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Abstract: Knowledge concerning the complicated changes of mass and heat transfer is desired
to improve the performance and durability of unitized regenerative fuel cells (URFCs). In this
study, a transient, non-isothermal, single-phase, and multi-physics mathematical model for a URFC
based on the proton exchange membrane is generated to investigate transient responses in the
process of operation mode switching from fuel cell (FC) to electrolysis cell (EC). Various heat
generation mechanisms, including Joule heat, reaction heat, and the heat attributed to activation
polarizations, have been considered in the transient model coupled with electrochemical reaction and
mass transfer in porous electrodes. The polarization curves of the steady-state models are validated
by experimental data in the literatures. Numerical results reveal that current density, gas mass
fractions, and temperature suddenly change with the sudden change of operating voltage in the
mode switching process. The response time of temperature is longer than that of current density
and gas mass fractions. In both FC and EC modes, the cell temperature and gradient of gas mass
fraction in the oxygen side are larger than that in the hydrogen side. The temperature difference of
the entire cell is less than 1.5 K. The highest temperature appears at oxygen-side catalyst layer under
the FC mode and at membrane under a more stable EC mode. The cell is exothermic all the time.
These dynamic responses and phenomena have important implications for heat analysis and provide
proven guidelines for the improvement of URFCs mode switching.

Keywords: unitized regenerative fuel cells; mode switching; mass transfer; heat transfer;
transient response

1. Introduction

Science and technology are developing by leaps and bounds, leading to higher energy storage
demands. The unitized regenerative fuel cell (URFC) is perceived as one of the cleanest and most
effective energy storage and conversion device, whose special energy is several times higher than that
of the lightest secondary battery [1,2]. Compared with secondary batteries, URFCs have the advantages
of no self-discharge or cell capacity limitation. The high special energy of URFCs indicates limitless
applications for some weight-critical and time-consuming portable applications such as space energy
systems (>40 Wh·kg−1) [3]. In addition, URFCs can be developed for and applied in high-altitude
long-endurance solar aircraft, hybrid energy storage spacecraft propulsion systems, remote area
energy storage systems without relying on the grid, power systems for power grid peak adjustment,
and portable power source systems [4–6].
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Continuous direct current power and water will be generated when URFCs are replenished
with H2 and O2 under the fuel cell (FC) mode. Electronic energy will be converted into chemical
energy stored in H2 and O2 when water is electrolyzed under the electrolysis cell (EC) mode [7,8].
The two modes occur within the same system. The chemical reactions in the FC mode are:
2H2 − 4e− = 4H+ (on the hydrogen side); O2 + 4e− + 4H+ = 2H2O (on the oxygen side).
The chemical reactions in the EC mode are: 4H+ + 4e− = 2H2 (on the hydrogen side);
2H2O − 4e− = O2 + 4H+ (on the oxygen side). Proton exchange membrane (PEM) URFCs have become
the focus of attention of researchers because of the rapid development of PEM water electrolysis
and the reliable characteristics of PEM FC, such as low operating temperature, high starting speed,
and large current density [9].

As a reversible electrochemical tool, URFCs place higher demands on their catalysts and
the structure and materials of each component. In the past two decades, there have been many
experimental investigations focusing on the type of catalysts and mass ratio of complex catalysts
(e.g., [10–13]), the structure of flow field plates (e.g., [14,15]), material types and surface treatment
technology of gas diffuse layer (GDL) (e.g., [16,17]) as well as the cell performance (e.g., [6,18,19])
under different operational conditions such as temperature, pressure and humidity. Li et al. [20]
and Zhang et al. [21] conducted experiments, tested and compared the performance of URFCs under
different operating temperatures.

At the same time, a handful of simulation studies related to URFCs have been conducted.
Guarnieri et al. [9] developed a multi-physics zero-dimensional model of the PEM URFC system
to provide guidance for the design of a cell/stack subsystem. The sensitivity of URFC performance
to temperature, pressure and humidity is also analyzed. Doddathimmaiah et al. [22] used Excel
and Visual Basic to develop a computer model by modifying the Butler-Volmer equation to generate
voltage-current curves in the EC and FC modes of the PEM URFC. This model was considered as
a tool to identify the electrode materials and structures of URFCs. Those two models are purely
mathematical models used to investigate the influence of a parameter on the cell performance,
which could not provide the influencing mechanism inside of the URFC. What’s more, URFCs should
be shifted from one mode to another mode, particularly when combining with wind or solar energy to
provide renewable energy. An in-depth study of a complex set of changes occurring during operation
mode switching should be conducted. Two-dimensional, isothermal, single-phase, and transient
models for URFCs based on PEM [23] and solid oxide electrolyte [24] were developed to investigate the
transport phenomena during the mode switching process. Wang et al. [23] presented the mass fraction
distributions of hydrogen, oxygen, water, and electrolyte potential response when a URFC switched
from the FC mode to the EC mode. The performance of URFCs is affected by some fundamental
factors, such as electrolyte, temperature, and mass transfer. Furthermore, electrochemical reaction,
reactant mass transfer, equilibrium potential, and parameters of composite material are tightly linked
to the temperature. The amount of waste heat produced by the PEM FC is approximately the same as
its electric power output. PEM URFCs tolerate a small temperature variation. Only a few studies have
investigated the heat transfer of URFCs, and no literature on numerical simulation can be found for
this purpose.

So far, many articles have developed models for the PEM FC and PEM EC to analyze heat
transfer (e.g., [25,26]). A three-dimensional, single-phase, and non-isothermal model is developed
for a PEM FC by Ju et al. [27]. The simulation results indicate that the GDL thermal conductivity
plays an important role in thermal and water management of cells. Wen [28] built a two-dimensional
model and a three-dimensional model to analyze the thermal questions. The results indicated that the
highest temperature exists in the catalyst of the cathode, the temperature difference among membrane
electrode assembly (MEA) is lower than 1 K. Some transient non-isothermal models (e.g., [29–31])
are built to assess the mass transfer transient responses in a PEM FC. The work of Meng [32] revealed
that the heat transfer process evidently increased the transient response time. Chandesris et al. [33]
developed a one-dimensional model incorporating chemical degradation of the membrane for an EC,
and the results showed a strong influence of temperature on the degradation rate. Marangio et al. [34]
believed that the increase in pressure and temperature lead to a better performance of the PEM EC.
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Hamour et al. [35] adopted a transient model to investigate the heat conducting characteristics of the
GDL for a PEM FC and a PEM EC. However, no article analyzing the heat response for URFCs has
been found. Heat and mass transfer significantly affect the performance of FC, water electrolysis,
and URFCs. Numerical simulation is a cost-effective and time-effective approach in analyzing the
intricate change inside the URFCs.

A transient, non-isothermal, single-phase, multi-physics, and full-cell mathematical model for
PEM URFC is generated in the present study to analyze the dynamic responses of a PEM URFC
under the operation mode switching and enhance the fundamental understandings of the complex
interactions of heat and mass transfer during the cell transient operations further. The model is coupled
with electrochemical reactions. Heat generation of URFC without phase change includes irreversible
heat attributed to activation polarizations and ohmic heat and reversible entropic heat of reactions.
The influences of temperature on the parameters of materials and equilibrium potential are considered
in this model. The multi-component species in hydrogen and oxygen electrodes transmit in porous
medium. The URFC is switched from the FC mode to the EC mode at 2 s. This study aims to explore the
intricate changes of heat and mass transfer as well as current density under operation mode switching.

2. Model Description

Figure 1 shows the computational domain, which is optioned along with the gas flow channels
of a PEM URFC. The geometric model consists of oxygen-side and hydrogen-side gas flow channels
(OGFC and HGFC, respectively), oxygen-side and hydrogen-side gas diffuse layers (OGDL and HGDL,
respectively), oxygen-side and hydrogen-side catalyst layers (OCL and HCL, respectively), and a
PEM-based electrolyte.
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Figure 1. Computational domain of the 2D proton exchange membrane (PEM) unitized regenerative
fuel cell (URFC). OGDL: oxygen-side gas diffuse layer; HGDL: hydrogen-side gas diffuse layer; OGFC:
oxygen-side gas flow channels; and HGFC: hydrogen-side gas flow channels.

2.1. Model Assumptions

Suitable assumptions are considered based on the purpose of investigating the characteristics of
heat and mass transfer to make the numerical simulation simple and tractable. The main assumptions
are listed as follows:

• Single phase. No phase change occurs in this model, and water, including the reaction product
water, is maintained in the gaseous state to simplify the model [23,36,37].

• Heat transfer. The MEA (including GDLs, CLs and a PEM) is treated as heat transfer in a solid,
and the effect of gas flow in a porous medium on heat transfer is ignored.

• Species transport. The flow state is laminar because of the low Reynolds number. All gas mixtures
are treated as incompressible ideal gasses [23,37,38].

• Material characteristics. The PEM is assumed to be impermeable to gas species [23]. In addition,
GDLs and CLs are homogeneous and isotropic, and the contact resistance between different layers
is ignored [39].
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2.2. Governing Equations

In this study, a two-dimensional, non-isothermal, single-phase, multi-physics, transient,
and full cell model of URFC is generated numerically, which accounts for the transfer of charge,
species, and energy. Equations are presented below to describe these processes.

2.2.1. Charge Transfer and Current Distribution

From Ohm’s law, the ionic and electronic currents of electrodes and membrane can be written as:

iM = −σeff
M∇φM (1)

iS = −σeff
S ∇φS (2)

where φM and φS are the ionic and electronic potentials, respectively. σeff
M and σeff

S are the effective
ionic and electronic conductivities of the electrodes and membrane, respectively. For isotropic GDLs
and CLs, σeff

S = σS; the value of σS is listed in Table 1. For the membrane, σeff
M = σM; for the CLs,

σeff
S = ε1.5

l σM, where εl is the porosity of catalyst layers. The value of σM is determined by using the
following empirical correlation:

σM = (0.5139λ− 0.326) exp
(

1268
(

1
303
− 1

T

))
(3)

where λ is the water content, which is defined as a function of the water activity a. a is assumed to be
equal to 1 in this model [27].

λ =


0.043 + 17.18a− 39.85a2 + 36a3 (a ≤ 1)
14 + 1.4 (a− 1) (1 < a ≤ 3)
16.8 (a > 3)

(4)

In the HCL and OCL, the conservation charge can be described as follows:

∇iS +∇iM = 0 (5)

∇·
(
σeff

S ∇φS

)
= SφS (6)

∇·
(
σeff

M∇φM

)
= SφM (7)

where SφS and SφM are the source terms, which are related to the volume current density in CLs. In
the FC mode, SφS = iV in the HCL, SφS = −iV in the OCL, SφM = −iV in the HCL, and SφM = iV
in OCL. In the EC mode, SφS = −iV in the HCL, SφS = iV in the OCL, SφM = iV in the HCL, and
SφM = −iV in the OCL. iV in the hydrogen and oxygen sides is expressed by the Butler–Volmer
equation, as follows:

iV = aυi0

(
exp

(
αHFη

RT

)
− exp

(
−αOFη

RT

))
(8)

where i0 is the exchange current density, which is dependent on reactant concentrations and reference
exchange current density iref

0 . aυ and η refer to the active specific surface area and over-potential,
respectively. They can be described as follows [27]:

aυiref
0,O (T) = aυiref

0,O (353K) ·exp
(
−16456

(
1
T
− 1

353.15

))
(9)

η = φs −φM − Eeq (10)

where Eeq is the equilibrium potential, which can be defined as Eeq = 0 in the hydrogen side and
Eeq = 1.23− 9× 10−4 (T − 298.15) in the oxygen side [27].
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2.2.2. Multi-Component Mass Transport

The Maxwell-Stefan equation considering a non-conservative form of the continuity equation is
used for individual gas species conservation:

ρ
∂ωi
∂t

+∇·ji + ρ (u·∇)ωi = Si (11)

whereωi is the mass fraction of species i, and ji in the convective term of the Maxwell–Stefan equation
can be described as follows:

ji = −ρωi ∑
k

Dikdk + DT
i
∇T
T

(12)

where Dik and dk are the multi-component Fick diffusivity and the diffusional driving force acting on
species k, respectively. Dik can be calculated from the following empirical correlations [40]:

Dik = D0
ik

(
T
T0

)1.5
(13)

dk = ∇xk +
1
P
((xk −ωk)∇P) (14)

xk =
ωk
Mk

Mn , Mn =

(
∑

i

ωi
Mi

)−1

(15)

where xk, Mn, D0
ik, and T0 are the mole fraction, mean molar mass, reference multi-component Fick

diffusivity, and reference temperature, respectively. The source term Si describing production or
consumption in catalyst layers can be expressed as follows:

Si = νi
iV

niF
(16)

where νi and ni are the stoichiometric coefficient and number of participating electrons, respectively.

Table 1. Physical parameters and basic conditions. CL: Catalyst layer; and GDL: gas diffuse layer.

Parameters Value References

Length of channel/mm 48 Assumed

Gas flow channel width/mm 2 Assumed

Oxygen electrode GDL thickness/mm 0.6 Assumed

CL thickness/mm 0.028 Assumed

Hydrogen electrode GDL thickness/mm 0.3 Assumed

Membrane thickness/mm 0.178 Assumed

Oxygen/hydrogen electrode GDL permeability/m2 1.18 × 10−11 [23,41]

Oxygen/hydrogen electrode GDL electrical conductivity/S·m−1 1000 [23,41]

H2 reference concentration/mol·m−3 56.4 [23,42]

O2 reference concentration/mol·m−3 40.8 [23]

Anodic transfer coefficient 0.5 [38]

Cathodic transfer coefficient 0.5 [38]

Operating temperature/K 353.15 [23]

Hydrogen electrode GDL porosity 0.4 [23]

Oxygen electrode GDL porosity 0.5 [23]

H2/H2O reference binary diffusion coefficient/m2·s−1 9.15 × 10−5 [40,43]
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Table 1. Cont.

Parameters Value References

O2/H2O reference binary diffusion coefficient/m2·s−1 2.82 × 10−5 [40,43]

Oxygen/hydrogen electrode CL porosity 0.25 [23]

Active specific surface area/m−1 1.4 × 105 [23]

Hydrogen-side volumetric exchange current density/A·m−3 1.0 × 109 [27]

Oxygen-side volumetric exchange current density/A·m−3 3.0 × 103 [27]

Electrolyte volume fraction 0.26 [44]

Platinum density/kg·m−3 2.145 × 104 [45]

Carbon density/kg·m−3 1.8 × 103 [45]

Titanium density/ kg·m−3 4.5 × 103 [46]

Membrane density/kg·m−3 2.0 × 103 [47]

Platinum specific heat capacity/J·kg−1·K−1 130 [46]

Carbon specific heat capacity/J·kg−1·K−1 894.4 [46]

Titanium specific heat capacity/J·kg−1·K−1 523 [47]

Hydrogen specific heat capacity/J·mol−1·K−1 1.914 × 10−6T2 − 8.314 × 10−4T + 28.890 [45]

Oxygen specific heat capacity/J·mol−1·K−1 −4.281 × 10−6T2 + 1.371 × 10−2T + 25.431 [45]

Water vapor specific heat capacity/J·mol−1·K−1 1.180 × 10−6T2 + 9.621 × 10−3T + 30.326 [45]

Membrane specific heat capacity/J·kg−1·K−1 1050 [32,48]

Membrane thermal conductivity/W·m−1·K−1 0.21 [49]

Titanium thermal conductivity/W·m−1·K−1 15.2 [46]

Platinum thermal conductivity/W·m−1·K−1 −5.073 × 10−9T3 + 2.483 × 10−5T2 − 2.282 ×
10−2T + 77.80 [45]

Carbon thermal conductivity/W·m−1·K−1 1.048 × 10−6T2 − 2.869 × 10−3T + 2.979 [45]

Hydrogen thermal conductivity/W·m−1·K−1 3.777 × 10−4T + 7.444 × 10−2 [45]

Oxygen thermal conductivity/W·m−1·K−1 6.204 × 10−5T + 8.83 × 10−3 [45]

Water vapor thermal conductivity/W·m−1·K−1 1.188 × 10−4T − 2.204 × 10−2 [45]

2.2.3. Gas Flow Equations

In the gas flow channel the Navier–Stokes equation is used to govern momentum transfer:

ρ
∂u
∂t

+ ρ (u·∇) u = ∇·
[
−pl + µ(∇u + (∇u)T)− 2

3
µ (∇u) l

]
(17)

There is an equation of mass conservation:

∂ρ

∂t
+∇· (ρu) = 0 (18)

For the porous medium of GDLs and CLs, the following Brinkman equations can describe the flow:

ρ

ε

(
∂u
∂t

+ (u·∇) u
ε

)
= ∇·

[
−pl +

µ

ε
(∇u + (∇u)T)− 2µ

3ε
(∇u) l

]
−
(
µ

κ
+

Sm

ε2

)
u (19)

∂ (ερ)

∂t
+∇· (ρu) = Sm (20)

Sm = ∑
i

iV Mi
niF

(21)

where ε and κ are the porosity and permeability of the porous electrodes, respectively. Sm is the source
term, which is expressed by Equation (21) in CLs. For GDLs, Sm = 0.
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2.2.4. Heat Transfer

In thermodynamics, the total heat generation of a URFC can be classified into reversible heat and
irreversible heat. Reversible heat is the chemical reaction heat, whose value is positive in the FC mode
and negative in the EC mode. Reversible heat can be calculated as follows:

Qrev = (−T∆S)
I

2F
= −IT

∂U0

∂T
(22)

where ∆S is the entropy change of the overall reaction (H2 +
O2
2 → H2O in the FC mode,

H2O→ H2 +
O2
2 in the EC mode), U0 is the thermodynamic equilibrium potential, and I is the

current of the cell. Meanwhile, irreversible heat released from a cell is caused by ohmic polarization
and activation polarization. This part of the heat generation rate can be written as follows:

Qirrev = |U0 −Vcell|I (23)

where Vcell represents the cell operating voltage. The energy conservation equation can be expressed
as follows:

∂

∂t
(
ρCpT

)
+∇·

(
ρCpuT

)
= ∇· (keff∇T) + ST (24)

where keff is the effective or equivalent thermal conductivity. In porous media, keff is calculated
as follows:

keff = εkg + (1− ε) ks (25)

where kg and ks are the thermal conductivities of the porous solid frame and the gases, respectively.
The materials of the HGDL, OGDL, and CLs are carbon, titanium, and platinum, respectively.
Their thermal conductivities are listed in Table 1 Heat conduction through the ribs of the flow field
plate makes the most significant contribution to heat transfer. The equivalent thermal conductivity
keq in the y-direction is used for the gas flow channels to simulate the temperature of MEA accurately,
and in the flow direction, keff = kg. As shown in Figure 2, the derivation process of keq is as follows:

Φ = −kA
dt
dy

= −krib
drib
2

T2 − T1

d
− kg

dch
2

T2 − T1

d
= −keq

drib + dch
2

T2 − T1

d
(26)

where the drib and dch are the width of a rib and the gas flow channel. Both the values of parameter
drib and dch are 2 mm.

The heat source ST , the last term of Equation (24), considers three kinds of heat sources
in a single-phase model, namely, reversible chemical reaction heat, heat attributed to activation
polarizations, and Joule heat. In CLs, the three types of heat sources are presented as follows:

ST = iV

(
η+ T

dEeq

dT

)
+

I2

σM
+

I2

σS
(27)
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In the GDLs and membrane, only Joule heat caused by electronic and protonic current flows exists.
Equations (28) and (29) are the expressions of heat source in the GDLs and membrane, respectively.
For the gas flow channel, the heat sources are equal to zero:

ST =
I2

σS
(28)

ST =
I2

σM
(29)

2.3. Boundary Conditions and Initial Conditions

Boundary conditions. The boundary conditions are listed in Table 2. At all of the outside borders,
zero heat or mass flux condition is applied, except for the specific description in Table 2. In addition,
the model considers laminar flow in the inlet of the gas flow channel and no slip wall in the boundary
of y = 0 and y = 5.134 mm.

Initial conditions. The initial values of velocity, pressure, and temperature for the entire cell are
expressed as follows: u = 0 m/s, p = 1 atm, and T = 353.15 K. Potentials in the GDL, CL at the hydrogen
side, and PEM are φM = 0 and φS = 0. Potentials in the GDL, and CL at the oxygen side are φM = 0
and φS = Vcell. The mass fractions of H2 in the hydrogen side and O2 in the oxygen side are 0.9 and
0.8, respectively. The mass fraction of H2O are 0.1 in the hydrogen side and 0.2 in the oxygen side.

Table 2. Boundary conditions.

Boundary Conditions Value/Expression Units

Hydrogen-side/oxygen-side inlet average velocity, uin,H/uin,O 0.3/0.3 m/s
Inlet mass fraction of H2/O2, win,H2 /win,O2 0.9/0.8

Hydrogen-side/oxygen-side outlet exit pressure, pex,H/pex,O 1/1 atm
Temperature of the inlet/ plate, Tin/Tplate 353.15/353.15 K

Hydrogen-side/oxygen-side potential of the interface between
gas flow channel and GDL, φs,H/φs,O

0/Vcell (operating voltage) V

3. Element Independence Test and Model Validation

3.1. Element Independence Test

The finite volume method is applied to the discrete model equations presented previously.
For calculating the errors, a convergent solution is considered when the relative differences of all
variables between two consecutive iterations are lower than 10−5. The quality of the grid and the
number of elements have an effect on the numerical results. A local mesh refinement exists in MEA
because of the complex electrochemical reactions and intricate interactions of heat and mass transfer.
A large number of elements will lead to an increase in the calculation amount, and small number of
elements will lead to a large error. Thus the steady-state models of the FC and EC modes are calculated
seven times with different numbers of elements. Figure 3a,b shows the temperature distribution of the
central line of the membrane with an operating voltage of 0.6 V and the temperature distribution of
the central line of the OCL with an operating voltage of 1.8 V, respectively, under the seven different
numbers of elements. As shown in Figure 3, the temperature curves almost coincided with each other
when the number of elements is larger than 5300. Thus, 5300 is selected to be the most suitable number
of elements in the model to meet the requirements of reducing the computation time and ensuring the
accuracy of the numerical results simultaneously.
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Figure 3. Element independence test for the present model: (a) temperature distribution of the central 
line of the membrane with an operating voltage of 0.6 V; and (b) temperature distribution of the 
central line of the OCL with an operating voltage of 1.8 V. 

3.2. Model Validation 

Measuring the concentration and temperature fields in the GDLs, CLs and the membrane in the 
experiment is difficult because of its small thickness. The results computed at the steady state of this 
model in the FC and EC modes are applied to compare with the experimental data [2,3] in the 

Figure 3. Element independence test for the present model: (a) temperature distribution of the central
line of the membrane with an operating voltage of 0.6 V; and (b) temperature distribution of the central
line of the OCL with an operating voltage of 1.8 V.

3.2. Model Validation

Measuring the concentration and temperature fields in the GDLs, CLs and the membrane in
the experiment is difficult because of its small thickness. The results computed at the steady state
of this model in the FC and EC modes are applied to compare with the experimental data [2,3]
in the literatures. The basic conditions of the numerical models match with those of the experimental
data to validate the numerical models. The operating temperatures in Figure 4a,b are 353.15
and 365.15 K, respectively. As shown in Figure 4a, the polarization curves (voltage vs. current
density) of the simulation results, particularly under the FC mode, are consistent with experimental
data. The performance of the experiment in the EC mode is better than that of the present model.
This difference is likely because of gaseous state of the water in the present model. As shown in
Figure 4b, the simulation results at 365.15 K are relatively consistent with the experimental data
without any adjustment on the parameters. The slight difference between the two may be attributed to
the constant value of water activity in the membrane. Parameters, such as the exact cell geometries,
are unknown in [2,3].
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4. Results and Discussion

This study deals with the understanding of the dynamic response of an operating PEM-based
URFC during the mode switching process. The cell operating mode in FC or EC is controlled by cell
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voltage, as shown in Figure 5. Cell voltage in the FC and EC modes are set as 0.6 V in the first 2 s and
1.5 V during the subsequent 3 s. In the course of the switching process, the key transient responses of
the current density, mass transfer, and heat transmission would occur at approximately 2 s, and the
results will be shown and discussed in this section.
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Figure 6 displays the transient responses of current density, O2 mass fraction and temperature at
the central point of the OCL. At the beginning of the FC mode, the O2 mass fraction declines sharply,
whereas the current density and temperature increase gradually because of the consumption of O2 and
the generation of heat. The O2 mass fraction and current density reach a steady state at approximately
1 s. At 2 s the temperature continues to increase. The current density decreases to 2.77 mA·cm−2 at 2 s
because of mode switching. Then, the current density rapidly increases to approximately 15 mA·cm−2

corresponding to the EC mode. At the same time, O2 mass fraction and temperature at that point
change dramatically. These changes can be explained as follows: The accumulated water, which is
produced in the FC mode, is the reactant in the EC mode. The concentration of H2O reduces rapidly at
the beginning of the EC mode, which leads to a slight decrease in the current density. The O2 mass
fraction increases sharply because of the consumption of H2O and the production of O2 when the
mode is switched from FC mode to EC mode. Temperature decreases rapidly at 2 s mainly because the
exothermic reaction in the FC mode converts into the endothermic reaction in the EC mode. During the
subsequent 3 s, the temperature gradient diminishes gradually. Temperature does not reach a steady
state during the process. Current density, O2 mass fraction and temperature in the OCL suddenly
change under operation mode switching. The response time of temperature is longer than that of
current density and O2 mass fraction.

The water mass fractions along y-axis with varying times are displayed in Figure 7. The solid lines
represent the temperature distribution along A-A line and the dotted lines represent the temperature
distribution along the C-C line. Under the FC mode, the water mass fraction along the C-C line is
evidently higher than that along the A-A line. The main reasons are the consumption of reactants
and generation of H2O in oxygen side. Therefore, the H2O mass fraction increases gradually along
the gas flow direction. Moreover, the consumption and the generation of gases occur in the CLs.
H2O mass fraction increases gradually from gas flow channels to CLs because of gas diffusion.
However, the distribution of H2O mass fraction under the EC mode is different from that under
the FC mode because of the opposite electrochemical reactions. The mass fraction gradient in the
hydrogen side is smaller compared with that in the oxygen side because of the generation of water
and the small molecular weight of hydrogen. The water mass fraction at 0.5 and 1.99 s did not change
at the A-A line. Meanwhile, at the C-C line, the water mass fraction at 1.99 s is slightly larger than
that at 0.05 s, which illustrates that the mass fraction near the inlet of the gas flow channel reaches a
steady state faster. The H2O mass fraction decreases in different degrees within 0.02 s from t = 1.99 s to
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t = 2.01 s. Along the y-direction from gas flow channel to CLs, the H2O mass fraction significantly
changes. At 2.01 s, the maximum value of H2O mass fraction appears on the GDLs. The H2O mass
fraction dramatically declines in the CLs because of mode switching from the FC mode to the EC
mode at 2.0 s and the opposite electro-chemical reactions of the two modes. Eventually, the H2O mass
fraction declines in the GDLs and gas flow channels under the action of diffusion.
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and (b) hydrogen side.

Figure 8 displays the distribution of H2 and O2 mass fractions along the central lines of the
CLs. The results indicate that both O2 and H2 mass fractions are depressed distinctly along the flow
direction at 1.99 s. The O2 and H2 mass fractions increase when the mode is switched to the EC mode.
Eventually, the O2 and H2 mass fractions increase along the flow direction under a more stable EC
mode at 2.5 s, and the magnitudes of O2 and H2 mass fractions are greater than those at the inlets of
gas flow channels because of the production of O2 and H2 in the CLs. As with the H2O mass fraction,
the gradient of the O2 mass fraction is significantly larger than that of the H2 mass fraction.

Figure 9 shows the distribution of temperature and current density along the central line of the
OCL. At the end of the FC mode (1.99 s), the general trends of temperature and current density decline
gradually along the x-axis. The distribution of current density probably results from the concentrations
of the reactants. As shown in Figure 8, the O2 mass fraction declines along the x-axis. The temperature
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is determined by the heat source and heat flow. For the homogenous and isotropic CL, a relatively
high temperature is observed where the heat source is large. The heat source in the OCL consists of
heat attributed to activation polarizations, Joule heat, and reaction heat, all of which are positively
correlated with current density. Therefore temperature is depressed along the x-axis. Temperature
and current density show remarkable reduction during 0.02 s from 1.99 s to 2.01 s. The causes of
temperature reduction are varied. The main reasons are the endothermic electrochemical reaction
heat source and low current density under the EC mode. However, the current density distribution
increases slightly along the x-axis at 2.01 s and decreases at 2.5 s. The main reason for these trends is
the change of H2O concentration, which has an opposite distribution trend compared with O2. From
the O2 mass fraction shown in Figure 8, the concentration of H2O, which is reactant for the reaction of
the EC mode, has a distribution trend similar to current density along the x-axis. The temperature at
the OCL exhibits an evident decrease in the process of operation mode switching. The temperature
difference along the x-axis is less than 0.1 K, except at the left end. The current density, temperature,
and mass fraction of the reactant influence each other to some extent.Energies 2016, 9, 1015 12 of 19 
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Figure 9. The distribution of temperature and current density.

Figure 10 displays the temperature profiles of the cell along line B-B at different times. Figure 11
shows the detailed temperature distribution of the MEA. As shown in Figure 10, temperature in the
hydrogen side is lower than that in the oxygen side, which can be explained by the following three
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factors: (1) The heat source in OCL accounts for more than 90% of all heat sources according to Table 3;
(2) the thickness of OGDL is double that of HGDL, which causes double Joule heat; and (3) the heat
conductivity of oxygen is smaller than that of hydrogen. In spite of the endothermic reaction in the
EC mode, the temperature in the hydrogen side is lower than that in the oxygen side during the
limited time of this mode because of the heat attributed to activation polarizations, Joule heat, and heat
accumulation in the FC mode. The maximum value of temperature appears at the OCL and increases
gradually under the FC mode. During the 0.02 s from 1.99 s to 2.01 s, the temperature of the oxygen
electrode decreases sharply, but the temperature of other areas almost remains constant. The main
reason for these results is that the OCL is the place where heat source exhibits the most significant
changes. Furthermore, the low conductivity of the membrane hinders heat transfer to the hydrogen
side. After the EC process lasting 0.5 s, at 2.5 s, the maximum of temperature appears at the membrane
on account of the largest value of heat source according to Table 3. The temperature of the entire B-B
line decreases to different degrees.Energies 2016, 9, 1015 13 of 19 
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Table 3. Heat sources of electrodes and percentages in different times.

Time (s) 0.5 1.99 2.01 2.5 4

OGDL
Heat source(W·m−1) 0.4715 0.4798 0.0025 0.0023 0.0022

Percentage 0.27% 0.27% 10.55% 10.09% 9.95%

HGDL
Heat source(W·m−1) 0.2358 0.2399 0.0013 0.0012 0.0011

Percentage 0.14% 0.14% 5.49% 5.26% 4.98%

PEM
Heat source(W·m−1) 11.7206 11.9004 0.0623 0.0585 0.0558

Percentage 6.72% 6.76% 262.87% 256.58% 252.49%

OCL
Heat source(W·m−1) 158.2474 159.5226 −0.0627 −0.0581 −0.0550

Percentage 90.7% 90.64% −264.56% −254.82% −248.87%

HCL
Heat source(W·m−1) 3.7937 3.8588 0.0203 0.0189 0.0180

Percentage 2.17% 2.19% 85.65% 82.89% 81.45%

Total heat source 100% 100% 100% 100% 100%

Similar phenomena and conclusion can be observed and drawn from Figure 12, which shows
transient variations of the entire cell temperature. Under the FC mode, the temperature in the OCL is
significantly higher than that in other areas. The temperature difference decreases when the mode is
switched to the EC mode. The maximum temperature difference is less than 1.5 K. By the time the EC
reaches a more stable state, the cell temperature is slightly higher than the operating temperature, and
the highest temperature appears at the membrane. In addition, the cell temperature distribution trends
along the x-axis are similar at different times. The temperature gradient near the inlet is relatively large
and exhibit a small temperature change along the x-axis behind x = 0.05 m.
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Figure 13 shows the transient responses of average temperature in different layers. The OCL,
which generates the most heat under the FC mode but absorbs heat under the EC mode, has the
strongest temperature variation. In the FC mode, the temperature of each layer increases with time
because of heat accumulation. Then the temperature variation becomes small and decreases rapidly
when the cell mode is switched from FC mode to EC mode at 2 s. The temperatures of the CLs are
close to that of the membrane under the EC mode. Eventually, the temperature difference of entire cell
is small because of the endothermic reaction and the small current density in the EC mode.

Table 3 lists the heat sources and its percentages in each layer before and after mode switching.
Under the FC mode, heat attributed to activation polarizations and reaction heat are the main sources
of cell total heat production, and Joule heat contributes less than 10% of all heat. When the mode is
switched to EC, cell total heat production comes mainly from Joule heat in the membrane, and the
value of the heat source in the OCL is negative because of the endothermic reaction. However, the cell
is still exothermic, although the total heat is small under the EC mode.Energies 2016, 9, 1015 15 of 19 
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5. Conclusions 

In this study, a transient, non-isothermal, and multi-physics model for a PEM URFC is developed, 
in which the electrochemical reaction is also coupled. The model is validated, and results are 
consistent with the previously published experimental results. Numerical simulations are conducted 
to investigate the transient responses of heat and mass transfer as well as current density in a URFC 
when the operating mode is switched from FC mode to EC mode. The results, which considered the 
temperature, gas mass fractions, current density, and heat source, are shown and discussed. The 
following conclusions can be obtained: 

(1) Mode switching has a significant effect on heat and mass transfer in PEM URFCs. The dynamic 
responses of temperature, mass fraction and current density are different. The response time of 
temperature is longer than that of current density and gas mass fractions. 

(2) The mass fraction of H2O along the direction from gas flow channel to CL and the gas flow 
direction changes into a decreasing trend in the EC mode from an increasing trend in the FC 
mode. H2 and O2 reveal an opposite mass fraction distribution trend compared with H2O. The 
gradient of gas mass fractions in the oxygen side is larger than that in the hydrogen side along 
x- and y-axes. 

(3) Cell temperature in the hydrogen side is lower than that in the oxygen side under the FC and 
EC modes. The temperature difference of the entire cell is less than 1.5 K. The highest 
temperature appears at the OCL under the FC mode. Under the EC mode, the highest 
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(4) The OCL, which generates the most heat under the FC mode but absorbs heat under the EC 
mode, has the strongest temperature variation when the cell operates from the FC mode to the 
EC mode. 

(5) The cell is exothermic under the FC and EC modes. The heat attributed to activation 
polarizations and reaction heat in the OCL occupies a dominant part of heat production under 
the FC mode. Meanwhile, in the EC mode, Joule heat in the membrane mainly contributes to 
heat production. 
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5. Conclusions

In this study, a transient, non-isothermal, and multi-physics model for a PEM URFC is developed,
in which the electrochemical reaction is also coupled. The model is validated, and results are
consistent with the previously published experimental results. Numerical simulations are conducted
to investigate the transient responses of heat and mass transfer as well as current density in a URFC
when the operating mode is switched from FC mode to EC mode. The results, which considered
the temperature, gas mass fractions, current density, and heat source, are shown and discussed.
The following conclusions can be obtained:

(1) Mode switching has a significant effect on heat and mass transfer in PEM URFCs. The dynamic
responses of temperature, mass fraction and current density are different. The response time of
temperature is longer than that of current density and gas mass fractions.

(2) The mass fraction of H2O along the direction from gas flow channel to CL and the gas flow
direction changes into a decreasing trend in the EC mode from an increasing trend in the FC
mode. H2 and O2 reveal an opposite mass fraction distribution trend compared with H2O.
The gradient of gas mass fractions in the oxygen side is larger than that in the hydrogen side
along x- and y-axes.

(3) Cell temperature in the hydrogen side is lower than that in the oxygen side under the FC and EC
modes. The temperature difference of the entire cell is less than 1.5 K. The highest temperature
appears at the OCL under the FC mode. Under the EC mode, the highest temperature initially
exists at the OCL and then at the membrane.
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(4) The OCL, which generates the most heat under the FC mode but absorbs heat under the EC
mode, has the strongest temperature variation when the cell operates from the FC mode to the
EC mode.

(5) The cell is exothermic under the FC and EC modes. The heat attributed to activation polarizations
and reaction heat in the OCL occupies a dominant part of heat production under the FC mode.
Meanwhile, in the EC mode, Joule heat in the membrane mainly contributes to heat production.
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Author Contributions: Hong Xiao built the model, organized the data and wrote the main body of the paper.
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Abbreviations

a Water activity
aυ Active specific surface area (m−1)
Cp Specific heat capacity(J·kg−1·K−1)
D Multi-component Fick diffusivity (m2·s−1)
dk Diffusional driving force (m−1)
Eeq Equilibrium potential (V)
F Faraday’s constant (96,487 C·mol−1)
I Cell current (A)
i Current density (mA·cm−2)
i0 Exchange current density (mA·cm−2)

j
Mass flux relative to the mass average velocity
(kg·m−2·s−1)

k Thermal conductivity (W·m−1·K−1)
l Entrance length (m)
M Molar mass (kg·mol−1)
n Number of electrons in the reaction
p Pressure (Pa)
Q Heat transfer rate (J·s−1)
R Gas constant (J·mol−1·K−1)
S (i) source term; (ii) entropy (J·K−1)
T Temperature (K)
U0 Thermodynamic equilibrium potential
u Velocity (m·s−1)
x Molar fraction

Greek Letters

α Transfer coefficient
ε Porosity of medium
φ Electric potential (V)
η Over-potential (V)
κ Permeability of medium (m2)
λ Water content
µ Dynamic viscosity (Pa·s)
ν Stoichiometric coefficient
ρ Density of gases (kg·m−3)
σ Conductivity of electron of ion (S·m−1)
ω Mass fraction
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Superscripts

0 Reference
eff Effective value

Subscripts

eff Effective value
eq Equivalent value
ex Exit value
g Gas
H Hydrogen side
i Species i
ik Gas pair i, k in a mixture
in Inlet value
l Catalyst layer
M Ionic
O Oxygen side
rib The rib of flow field plate
S Electronic
s Porous solid frame value
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