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Abstract: Gene expression data are usually redundant, and only a subset of them presents distinct
profiles for different classes of samples. Thus, selecting high discriminative genes from gene
expression data has become increasingly interesting in bioinformatics. In this paper, a multiobjective
binary differential evolution method (MOBDE) is proposed to select a small subset of informative
genes relevant to the classification. In the proposed method, firstly, the Fisher-Markov selector is
used to choose top features of gene expression data. Secondly, to make differential evolution suitable
for the binary problem, a novel binary mutation method is proposed to balance the exploration and
exploitation ability. Thirdly, the multiobjective binary differential evolution is proposed by integrating
the summation of normalized objectives and diversity selection into the binary differential evolution
algorithm. Finally, the MOBDE algorithm is used for feature selection, and support vector machine
(SVM) is used as the classifier with the leave-one-out cross-validation method (LOOCV). In order to
show the effectiveness and efficiency of the algorithm, the proposed method is tested on ten gene
expression datasets. Experimental results demonstrate that the proposed method is very effective.

Keywords: multiobjective method; differential evolution algorithm; binary differential evolution;
binary optimization

1. Introduction

Gene expression data are characterized by thousands of and even tens of thousands of measured
genes on only a few tissue samples, which gives rise to difficulties for many classifiers [1,2]. Therefore,
feature selection in the computational intelligence field [3,4] plays an important role in gene array-based
cancer classification, because gene selection can help to remove the irrelevant and redundant features
and choose a small subset of features to carry out the classification task in an optimal way. In general,
feature selection can be categorized into wrappers and filters according to whether or not it is done
independently of the learning algorithm [3,4]. By using the filter and wrapper techniques, many
feature selection methods [5–8] have been proposed to optimize the efficiency of the search and
selection process. For example, a novel correlation-based memetic framework (MA-C), which is a
combination of genetic algorithm (GA) and local search (LS) using correlation-based filter ranking, was
proposed [9]. The local filter method used here fine-tunes the population of GA solutions by adding or
deleting features based on the symmetrical uncertainty (SU) measure. In order to take into account the
experimental conditions and the time points simultaneously, Gutiérrez-Avilés D. et al. [10] presented
the TriGen algorithm, a genetic algorithm that finds triclusters of gene expression. From the results,
TriGen has proven to be capable of extracting groups of genes. In [11], Xue B. et al. propose three new
initialization strategies and three new personal best and global best updating mechanisms in particle
swarm optimization to develop novel feature selection approaches with the goals of maximizing the
classification performance, minimizing the number of features and reducing the computational time.
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The superior performance of this algorithm is due mainly to both the proposed initialization strategy,
which aims to take advantage of both the forward selection and backward selection to decrease
the number of features and the computational time, and the new updating mechanism, which can
overcome the limitations of traditional updating mechanisms by taking the number of features into
account, which reduces the number of features and the computational time. Based on the above
analysis, the main purpose of the feature selection method is to maximize the model performance
and to minimize the number of genes selected at the same time. That is to say, feature selection has
two different objectives, including maximizing the classification performance and minimizing the
number of genes selected. In some cases, these two objectives conflict. Based on the above situation,
the feature selection may be more suitable to be designed for a multiobjective problem rather than a
single-objective problem.

Recently, many multiobjective optimization approaches based on different evolutionary
algorithms have been reported to solve feature selection [12,13]. For example, a hybrid multiobjective
optimization method based on particle swarm optimization was proposed [5] to find a small set
of non-redundant disease-related genes. Two objectives, including sensitivity and specificity, are
simultaneously evaluated by the artificial neural network (ANN) classifier. Based on the real-life
datasets of various types of cancers, the performance of multiobjective particle swarm optimization
can perform better compared with sequential feature selection (SFS), the t-test and rank-sum.
Xue B. et al. [14] proposed other multiobjective particle swarm optimizations, which are multiobjective
binary particle swarm optimization (PSO) using the idea of non-dominated sorting (NSBPSO) and
multiobjective binary PSO using the ideas of crowding, mutation and dominance (CMDBPSO).
The proposed algorithms are examined and compared with a single-objective method on eight
benchmark datasets. Experimental results show that the proposed multiobjective algorithms can
evolve a set of solutions that use a smaller number of features and achieve better classification
performance than using all features. Different from particle swarm optimization, the multiobjective
genetic algorithm [15] was proposed to select the optimum subset and then the classification of
gene expression data. Support vector machine with the radial basis function (RBF) kernel is used to
measure the accuracy of the classification. This approach was tried on two benchmark gene expression
datasets. It obtained encouraging results on those datasets as compared with an approach that used a
single-objective strategy in a genetic algorithm. In [16], a different optimization algorithm based on
an artificial immune system was used to solve feature selection in classification problems aiming at
minimizing both the classification error and the cardinality of the subset of features. The algorithm is
able to perform a multimodal search maintaining population diversity and controlling automatically
the population size according to the problem. The experimental results show that parsimonious
subsets of features and the classifiers produced a significant improvement in the accuracy. Another
multiobjective artificial immune algorithm [17] was used to optimize the kernel and penalize the
parameters of support vector machine (SVM). In the training stage of SVM, multiple solutions are
found by using a multiobjective artificial immune algorithm, and then, these parameters are evaluated
in the test stage. The proposed algorithm is applied to fault diagnosis of induction motors and
anomaly detection problems, and successful results are obtained. Rubio-Escudero C. et al. [18]
used EMO-CC (evolutionary multiobjective conceptual clustering) to obtain such gene product
information, which retrieves meaningful substructures from network databases. The experiment
results show that expectation maximization algorithm performs better than other algorithms for the
analysis of microarray data. Romero-Zaliz R. et al. [19] proposed a multiobjective methodology to
combine state-of-the-art algorithms into an aggregation scheme in order to obtain the optimal methods’
aggregations. The results obtained by the multiobjective algorithm show a major improvement in
sensitivity when our methodology is compared to the performance of individual methods for gene
finding and gene expression problems. Based on the above discussion, many different multiobjective
evolutionary algorithms have been used to handle the feature selection problem. However, these
algorithms still have some drawbacks, such as low optimization efficiency, easily falling into local
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optima and premature convergence. Moreover, this field of study is still in its early days; a large
number of future research works is necessary in order to develop a multiobjective algorithm for
feature selection.

Recently, the differential evolution algorithm was proposed as a powerful evolutionary
algorithm [20–23], which has good global search and local search capabilities, and it can quickly
search out all solutions from the solution space. Several variations of differential evolution (DE)
have also been proposed to enhance the performance of the standard DE [24–31]. The algorithm
was considered as an intelligent optimization method for heuristic random search in a continuous
space. The algorithm consists of three different operators, including mutation, cross-over and selection
operators. By these operators, the differential evolution algorithm can generate new individuals by
combining the target vector and the trial vector. However, it should be noted that most of these
algorithms work in continuous space rather than in discrete space. Therefore, in this paper, we propose
a novel multiobjective binary differential evolution algorithm (MOBDE) to solve the binary problem in
terms of the feature selection problem.

This paper uses a novel multiobjective differential evolution algorithm for the feature selection
problem, and support vector machine (SVM) is used as the classifier with leave-one-out cross-validation
(LOOCV). The Fisher-Markov selector is used to choose a fixed number of the top gene expression data
features, and then, a multiobjective binary differential evolution algorithm based on the summation of
normalized objectives and diversity selection is adopted to select the most important gene subsets.
Finally, a classifier SVM is trained based on the gene subset and then used to predict the test sample.
Numerical results of ten gene expression data are reported and compared with other algorithms.
As is shown, the solutions obtained by the proposed approach are all superior to those best solutions
obtained by other algorithms in the literature.

2. Computational Methods

In this part, we shall introduce a hybrid multiobjective binary differential evolution and support
vector machine method (MOBDE) for feature selection. The flowchart of the proposed method is
shown in Figure 1. As can be seen in this figure, there are mainly three important components, i.e.,
the Fisher-Markov selector component, the multiobjective binary differential evolution component
and the support vector machine component.

In the first component, the Fisher-Markov selector method is used to select 180 top genes with the
highest scores. These selected genes will then be utilized for the second component, multiobjective
binary differential evolution component. In this component, at first, a randomly-generated initial
solution will be represented by a binary (0/1) string. Then, a novel binary mutation method is
proposed to balance the exploration and exploitation ability during the search process. After that,
the multiobjective binary differential evolution is proposed by integrating the summation of normalized
objectives and diversity selection into the algorithm.

By using MOBDE, the parameters of the support vector machine (SVM) in the third component
and the features subset are dynamically optimized. Specifically, for feature selection, each gene is
represented as a bit of binary encoded individual, where one denotes a gene selected and zero denotes
a non-selected gene. For SVM, two important parameters of RBF kernels, i.e., c and γ, are taken into
account. In this sense, the length of each individual is equal to D + 2, where D is the number of genes
in the initial microarray dataset. Table 1 shows the solution representation of the algorithm.

Table 1. The solution representation.

1 2 3 4 · · · D + 2

Pc Pr F1 F2 · · · FD
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Figure 1. The framework of the multiobjective binary differential evolution method (MOBDE) with
support vector machine (SVM).

From the above solution representation, Pc is the parameter C of the SVM, and Pγ denotes the
parameter γ of SVM. In this paper, we use the evolutionary algorithm to optimize the parameters of
SVM and the feature subset in each individual; the multiobjective function can be defined as below:

f1 = SVMaccury; f2 = D−R
D ;

f = [ f1; f2];
(1)

where SVMaccuracy denotes the classification accuracy of SVM and R denotes the number of selected
genes. Finally, The fitness values of each individual will be assessed by the accuracy of LOOCV.

2.1. Fisher-Markov Selector

In the field of machine learning, selecting suitable features is very important for classification.
The Fisher-Markov selector is proposed by Cheng et al. [32] to identify the more useful features in
describing essential differences among the possible groups. The authors present a way to represent
essential discriminating characteristics together with sparsity as an optimization problem. In this
paper, we use this method, and the detailed description can be seen in [32].
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2.2. Multiobjective Differential Evolution Component

In this part, we shall introduce the proposed multiobjective binary differential evolution algorithm
in detail.

As we know, differential evolution (DE) is a fairly novel population-based search heuristic, which
is simple to implement and requires little parameter tuning compared with other search heuristics in
continuous space.

The process of DE can be summarized into three major steps: mutation, cross-over and selection.
In the mutation operator, the process of generating the mutation vectors Vi,G = {V1,i,G, V2,i,G, · · · , VD,i,G}
is performed by target vector Xi,G = {X1,i,G, X2,i,G, · · · , XD,i,G} in the current population, where D
denotes the dimension of the individual, i denotes the i-th of individual and G denotes the current
iteration of the algorithm. In the DE algorithm, “DE/rand/1/bin” is the most common mutation
strategies, as below:

Vi,G = Xr1,G + F · (Xr2,G − Xr3,G); (2)

where r1, r2, r3 ∈ [1, · · · , NP], r1 6= r2 6= r3 6= i and F is the mutation factor of the differential
evolution. NP is the size of the population.

In the cross-over operation, a recombination of the candidate solution Vi,G and the parent Xi,G
produces an offspring solution Ui,G = [U1,i,G, U2,i,G, . . . , UD,i,G]. Usually, the binomial cross-over is
accepted, which is defined as follows:

Uj,i,G =

{
Vj,i,G (randj[0, 1] ≤ CR)or(j = jrand)

Xj,i,G otherwise
(3)

where j ∈ [1, . . . , D]; randj ∈ [0, 1] is a random number between zero and one; jrand ∈ [1, . . . , D] is a
randomly chosen index. CR is the cross-over rate.

A greedy selection is used to choose the next population (i.e., G = G + 1) between the parent
population and the offspring population. The selection operation is described as follows:

Xi,G+1 =

{
Ui,G f (Ui,G) ≤ f (Xi,G)

Xi,G otherwise
(4)

As we know, the original differential evolution algorithm is a continuous optimization algorithm,
but the feature selection problem is a classic binary optimization problem. Therefore, the original
continuous encoding scheme of DE cannot be used directly for gene selection problems. In order to
make DE suitable to solve the gene selection problem, a binary differential evolution (BDE) algorithm
is proposed first. In the proposed method, the initial population is represented as a vector in which
each bit is a binary value of zero or one, where one denotes this gene is selected and zero denotes a
non-selected gene. The objective function values are calculated, and then, new binary populations are
transported into the mutation operators. The binary cross-over operations are used to generate the trail
solution. Finally, greedy selection method is used to choose the better results for the next generation.

During the reconstruction of the mutation operation, the key idea is to use some appropriate
operators in place of the arithmetic operators. In [33], He and Han used the XOR, AND and OR
operations instead of the subtraction, multiplication and addition operations in the formula, which
can be described as follows:

Vj,i,G+1 = Xj,r1,G � F⊗ (Xj,r2,G ⊕ Xj,r3,G) (5)

where ⊕ denotes the XOR operations, ⊗ represents the AND operation and � denotes the OR
operation. Note that in Formula (5), the use of OR operation will make the probability of a result be
true. The probability of the binary “1” will be three times higher than the probability to be false (binary
“0”). In other words, the binary “1” would be easily accumulated with the binary string Vj,i,G+1 of the
trial solution after the OR operation. This would decrease the diversity of the algorithm. Accordingly,
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in [34], another novel mutation operation is proposed by considering the distance of the Xr1,G and
Xr2,G for each dimension:

Vj,i,G+1 =

{
1, i f (rand < F)⊗ (Xj,r1,G ⊕ Xj,r2,G);

0, otherwise ;
(6)

Compared with Formula (5), the new mutation strategy can enhance the diversity of the algorithm
because it does not use the OR operation. However, in this formula, the value of the previous
generation will be discarded. Therefore, it cannot inherit the advantage of the original individual from
the previous population.

Therefore, in this paper, we propose a new mutation strategy, which can both increase the diversity
of the algorithm and take advantage of the original population, as described in the following:

(Xj,r1,G ⊗ Xj,r2,G), i f (rand < F)⊗ (Xj,r1,G = Xj,r2,G);

(Xj,r1,G ⊗ Xj,r3,G), i f (rand < F)⊗ (Xj,r1,G 6= Xj,r2,G);

Xj,r1,G, otherwise ;

(7)

As can be seen in this formula, first, it does not use the OR operation, so this operation will not
harm the diversity of the algorithm. Second, the values of the previous generation, e.g., Xj,r1,G, Xj,r2,G,
Xj,r3,G, will be kept with a probability. In this way, the algorithm can inherit the advantage of the
original individual from the previous population. Following the binary mutation strategy, a binary
cross-over operator is used to build a trial solution Uj,i,G+1 by combining the mutation vector and
the target vector. The concept of the binary cross-over mechanism of BDE is similar to that of the
original DE, though there is a difference in terms of the component data type. In BDE, the binary data
is selected from the mutation vector if a random number is smaller than the cross-over rate; otherwise,
the original solution is chosen to generate the trail solution. After the binary mutation and cross-over
operator, the better solutions between the trial solution and the target solution will be retained to the
next generation.

Based on the binary differential evolution algorithm, we will propose our multiobjective binary
differential evolution algorithm (MOBDE). Specifically, in our method, two fitness objectives are taken
into account for optimization. One is the accuracy of the classification, and the other is the number of
selected genes. In order to tackle the feature selection problem, a non-dominated sorting process is
often used to find the Pareto front. However, the non-dominated sorting process is always complex
and time consuming. In order to solve this problem, Qu and Suganthan [35] used the summation of
the normalized objective and diversity selection, and in this paper, we use a very similar method based
on the summation of the normalized objective and diversity selection for the feature selection problem.
For the summation of the normalized objective, first, we need to find the maximum and minimum
value for every objective and calculate the different range of every objective; then, we need to sum all
normalized objective values to obtain a single value. In this way, the multiobjective problem can be
regarded as a single-objective optimization problem. However, this kind of transformation may cause
the problem of lacking the diversity of the population. Therefore, the diversity selection method is
used to maintain the diversity of the algorithm.

The preferential set and backup set are generated from the current population, and three rules are
used to select the sets in the next process:

1. The preferential set can be selected in the next process firstly.
2. The backup set will be chosen based on the summation of the normalized objective and diversity

selection if the preferential set is not sufficient for the solution.
3. While the individuals in the store exceed the maximum size, the required number of solutions

will be randomly chosen from the preferential set.



Energies 2016, 9, 1061 7 of 22

Based on the above discussion, we can show the framework of our multiobjective binary
differential evolution algorithm as follows in Algorithm 1.

Algorithm 1 Algorithm description of the MOBDE algorithm

Set the generation counter G = 0; and randomly initialize a population of NP individuals Xi.
Initialize the parameters F, CR.
Evaluate the fitness for each individual in P.
Return the non-dominated solutions Ar0 from the individual P.
while stopping criteria is not satisfied do

for i = 1 to NP do
select randomly r1 6= r2 6= r3 6= i
for j = 1 to D do

if rand < CR||jrand = j then
if rand < F & Xr1,j,G = Xr2,j,G then

Ui,j = ⊗(Xr1,j,G, Xr2,j,G)

else if rand < F & Xr1,j,G 6= Xr2,j,G then
Ui,j = ⊗(Xr1,j,G, Xr3,j,G)

else
Ui,j = Xr1,j,G

end if
else

Ui,j = Xi,j,G

end if
end for

end for
Calculate the objective function for the new population
Select the better individual based on the summation of normalized objectives and diversified selection
Update the archive ArG+1 based on the new individual

end while

2.3. Support Vector Machines

In our system, the support vector machine with the leave-one-out cross-validation serves as the
evaluator of the multiobjective binary differential evolution algorithm. Let xi ∈ Rd, ∀i = 1, 2, · · · , n,
and yi ∈ −1,+1, ∀i = 1, 2, · · · , n, be a set of training samples and the corresponding labels, respectively.
Vapnik and Cortes [36] defined the SVM method as follows:

min 1
2 ‖ ω ‖2 +C ·∑N

i=1 ξi;

s.t. yi(ω · qi + b) ≥ 1− ξi, i = 1, 2, · · · , n.
(8)

where ω is a normal vector to the hyperplane and b is a constant, such that b
‖ω‖ represents the Euclidean

distance between the hyperplane and the original feature space. The ξi is the slack variables to control
the training errors, and C is a penalty parameter of SVM. In this paper, the radial basis function
(RBF) is used in SVM to obtain the optimal solution for classification. Considering two samples
qi = [qi,1, qi,2, · · · , qi,d]

T , qj = [qj,1, qj,2, · · · , qj,d]
T , i 6= j and i, j are the different samples, the RBF

function is calculated by using K(qi, qj) = exp(−γ ‖ qi − qj ‖2), where γ > 0 is the width of the
Gaussian. K(qi, qj) is the kernel function.

For the RBF kernel function, C and γ are the very important parameters, and the performance of
SVM depends on the choice of kernel function in terms of the parameters C and γ. If the value of C
is large, the accuracy value of the training will perform better, but the test rate will perform worse.



Energies 2016, 9, 1061 8 of 22

Meanwhile, if the value of C is small, the accuracy rate will be unsatisfactory, though the test accuracy
rate may be high. Sometimes, the parameter γ has a more effective effect on the test phase than the
parameter C. In order to optimize the feature selection and parameter simultaneously, in the modified
MOBDE, each individual is encoded to a string of binary bits associated with the number of genes,
and the parameters C and γ of the SVM will be dynamically optimized by a real code differential
evolution in Equations (3) and (4). Specifically, the constrained ranges of the value of C and γ are
[−5, 15] and [−15, 5] respectively. In our method, the classification accuracy of the prediction models
and the number of selected genes derived from all datasets will be measured by the LOOCV procedure
discussed in Section 2.

2.4. Computational Complexity of the Multiobjective Binary Differential Evolution with Support
Vector Machine

In this part, we will analyze the time complexity of the multiobjective binary differential evolution
with support vector machine model. In the beginning of the algorithm, the Fisher-Markov selector is
used to choose the suitable feature. Cheng Q. et al. [32] shows that the complexity of the Fisher-Markov
selector is O(n2), where n is the size of the dataset. Then, for each iteration of MOBDE, the SVM
needs to be called. Tsang et al. [37] shows that the data subroutines of standard SVM are O(n3),
where the summation of the normalized objective values method is O(M · NP), where NP denotes
the population size and M is the number of objectives. Therefore, for each iteration, the runtime
complexity is O(M · NP · n3 + n2). Suppose the total number of iterations is I; the time complexity of
the algorithm is then O(I ·M · NP · n3 + n2). In this paper, M is two. Therefore, the time complexity is
O(2 · I · NP · n3 + n2), i.e., O(I · NP · n3)

2.5. Why Use Each Finding in the Algorithm and the Strong Impact of the Finding

Firstly, the first problem is why we use the Fisher-Markov selector. The reason is that the
Fisher-Markov selector selects the more suitable features to describe essential differences among the
possible groups. This method uses the Markov random field optimization techniques to solve the
formulated objective functions for simultaneous feature selection. The method is fast; in particular,
it can be linear in the number of features and quadratic in the number of observations. The algorithm
has been used to solve the high-dimensional microarray gene expression datasets better. Therefore,
in this paper, we firstly use the Fisher-Markov selector to select the feature.

Secondly, the second problem is why we use the multiobjective binary differential evolution
to solve this problem. As we know, the original differential evolution algorithm is a continuous
optimization algorithm, but the feature selection problem is a classic binary optimization problem.
Therefore, the original continuous encoding scheme of DE cannot be used directly for gene selection
problems. In order to make DE applicable to the gene selection problem, a binary differential evolution
(BDE) algorithm is proposed first. As shown in Section 2.2, previous work may either decrease the
diversity of the algorithm or the new individual cannot inherit the advantage of the original individual
from the previous population. Therefore, in this paper, we propose a new mutation strategy, which
can both increase the diversity of the algorithm and take advantage of the original population.

3. Experimental Setup

To demonstrate the effectiveness of the MOBDE algorithm, the experiments are performed on
10 benchmark datasets. All of these characteristics of gene expression datasets are listed in Table 2.
The gene expression datasets consist of 10 well-known datasets. These datasets have been widely
used by researchers as a primary source of feature selection datasets. The library for support vector
machines (LIBSVM) is proposed by Chang and Lin [38]. The datasets are classified by LIBSVM based on
LOOCV. We compared our method with some binary differential evolution algorithms: binary DE [33],
binary differential evolution (BDE) [34], binary differential evolution with artificial immune system
(BDEAIS) [39], binary particle swarm optimization (BPSO) [40], binary genetic algorithm (BGA) [41]
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and binary estimation distribution algorithm (BEDA) [42]. In this paper, we replace these methods with
our binary method and then compare our method to show the effective of the algorithm. That is to say,
all of these methods use the same multiobjective framework. Meanwhile, we compare our algorithm
with the nondominated sorting genetic algorithm II (NSGAII) in order to show the difference of the
summation of the normalized objective and diversified selection with the non-domination sorting
process. As the same time, we also compare our method with some optimization methods, including
SVM + grid search, improved binary particle swarm optimization (IBPSO), hybrid binary particle
swarm optimization and tabu search (HPSOTS), PSO/GA [5–8] and some different versions of support
vector machines. The parameters are as follows.

Table 2. Format of gene expression classification data.

Dataset
Number

Dataset
Name

Number of
Samples

Number
of Classes

Number
of Genes Description

1 11_Tumors 60 9 5726 11 various human tumor types
2 9_Tumors 174 11 12,533 9 various human tumor types
3 Brain_Tumors1 90 5 5920 5 human brain tumor types
4 Brain_Tumors2 50 4 10,367 4 malignant glioma types

5 Leukemia1 72 3 5327
Acute myelogenous leukemia (AML),
acute lymphoblastic leukemia (ALL)
B-cell and ALL T-cell

6 Leukemia2 72 3 11,225 AML, ALL and mixed-lineage
leukemia (MLL)

7 Lung_cancer 203 5 12,600 4 lung cancer types and normal tissues

8 SRBCT 83 4 2308 Small, round blue cell tumors (SRBCT)
of childhood

9 Prostate_Tumor 102 2 10,509 Prostate tumor and normal tissues

10 DLBCL 77 2 5469 Diffuse large B-cell lymphomas
(DLBCL) and follicular lymphomas

For all algorithms, the population size is 50; the maximum number of iterations is 100. For the
different version of binary DE algorithms [33,34,39], the value of the F is 0.5, and the value of CR is
0.7. For the genetic algorithm, the cross-over rate is 0.7, and the mutation rate is 0.5. For the binary
PSO, the values of c1 and c2 are both 2. For the binary estimation of the distribution algorithm, the
probability of selection is 0.3. The parameters were selected (after some preliminary experiments) so as
to result in roughly the best results generated by the algorithms used for comparison. However, with
different strategies used by each algorithm, it is very difficult to ensure the best suitable parameters as
reflected in the experiments.

3.1. Discussions and Analysis

As is discussed in the previous section, LOOCV is used in our algorithm. As the training set and
test set are changing under the LOOCV strategy, the genes selected and the test accuracy are different
each time. Tables 3 and 4 show the test accuracy and the number of genes selected in 10 runs on the
ten datasets. As we can observe in Table 3, the results of the proposed methods are almost consistent
on all datasets. Moreover, MOBDE can obtain 100% LOOCV accuracy with less than 10 selected
genes for the Leukemia1, Leukemia2, small, round blue cell tumors (SRBCT) and diffuse large B-cell
lymphomas (DLBCL) datasets. For another dataset, Brain_Tumor2, from the Table 3, we can find that
MOBDE obtains 100% accuracy with smaller selected genes. For the average accuracy, the MOBDE
algorithm can obtain 99% accuracy. Meanwhile, the average number of selected genes is 7.5. For the
gene expression data 11_Tumors, the MOBDE algorithm can provide 97.19% accuracy with less than
40 selected genes. It is noted that the MOBDE can obtain more than 98% accuracy four times. For the
dataset Lung Cancer in Table 4, MOBDE can provide 100% LOOCV accuracy two times. The average
accuracy rate of MOBDE can provide 99.12 with less than 30 selected genes. Meanwhile, the MOBDE
can obtain the average selected genes of 15.5. For the dataset Prostate_Tumor, the MOBDE algorithm
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can provide 98.63% average LOOCV accuracy with 10.9 selected genes. For the dataset Brain_Tumor1,
the MOBDE algorithm can also provide more than 97% classification accuracy. Among them, for Lung
Cancer and Prostate Tumor, the algorithm can also find 100% classification accuracies for two and
one times, respectively. From the point of view of the accuracy average in each independent run, the
LOOCV accuracy and the number of selected genes obtained by MOBDE are shown in Figures 2 and 3.

Table 3. Experimental results for each run using multiobjective binary differential evolution (MOBDE)
on 11_Tumors, 9_Tumors, Brain_Tumors1, Brain_Tumors2 and Leukemia1.

Run
11_Tumors 9_Tumors Brain_Tumors1 Brain_Tumors2 Leukemia1

Acc Selected
Genes Acc Selected

Genes Acc Selected
Genes Acc Selected

Genes Acc Selected
Genes

1 97.13 34 93.33 20 98.89 15 100 6 100 6
2 94.83 23 96.67 25 98.89 14 100 9 100 5
3 94.83 31 91.67 17 97.78 11 100 6 100 4
4 97.71 31 91.67 20 98.89 7 100 5 100 5
5 98.28 22 86.67 17 96.67 11 100 7 100 6
6 98.28 40 93.33 17 96.67 12 96 10 100 8
7 96.55 24 91.67 17 98.89 11 100 9 100 6
8 98.28 23 93.33 14 95.56 10 96 9 100 8
9 98.85 26 93.33 38 96.67 12 98 8 100 6

10 97.13 21 95 22 97.78 12 100 6 100 5
Average 97.19 27.5 92.67 20.7 97.67 11.5 99 7.5 100 5.9
±S.D. ±1.42 ±6.24 ±2.62 ±6.83 ±1.22 ±2.17 ±1.7 ±1.72 0 ±1.29

Results for 10 runs are listed in this table. The best subset is shown in shaded cells. In this work, the accuracy
is more important than the number of selected genes. Therefore, a solution with the best accuracy can be
chosen from the final Pareto front. “Acc” denotes the accuracy of the classifications, and “Selected genes”
represents the number of selected genes. The bolding denotes the best solutions.

Table 4. Experimental results for each run using MOBDE on Leukemia2, Lung_cancer, SRBCT,
Prostate_Tumor and DLBCL.

Run
Leukemia2 Lung_Cancer SRBCT Prostate_Tumor DLBCL

Acc Selected
Genes Acc Selected

Genes Acc Selected
Genes Acc Selected

Genes Acc Selected
Genes

1 100 5 98.52 12 100 8 98.04 6 100 7
2 100 8 100 27 100 6 99.02 8 100 8
3 100 4 98.03 15 100 6 99.02 22 100 4
4 100 8 98.52 15 100 4 100 10 100 4
5 100 7 99.51 16 100 5 99.02 8 100 5
6 100 7 100 14 100 5 97.06 14 100 3
7 100 5 99.02 10 100 6 98.04 11 100 6
8 100 5 99.02 14 100 4 99.02 13 100 8
9 100 5 99.02 15 100 5 99.02 10 100 4

10 100 6 99.51 17 100 5 98.04 7 100 7
Average 100 6 99.12 15.5 100 5.4 98.63 10.9 100 5.6
±S.D. ±0 ±1.41 ±0.65 ±4.5 ±0 ±1.17 ±0.83 ±4.65 ±0 ±1.83

Results for 10 runs are listed in this table. The best subset is shown in shaded cells. In this work, the accuracy
is more important than the number of selected genes. Therefore, a solution with the best accuracy can be
chosen from the final Pareto front. “Acc” denotes the accuracy of the classifications, and “Selected genes”
represents the number of selected genes. The bolding denotes the best solutions.
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Figure 2. The accuracy obtained by MOBDE in each independent run.

Figure 3. The number of selected gene obtained by MOBDE in each independent run.

From the results in Table 5, we can find that the average percentage of genes selected is 0.0016.
For the Leukemia1, Leukemia2, SRBCT and DLBCL datasets, our algorithm provides 100% LOOCV
accuracy, even though the percentage of genes selected for these datasets is reduce to 0.0011, 0.0005,
0.0023 and 0.0010 of the total available, respectively. Therefore, it can demonstrate that not all
features are necessary for achieving better classification accuracy. Figure 4 shows the percentage
of genes selected.

Table 5. The genes, selected genes and percentage of gene selected percentage.

Dataset Name Genes Genes Selected Percentage of Genes Selected

11_Tumors 5726 27.5 0.0048
9_Tumors 12,533 20.7 0.0017

Brain_Tumors1 5920 11.5 0.0019
Brain_Tumors2 10,367 7.5 0.0007

Leukemia1 5327 5.9 0.0011
Leukemia2 11,225 6 0.0005

Lung_cancer 12,600 15.5 0.0012
SRBCT 2308 5.4 0.0023

Prostate_Tumor 10,509 10.9 0.001
DLBCL 5469 5.6 0.001
Average - - 0.0016
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Figure 4. The percentage of genes selected.

In order to analyze each part of our algorithm, four different experiments are designed. The first
one is to show the effectiveness of the Fisher-Markov selector. The second and third experiments
are to show the effectiveness of the novel binary differential evolution algorithm compared with
other meta-heuristic algorithms. The fourth experiment is to show the effectiveness of the MOBDE
compared with the grid-search SVM without feature selection method. For the first experiment, we
compare MOBDE with the Fisher-Markov selector and MOBDE without the Fisher-Markov selector.
The results of the MOBDE with the Fisher-Markov selector and MOBDE without the Fisher-Markov
selector are summarized in Table 6. The results represented in Table 6 show that both MOBDE with the
Fisher-Markov selector and MOBDE without the Fisher-Markov selector provide 100% classification
accuracy for Leukemia2 and DLBCL. MOBDE with the Fisher-Markov selector provides less genes
selected for all datasets. For the 9_Tumors, Brain_Tumors1 and Brain_Tumors2 datasets, MOBDE can
not only provide better classification accuracy, but also a lower number of genes selected. However,
for 11_Tumors, Lung_cancer and Prostate_Tumor, MOBDE with the Fisher-Markov selector cannot
obtain better classification accuracy than the latter, which demonstrates that the Fisher-Markov selector
is not suitable for solving different problems. Overall, the Fisher-Markov selector is very effective in
feature selection for the bioinformatics dataset.

For the second experiment, we compare our algorithm with three different versions of binary
differential evolution: binary DE, BDE and BDEAIS. We replace our binary differential evolution in
MOBDE by using the binary DE, BDE and BDEAIS [33,34,39]. That is to say, all of these methods
use the same multiobjective framework to conduct a fair comparison. Therefore, the purpose of
this experiment is to show the effectiveness of the new mutation strategy. Table 7 shows the results
obtained by different binary differential evolution algorithms in terms of the mean and standard
deviation (S. D.) of the classification accuracy and the number of genes selected. As can be seen
in Table 7, for Leukemia2, SRBCT and DLBCL, all algorithms can obtain 100% LOOCV accuracy.
However, MOBDE can obtain fewer genes selected. For the 11_Tumors dataset, the BDE can provide
the best solution of 97.24% with the number of the genes selected being 48.4. The MOBDE can provide
a similar accuracy of 97.19% and a lower number of genes selected of 27.5. For Leukemia1, three out of
four algorithms can find the best accuracy with 100% LOOCV. For the rest of the datasets, the best
classification and a lesser number of genes selected are provided by the MOBDE. Therefore, we can
draw the conclusion that the MOBDE can obtain a better performance compared with other binary
differential evolution algorithms.
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Table 6. Comparative experimental results of the binary differential evolution algorithm with and
without the Fisher-Markov selector.

Dataset Name Evaluation This Work
(MOBDE)

MOBDE without the
Fisher-Markov Selector

11_Tumors
Acc (%) 97.19 98.28
Genes 27.5 236.67

9_Tumors
Acc (%) 92.67 91.67
Genes 20.7 151.33

Brain_Tumors1
Acc (%) 97.67 97.04
Genes 11.5 110

Brain_Tumors2
Acc (%) 99 98
Genes 7.5 71.67

Leukemia1
Acc (%) 100 100
Genes 5.9 75

Leukemia2
Acc (%) 100 100
Genes 6 62.67

Lung_cancer
Acc (%) 99.12 99.26
Genes 15.5 123.5

SRBCT
Acc (%) 100 100
Genes 5.4 109.67

Prostate_Tumor
Acc (%) 98.63 99.35
Genes 10.9 126.33

DLBCL
Acc (%) 100 100
Genes 5.6 25.33

The bolding denotes the best solutions.

Table 7. Comparative experimental results of different binary differential evolution algorithms.

Dataset Name
Method This Work (MOBDE) Binary DE [34] BDE [39] BDEAIS [33]

Evaluation Average S.D. Average S.D. Average S.D. Average S.D.

11_Tumors
Acc (%) 97.19 1.42 93.97 0.41 97.24 0.63 95.29 0.48
Genes 27.5 6.24 50 8.49 48.4 4.77 113.4 7.67

9_Tumors
Acc (%) 92.67 2.62 82 1.39 91.67 0 85.33 2.17
Genes 20.7 6.83 17 6.85 44.8 9.91 107 11.34

Brain_Tumors1
Acc (%) 97.67 1.22 95.11 0.61 96 0.61 95.56 0
Genes 11.5 2.17 17 11.25 56.8 6.53 97.4 8.17

Brain_Tumors2
Acc (%) 99 1.7 96.4 1.67 96 2.45 88.8 1.09
Genes 7.5 1.72 11.6 7.89 38.2 9.93 86 6.67

Leukemia1
Acc (%) 100 0 100 0 100 0 98.33 0.62
Genes 5.9 1.29 10.2 3.11 45.8 8.41 78.8 5.07

Leukemia2
Acc (%) 100 0 100 0 100 0 100 0
Genes 6 1.41 11.4 6 42.2 1.92 77.2 2.49

Lung_cancer
Acc (%) 99.12 0.65 98.03 0.35 98.23 0.27 98.03 0.7
Genes 15.5 4.5 18 8.15 51.8 7.89 49.5 33.23

SRBCT
Acc (%) 100 0 100 0 100 0 100 0
Genes 5.4 1.17 11.2 4.38 40.6 5.64 74.8 1.64

Prostate_Tumor
Acc (%) 98.63 0.83 98.04 0 98.43 0.54 98.24 0.44
Genes 10.9 4.65 15.4 10.95 49.8 13.23 103 9

DLBCL
Acc (%) 100 0 100 0 100 0 100 0
Genes 5.6 1.83 8.8 1.79 44.4 3.13 92 18.25

The bolding denotes the best solutions.
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In order to show the effectiveness of the binary differential evolution, we also compare our
algorithm with other well-known metaheuristics, such as the genetic algorithm [40], particle swarm
optimization [41] and the estimation of distribution algorithm [42]. In order to conduct a fair
comparison, we replace our binary differential evolution in MOBDE by using these metaheuristics.
All of these methods use the same multiobjective framework. Table 8 shows the results obtained by
binary differential evolution, the genetic algorithm, particle swarm optimization and the estimation of
distribution algorithm in terms of the mean and standard deviation (S. D.) of the classification accuracy
and the number of genes selected. We can observe in this table that MOBDE clearly outperforms other
algorithms in all of the datasets. Therefore, we can conclude that our proposed algorithm shows an
efficient and better performance in comparison with these algorithms. In addition, we also list the time
of these algorithms in Table 9.

Table 8. Comparative experimental results of the binary differential evolution algorithm with the
binary genetic algorithm, binary particle swarm optimization and the binary estimation of binary
estimation of distribution algorithm.

Dataset Name
Method This Work (MOBDE) BGA [40] BPSO [41] BEDA [42]

Evaluation Average S.D. Average S.D. Average S.D. Average S.D.

11_Tumors
Acc (%) 97.19 1.42 97.13 1.52 94.44 0.33 93.3 0.88
Genes 27.5 6.24 62.67 21.22 88.67 11.37 58.67 14.74

9_Tumors
Acc (%) 92.67 2.62 86.67 1.18 80.67 1.9 83 2.98
Genes 20.7 6.83 35.2 5.45 87.4 10.21 31.4 4.45

Brain_Tumors1
Acc (%) 97.67 1.22 96 1.69 94.44 0 96.22 0.99
Genes 11.5 2.17 34 13.64 89.2 5.5 22 8.75

Brain_Tumors2
Acc (%) 99 1.7 93.6 4.34 88 1.41 95.2 4.38
Genes 7.5 1.72 25.6 14.88 80.6 9.53 12.2 4.6

Leukemia1
Acc (%) 100 0 98.33 1.16 98.33 0.62 100 0
Genes 5.9 1.29 43.2 10.62 65.4 8.08 11.8 3.9

Leukemia2
Acc (%) 100 0 100 0 100 0 100 0
Genes 6 1.41 44.8 3.42 62.2 1.48 9.6 1.82

Lung_cancer
Acc (%) 99.12 0.65 98.36 0.28 97.29 0.35 98.85 0.28
Genes 15.5 4.5 31.33 9.24 83 21.21 31.67 10.5

SRBCT
Acc (%) 100 0 100 0 100 0 100 0
Genes 5.4 1.17 47 2.45 57.4 3.3615 12.4 6.11

Prostate_Tumor
Acc (%) 98.63 0.83 97.65 1.12 97.25 0.44 97.84 0.44
Genes 10.9 4.65 38.4 5.08 74.8 3.7 21.6 2.97

DLBCL
Acc (%) 100 0 99.74 0.58 100 0 100 0
Genes 5.6 1.83 35.2 5.17 65 4.36 15.4 7.47

The bolding denotes the best solutions.

Table 9. Comparative experimental times of the differential evolution algorithm with different
multiobjective optimization algorithms.

Dataset Name MOBDE BGA BPSO BEDA

11_Tumors 7945.6 5922.05 12,306.01 9082.42
9_Tumors 781.43 626.17 731.607 977.61

Brain_Tumors1 1191.58 1113.36 1552.9 1455.6
Brain_Tumors2 332.75 273.235 305.69 291.67

Leukemia1 495.13 614.4 734.03 524.458
Leukemia2 416.58 521.814 549.01 410.484

Lung_cancer 4695.81 6191.65 13,413.08 5092.3
SRBCT 770.32 1321.44 1001.7 877.149

Prostate_Tumor 1037.56 1151.62 1254.92 1293.71
DLBCL 364.5 441.242 668.58 384.981

The bolding denotes the best solutions.
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In the test experiment, we compare our proposed method MOBDE with the grid-search SVM
without feature selection method. The results are listed in Table 10. From the table, better results
between the two algorithms are shown in shaded cells. It is easy to see that both the classification
accuracy and the number of selected genes of MOBDE are superior to grid search SVM. This also
demonstrates the effectiveness of MOBDE.

Table 10. Comparative experimental results of the binary differential evolution algorithm with grid
search support vector machine (SVM).

Dataset Name Evaluation This Work (MOBDE) SVM

11_Tumors
Acc (%) 97.19 89.08
Genes 27.5 12533

9_Tumors
Acc (%) 92.67 51.67
Genes 20.7 5726

Brain_Tumors1
Acc (%) 97.67 90
Genes 11.5 5920

Brain_Tumors2
Acc (%) 99 90
Genes 7.5 10367

Leukemia1
Acc (%) 100 97.22
Genes 5.9 5327

Leukemia2
Acc (%) 100 94.44
Genes 6 11225

Lung_cancer
Acc (%) 99.12 95.07
Genes 15.5 12600

SRBCT
Acc (%) 100 98.8
Genes 5.4 2308

Prostate_Tumor
Acc (%) 98.63 93.14
Genes 10.9 10509

DLBCL
Acc (%) 100 96.1
Genes 5.6 5469

The bolding denotes the best solutions.

3.2. Compared with Some Single-Objective Algorithms

In order to demonstrate the effectiveness of the proposed method, we also compared our
work with some single-objective algorithms. It is worth mentioning that in the previous research,
many single-objective algorithms only focused on the accuracy rate of the classification. Therefore,
in this paper, we also use the accuracy rate as the compared criteria. Tables 11 and 12 show
the results obtained by the MOBDE with other single-objective algorithms including IBPSO1 [8],
IBPSO2 [6] and hybrid binary particle swarm optimization and tabu search (HPSOTS). As can be seen
in Tables 11 and 12, we can find that the MOBDE algorithm can provide a higher LOOCV classification
accuracy on all datasets compared with the other PSO algorithms [6–8] and the other SVM-based
algorithms [43,44], except Leukemia1 data. For the Leukemia1 data, the algorithm MOBDE, IBPSO1 [8]
and IBPSO2 [6] can all obtain a 100% accuracy rate, while IBPSO1 [8] can obtain a lesser number
of genes compared with MOBDE. Based on the above analysis, we can conclude that when only
considering the accuracy of classification, the MOBDE algorithm can also perform better than the
other algorithms.
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Table 11. Comparative experimental results of the binary differential evolution algorithm with some
single-objective methods.

Dataset Name Evaluation This Work (MOBDE) IBPSO1 [8] IBPSO2 [6] PSOTS [5]

11_Tumors
Acc (%) 97.19 95.06 93.1

–Genes 27.5 240.9 2948

9_Tumors
Acc (%) 92.67 75.5 78.33

–Genes 20.7 240.6 1280

Brain_Tumors1
Acc (%) 97.67 92.56 94.44

–Genes 11.5 11.2 754

Brain_Tumors2
Acc (%) 99 92 94

–Genes 7.5 9.1 1197

Leukemia1
Acc (%) 100 100 100 98.61
Genes 5.9 3.5 1034 7

Leukemia2
Acc (%) 100 100 100

–Genes 6 6.7 1292

Lung_cancer
Acc (%) 99.12 95.86 96.55

–Genes 15.5 14.9 1897

SRBCT
Acc (%) 100 100 100

–Genes 5.4 17.5 431

Prostate_Tumor
Acc (%) 98.63 97.94 92.16

–Genes 10.9 13.6 1294

DLBCL
Acc (%) 100 100 100

–Genes 5.6 6 1042

The bolding denotes the best solutions.

Table 12. Comparative experimental results of the binary differential evolution algorithm with MOBDE
with The maximum margin criterion and support vector machine-based recursive feature elimination
(MMC + SVM-RFE), support vector machine-based recursive feature elimination (SVM-RFE) and
minimum-redundancy maximum-relevancy (MRMR).

Dataset Name Evaluation This Work
(MOBDE) MMC + SVM-RFE [43] SVM-RFE with

MRMR [44]

11_Tumors
Acc (%) 97.19

- -Genes 27.5

9_Tumors
Acc (%) 92.67

- -Genes 20.7

Brain_Tumors1
Acc (%) 97.67 67.8

-Genes 11.5 100

Brain_Tumors2
Acc (%) 99

- -Genes 7.5

Leukemia1
Acc (%) 100 99.7 98.35
Genes 5.9 100 37

Leukemia2
Acc (%) 100 96

-Genes 6 100

Lung_cancer
Acc (%) 99.12

- -Genes 15.5

SRBCT
Acc (%) 100 98.7

-Genes 5.4 100

Prostate_Tumor
Acc (%) 98.63 92.1 98.29
Genes 10.9 30 10

DLBCL
Acc (%) 100

- -Genes 5.6

The bolding denotes the best solutions.
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3.3. Compared with A Multiobjective Algorithm

In this section, we compare our algorithm with a well-known multiobjective optimization
algorithm (NSGAII) [9]. The NSGAII algorithm is based on the non-dominated sorting and crowding
distance method. Generally speaking, as is shown in Table 13, for all gene datasets, the MOBDE
algorithm can provide better accuracy and smaller selected genes for most datasets compared with
NSGAII. In Table 13, we also show the computation time comparison of these two algorithms. As can
be seen in this table, in all instances, the computational time of our algorithm is less than that of
NSGAII. The reason is that our algorithm is still efficient, and the time complexity is O(INT3),
as discussed in Section 2. As for NSGAII, we can simply analyze its time complexity here. In NGSAII,
for each iteration, the non-dominated sorting is O(M(2N)2), and the crowding-distance assignment
is O(M(2N)log(2N)), where N is the population size and M is the number of objectives; the data
subroutines of standard SVM are O(T3); so the overall complexity of the iteration is O(4MN2T3).
Given the I iteration, the total time complexity of NSGAII is O(4IMN2T3), i.e., O(IN2T3). Obviously,
our algorithm is more efficient than NSGAII based on the above analysis. There may be two reasons
that our algorithm performs better than NSGAII with fewer selected genes. The first reason is that the
new binary mutation strategy used in MOBDE tends to enhance the diversity of the population and
share the previous good individuals with the next generation. The second reason is that there may be
only very few genes that are necessary for achieving the better classification accuracy, and our method
seems more efficient for selecting such genes.

Table 13. Comparative experimental results of the binary differential evolution algorithm with a
different multiobjective optimization algorithm.

Dataset Evaluation This Work (MOBDE) Time of MOBDE (s) NSGA-II Time of NSGAII (s)

11_Tumors
Acc (%) 97.19

7945.6
92.82

15015.56Genes 27.5 105

9_Tumors
Acc (%) 92.67

781.43
80.33

1109.81Genes 20.7 66.2

Brain_Tumors1
Acc (%) 97.67

1191.58
94

1264.95Genes 11.5 37

Brain_Tumors2
Acc (%) 99

332.75
90

357.86Genes 7.5 15.6

Leukemia1
Acc (%) 100

495.13
99.17

545.7Genes 5.9 12.6

Leukemia2
Acc (%) 100

416.58
100

430.43Genes 6 25.2

Lung_cancer
Acc (%) 99.12

4695.81
97.21

5278.53Genes 15.5 55.67

SRBCT
Acc (%) 100

770.32
100

808.87Genes 5.4 23

Prostate_Tumor
Acc (%) 98.63

1037.56
96.47

1426.49Genes 10.9 18.8

DLBCL
Acc (%) 100

364.5
99.74

394.74Genes 5.6 11.2

The bolding denotes the best solutions.

3.4. The Paired Wilcoxon’s Signed Rank Test of Our Algorithm with Other Algorithms

In this part, the paired Wilcoxon’s signed rank test is adopted to compare MOBDE with other
algorithms to verify whether the experiment results of MOBDE are better than other algorithms [45].
The Wilcoxon’s signed-rank test is a non-parametric statistical hypothesis test, which can be
used as an alternative to the paired t-test when the results cannot be assumed to be normally
distributed. In the paired Wilcoxon’s signed rank test, the null hypothesis represents that there
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is no significant improvement compared with other feature selection algorithms, and the alternative
hypothesis represents that our algorithm is significantly different compared with other feature selection
methods. As an example, we can compare our algorithm MOBDE with the well-known algorithm
NSGAII. The null hypothesis and alternative hypothesis can be described respectively as follows:
H0 : ϕMOBDE = ϕNSGAII and H1 : ϕMOBDE > ϕNSGAII , where ϕMOBDE and ϕNSGAII denote
the average accuracy and the number of features selected of MOBDE and NSGAII on all datasets,
respectively. As can be seen in Table 14, we can find that the p-values obtained by the paired Wilcoxon’s
signed rank test between MOBDE and other algorithms are all less than the standard significance level
5%. Therefore, we can draw the conclusion that our algorithm MOBDE significantly outperforms the
other algorithms.

Table 14. The Wilcoxon’s signed rank test of our algorithm with other algorithms on accuracy and the
number of features selected.

Accuracy The Number of Feature Selected

Paired Wilcoxon’s Signed Rank Test p-Value Pair Wilcoxon’s Signed Rank Test p-Value

Binary DE [34] 0.01802 Binary DE [34] 0.004883
BDE [39] 0.02959 BDE [39] 0.0009766

BDEAIS [33] 0.01125 BDEAIS [33] 0.002945
BGA [40] 0.007074 BGA [40] 0.0009766
BPSO [41] 0.01125 BPSO [41] 0.0009766
EDA [42] 0.01802 EDA [42] 0.0009766

Grid search SVM 0.0009766 Grid search SVM 0.0009766
IBPSO [8] 0.01802 IBPSO [8] 0.04199
IBPSO [6] 0.01802 IBPSO [6] 0.0009766
NSGAII 0.007133 NSGAII 0.0009766

3.5. Independent Dataset

In order to check the effectiveness of the final model, an independent test set is needed to test
the final model. We set aside approximately 20%–30% of the data for testing the final models by
predicting the apoptosis protein locations. Firstly, the raw data constructed by Chen and Li [46]
contained 317 apoptosis proteins. According to their subcellular locations, proteins were classified
into six groups: 112 cytoplasmic proteins, 34 mitochondrial proteins, 52 nuclear proteins, 17 secreted
proteins, 55 membrane proteins and 47 endoplasmic reticulum proteins. In addition, the 98 apoptosis
proteins sourced form the paper [47] containing 43 cytoplasmic proteins, 30 plasma membrane-bound
proteins, 13 mitochondrial proteins and 12 other proteins are used to test the algorithm. The following
step should be used to prepare high quality datasets. We compared our method with other methods,
such as PSORT [48] and GASVM [47]. For the leave-one-out cross-validation, each protein is singled
out from the benchmark dataset as the test protein, and the remaining proteins would serve as the
training dataset to train the predict model. Therefore, we used the leave-one-out cross-validation to
evaluate the proposed method.

The support vector machine is used to measure the accuracy of the leave-one-out cross-validation
on the feature subset produced by MOBDE. The datasets based on 317 apoptosis proteins are
partitioned into one testing sample and D-1 training sample. Each individual will take turns being
the testing dataset. The other D-1 individuals serve as the training dataset for determining the model
prediction parameter. The swarm intelligence algorithm is used for selecting a near-optimal subset
of informative features that is most relevant for the classification. The overall accuracy is 92.43%.
The accuracy of the our method for cytoplasm proteins is 97.32%, for mitochondrial proteins is 88.24%,
for nuclear proteins is 94.23%, for secreted proteins is 76.47%, for membrane proteins is 87.27%
and for endoplasmic reticulum proteins is 93.62%. Then, we use the proposed method to predict
the independent dataset including 98 proteins. The results are shown in Table 15. From Table 15,
the accuracy is 95.92%. The accuracy of our method for cytoplasm proteins is 97.67%, for mitochondrial
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proteins is 100%, for membrane proteins is 92.31% and for other proteins is 83.33%. From the compared
results, the feature selection method can reduce the data dimensionality and find out an optimal
amount of features that result in the better performance of the predict model. We hope that the
promising results using the new feature selection method can improve the performance of protein
subcellular location prediction.

Table 15. Prediction results with different models on the 317 apoptosis proteins dataset and 98
independent proteins dataset.

Model Class

317 Protein
Cyto Mito Memb Nucl Secr Endo Overall Accuracy (%)

Training Dataset

PSORT 51.78 41.17 0 50 82.35 0.02 37.55
GASVM 89.28 91.17 92.72 86.53 88.23 91.48 89.91

This paper 97.32 88.24 87.27 94.23 76.47 93.62 92.43

98 Proteins
Cyto Mito Memb Other Overall Accuracy (%)

Independent Dataset

PSORT 58.13 30.76 0 25 28.47
GASVM 90.7 92.31 86.67 91.7 90.34

This paper 97.67 100 92.31 83.33 95.92

4. Conclusions

The objective of this study is to provide a multiobjective optimization method for feature selection.
Our proposed method called MOBDE embraces the strength of the binary differential evolution for
classification method and find the smaller subsets. In the first stage, we use the Fisher-Markov selector
method to rank the scores of the features and select the 180 top features as the input of the binary
differential evolution. Then, a novel binary differential evolution is proposed to select the feature
subset. Following that, we propose a multiobjective differential evolution method for the feature
selection based on the summation of the normalized objective and diversity selection on ten gene
expression datasets. According to the experiments, the following can be concluded.

1. The proposed method can find useful informative features in terms of classification accuracies
2. By using this feature selection method, there is no need to set the number of selected features

since the proposed algorithm can automatically select the most useful features in terms of
classification accuracies.

3. To show the effectiveness of the Fisher-Markov selector, the experiment of MOBDE with
the Fisher-Markov selector and MOBDE without the Fisher-Markov selector is designed.
The experimental results show that the Fisher-Markov selector is very effective in feature selection
for the bioinformatics dataset.

4. To show the effectiveness of the proposed differential evolution, we compare our algorithm with
three different versions of binary differential evolution: binary DE, BDE and BDEAIS. It is better
than these different binary differential evolution algorithms in terms of classification accuracy
and the number of selected features. Meanwhile, our algorithm also provides better solutions
than other binary evolutionary algorithm, including BGA, BPSO and BEDA.

5. Compared with some single objective algorithms, our algorithm outperforms the best algorithm
so far on these problems.

The proposed MOBDE algorithm is not only suitable for feature selection and classification in
gene expression data, but also for other application domains, such as electricity load forecasting,
face recognition and vehicle detection or any other high dimensional data classification.
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