calculated, which are 2.06, 2.45, 3.24, and 3.47 kW for the four
test cases, respectively.

3.3. Performance Analysis of Waste Heat Recovery System

Several parameters are used to evaluate the performance of the experimental system in recovering
waste heat.
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3.3.1. Net Power Rise Rate ϕ

One metric to evaluate the recovery capacity of the test system is ϕ, which is defined as the rise
ratio of the power:

ϕ =
Wnet

Wg
(1)

Wnet = We − Wp − Wloss = Wa − Wloss (2)

where Wg is the gasoline engine power. We is the expander output power. Wa is the shaft power of the
expander calculated according to the generator efficiency and electrical power, and Wp is the plunger
pump consumption power. As the pump is driven by the expander, the shaft power Wa is equal to
expander power We minus pump power Wp. Wloss is the gasoline engine power loss owing to pressure
loss resulting from the recuperator located in the exhaust system. As shown in Figure 6, when the
gasoline engine is operating at 4000 r/min and 56 kW, the energy recovered from the exhaust increases
the total power of the system by 2.74 kW, which is equivalent to 4.9% of the engine power.
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3.3.2. Thermal Efficiency of Rankine Cycle ηR

The thermal efficiency of the Rankine cycle, ηR, is defined to evaluate the cycle’s capacity to
convert heat into work:

ηR =
WTi

.
Qw

=

.
miw·(hw f t1 − hw f t2)

.
mw·(hw f t1 − hw f t4)

(3)

where WTi is the ideal indicated power of the expander, and
.

miw is the theoretical mass flow rate of
the working fluid, which is calculated using a thermodynamic model of the piston expander [39].

.
mw

is the mass flow rate of the working fluid, which is measured in the experiment. hw f t1 and hw f t2 are,
respectively, the specific enthalpy of the working fluid at the inlet and outlet of the expander. hw f t4 is

the specific enthalpy of the working fluid at the inlet of the recuperator.
.

Qw is the energy absorbed by
the working fluid from the exhaust gas.

As shown in Figure 7, the thermal efficiency of the Rankine cycle system increases from 19.45% to
32.33% along with an increase in the power of the engine.
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3.3.3. Overall Combined Cycle System Efficiency ηw

ηw =
We + Wg

W f uel
(4)

where W f uel is the fuel heat. As shown in Figure 8, when the gasoline engine power is 45.5 kW,
the original efficiency of the engine is 23.2%. However, when the exhaust energy was extracted by
the expander, the overall combined cycle system efficiency reached 24.4%. Approximately 1.2% of the
total fuel energy was recovered. For an additional weight of 50 kg, the propulsive power increase is of
about 0.7% at 3500 RPM and reaches 1.25% at 1000 RPM [40]. In this recovery system, the weight of
the equipment is below 50 kg, and the gasoline engine speed is in 4000 RPM or above. The increase of
propulsive power will be less than 0.7%. Thus, the fuel economy efficiency increased by nearly 1%.
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4. Analysis of Potential Power Increase of the Expander

The expander recovery system used in the above theoretical and experimental research is shown
in Figure 9. When the piston moves toward the top dead point, the push rod drives the ball valve open.
With the inlet valve open, high-pressure steam enters and fills the cylinder. When the piston reaches
the top dead point, the inlet valve is fully open. Then, the piston performs a down stroke as the inlet
valve remains open, allowing steam to fill the cylinder until the inlet valve closes.Energies 2016, 9, 1001 9 of 15 
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Figure 9. Structure of single-valve piston expander (1) intake; (2) spring; (3) ball valve; (4) cylinder;
(5) push rod; (6) piston; (7) piston ring; (8) connecting rod; (9) crankshaft; (10) exhaust port;
and (11) exhaust.

With the inlet valve closed, expansion follows, pushing the piston away from the cylinder head.
The linear thrust acting on the piston end of the connecting rod is transmitted to the crankshaft,
providing rotary movement. When the piston nears the bottom dead point, the exhaust port opens,
and the steam in the cylinder discharges from the exhaust port. Then, the piston moves up to compress
the remaining steam until the intake valve opens again to perform the next cycle.

In the expander, the intake valve opens at 40◦ before TDC (Top dead centre) and closes at 40◦

after TDC, as shown in Figure 10. This implies that the intake valve opens, and high-pressure steam
fills the cylinder relatively early during the piston’s upstroke, leading to a relatively large negative
power. If the intake valve opens later, the power of the expander will be increased for the same intake
valve lift-and-open period. In order to analyse the influence of the open timing of the intake valve on
the expander performance, several analyses were conducted.

The offset angle is defined as the change in the angle at which the intake valve opens from its
initial open angle. In this study, the initial intake phase occurs during the 320◦–40◦ TDC period,
and the exhaust phase is in the 100◦–260◦ BDC (Bottom dead centre) period, as shown in Figure 10.
If the intake valve opens later than the original open point, the offset angle is considered positive. If it
opens earlier, the offset angle is negative. When the intake valve opens too early, the cylinder may



Energies 2016, 9, 1001 10 of 15

reach maximum pressure before TDC; this will result in negative compression work, reducing the
output power and efficiency of the expander.

In this section, a thermodynamic model of the piston expander, built using MATLAB/Simulink
(R2014a, MathWorks, Natick, MA, USA, 2014), is described [41]. This model consists of energy
conservation, mass conservation, and heat transfer equations. The state parameters of the working
fluid in the system are calculated by a function called REFPROP (v9.0, National Institute of Standards
and Technology, Gaithersburg, MD, USA), which is part of NIST (National Institute of Standards and
Technology) software. It is used to analyse the influence of the intake phase on expander performance.Energies 2016, 9, 1001 10 of 15 
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Figure 10. Valve timing diagram of the expander.

By maintaining the exhaust structure and running state of the expander, the influence of the
intake angle on cylinder pressure and the instantaneous flow rate of the working fluid are determined,
as shown in Figures 11 and 12. When the intake offset angle increases negatively, the maximum
pressure in the cylinder increases significantly, and the maximum pressure point occurs before TDC.
When the maximum pressure is attained, the cylinder pressure is greater than the intake pipe pressure.
Thus, the working fluid (steam) flows backward into the intake pipe, and the working fluid mass in
the cylinder is reduced. When the intake angle has a positive offset, the intake process occurs during
the piston’s down stroke. During that time, the volume of the cylinder gradually increases. Thus,
the cylinder pressure and intake resistance decrease, which causes a decrease in the mass of the
working fluid in the cylinder.

Figure 13 shows how the expander performance varies with the opening timing of the intake
valve. When the intake angle offset changes from negative to positive, the rate of filling of the working
fluid into the cylinder increases gradually. The output power of the expander initially increases and
then decreases slightly. The output power reaches its maximum at a 20◦ offset angle when the intake
phase is in the 340◦–60◦ TDC region. A 1 kW increment in power can be obtained only by varying
the opening timing of the intake. The isentropic efficiency of the expander initially increases and then
decreases, but this variation is relatively small. The maximum efficiency occurs at a 10◦ offset angle.
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One reason why the power output initially improves is that the intake valve opens late,
but if it opens before TDC it can decrease the compression power. The other reason is that with
a positive offset of the intake angle the intake process takes place mostly during the piston’s down
stroke, and the cylinder volume gradually increases. This causes the cylinder pressure and intake
resistance to decrease and causes the mass of the working fluid in the cylinder to increase. In addition,
along with the decrease in negative work, the output power and isentropic efficiency increase.

However, if the intake opening angle is too close to TDC, the intake closing time will result in
incomplete expansion of the working fluid, which will decrease the output power and isentropic
efficiency of the expander. Thus, the choice of intake offset angle should consider the effects on output
power and isentropic efficiency.

The expander isentropic efficiency ηoi is defined as the ratio of the indicated work to the ideal
indicated work of the expander.

ηoi =
Wi
WTi

(5)

In this equation, Wi is the actual indicated power of the expander. It is determined using the
indicator diagram.

5. Conclusions

This paper presents an experimental study and analysis of the potential of a single-valve piston
expander. Experimental results show that the power of the expander increases with gasoline engine
speed and increase in load. The maximum net power of the expander reaches 2.74 kW under four test
conditions. The total power of the engine and expander is increased by approximately 4.9%.

A simulation of the expander intake phase shows that the output power of the expander can be
improved by optimizing the intake timing. Simulation results show that the power of the expander can
increase to a maximum of 1 kW when the intake opening timing is at a 20◦ forward offset. Therefore,
in developing the expander, selecting the intake valve opening timing is crucially important.
In addition, the waste heat recovery system slightly increases the back pressure of the engine. Therefore,
this Rankine cycle system shows good potential for use in recovering engine waste heat and has a
bright future in engineering applications.
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Abbreviation

ICE Internal combustion engine
NA Naturally aspirated
P Pressure, Pa
V Volume of the steam in the cylinder, m3

T Temperature, ◦C
ET Exhaust temperature, ◦C
EP Exhaust pressure, Pa
WFT Working fluid temperature, ◦C
WFP Working fluid pressure, Pa
ϕ Net power rise rate
Wnet Net power output of recovery system, W
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We Expander power output, W
Wp Pump power consumption, W
Wloss Gasoline engine power losses, W
Wa Shaft power of expander, W
Wg Gasoline engine power output, W
ηR Thermal efficiency of Rankine cycle system
WTi Ideal indicated power, W
.

Qw Energy absorbed by the working fluid in unit time, W
.

miw Theoretical mass flow rate of working fluid, kg
.

mw Mass flow rate of the working fluid, kg
hw f t Specific enthalpy of the working fluid, kJ/kg
Wi Indicated power, W
ηw Overall combined cycle system efficiency
Wfuel Fuel heat, W
NIST National Institute of Standards and Technology
TDC Top dead centre
BDC Bottom dead centre
Wi Indicated power, W
ηoi isentropic efficiency of expander
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