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Abstract: Deregulated electricity markets encourage firms to compete, making the development
of renewable energy easier. An ordinary parameter of electricity markets is the electricity market
price, mainly the day-ahead electricity market price. This paper describes a new approach to forecast
day-ahead electricity market prices, whose methodology is divided into two parts as: (i) forecasting
of the electricity price through autoregressive integrated moving average (ARIMA) models; and
(ii) construction of a portfolio of ARIMA models per hour using stochastic programming. A stochastic
programming model is used to forecast, allowing many input data, where filtering is needed. A case
study to evaluate forecasts for the next 24 h and the portfolio generated by way of stochastic
programming are presented for a specific day-ahead electricity market. The case study spans four
weeks of each one of the years 2014, 2015 and 2016 using a specific pre-treatment of input data of
the stochastic programming (SP) model. In addition, the results are discussed, and the conclusions
are drawn.
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1. Introduction

Electric energy systems have started being controlled by governments; since then, a constant
search for improving such systems towards deregulation, seeking a competitive structure and attaining
growth by satisfying the needs of society, has been pursued.

Electricity market prices have achieved a relevant importance as a consequence of the deregulation
of the electricity sector. The importance of prices for the generation sector has been increasing in the
last few years due to the high penetration of renewable energy sources, whose revenues come from
selling the energy generated at market prices. Hence, price forecasting is still an active field of research,
especially due to the incorporation of new technologies, such as wind and photovoltaic energy.

The high amount of renewable energies in the markets has decreased electricity market prices
due to the fact that some renewable energies are offered in the market at zero price owing to their
close-to-zero marginal costs. However, other effects in market prices can be observed since some
generators could be working at a higher marginal cost to be used as reserves.

Literature Review and Contributions

Deregulation of electric energy systems started with the growth of the industry and the new
demands for electricity [1,2]. After that, several research lines were created to reduce generation
uncertainties, as presented in [3–6].

Thus, electricity market price forecasting has a high importance for generators, and electricity
price forecasting is performed through different approaches [7], such as multi-agent, fundamental,
reduced-form, statistical and computational intelligence methods.
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Neural networks are presented in [8]. Another approach is based on a combinatorial neural
network [9]. In addition, different models used for the Pennsylvania-New Jersey-Maryland (PJM) and
Spanish electricity markets are compared in [10]. An artificial neural network with the preparation of
input data through cluster algorithms is developed in [11]. The work in [12] combines an artificial neural
network with a clustering algorithm. The works in [13–15] present time series analysis, forecasting
and control models. Hence, [16] uses neural networks to forecast day-ahead market prices, while [17]
forecasts through an autoregressive integrated moving average (ARIMA) model. Moreover, some
models are based on forecasting the volatility [18] as a result of generalized autoregressive conditional
heteroskedasticity (GARCH) models. In this way, forecasting trends of time series can be useful [19,20],
as well as the use of filters [21].

Some forecasting methods are based on the combination or a portfolio of several models,
as proposed by [22–25].

In this regard, an interesting procedure is presented in [26], proposing an enhanced hybrid
approach composed of an innovative combination of wavelet transform, differential evolutionary
particle swarm optimization and an adaptive neuro-fuzzy inference system to forecast electricity
market price signals in the short-term through historical data.

Another work to estimate uncertainty uses a statistical approach for interval forecasting of the
electricity price [27] based on a support vector machine (SVM) where some model parameters are
estimated by means of maximum likelihood estimation (MLE). A possible accuracy gain from using
factor models, quantile regression and forecast averaging to compute interval forecasts of electricity
spot prices is evaluated in [28]. A general survey of support vector machines is shown in [29].
An ensemble method for weather conditions is described in [30].

This paper sets out a new stochastic programming model [31] combining many models whose
forecasts are made by way of ARIMA models. Note that any forecast has an error because of
future uncertainty.

In this paper, we propose a new stochastic programming model with many input data, which may
help to reduce the error, where the combination of models comes from several forecasts. In contrast,
perfect input data considering our forecast methodology could achieve a perfect forecast. However,
this paper is only focused on the stochastic programming model and its features and not on the best
input data for the model.

The main contributions of this paper are as follows:

1. A new stochastic programming model to create a forecasting portfolio.
2. A new combination approach using multiple input data in order to apply stochastic programming.

A description of the effects of input data on the created optimal forecasting portfolio is drawn.
An application of forecasting in a real market with real-time series is also presented. A recent period is
analyzed because the integration of renewable energy sources in the Spanish electricity market has
produced a downward effect on the price from 2010 onwards, where the participation of renewable
energy sources on some days (25 February 2015) was higher than 70%, as shown in [32].

The remainder of the paper is structured as follows: Section 2 describes the mathematical model,
the case study and the input data, and the ARIMA models used are shown in Section 3; in Section 4,
the results and a discussion are presented; and the conclusions are portrayed in Section 5.

2. Mathematical Model

The aim of the paper is to create a new model whose final error can be reduced by way of stochastic
programming, after combining several forecasting models and their errors. The main decision made is
the weight of each model per period seeking the lower error of the combination of forecasts.
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A stochastic mixed integer linear programming model to combine the forecasting models
and their portfolio (SP) is created. The variables of the stochastic programming model are
Θ =

{
errorp,s, error+p,s, error−p,s, ê±p,s, ê+p,s, ê−p,s, λ̂p, βp,s, yp,s, zp,s

}
.

min
Θ

∑
s

∑
p

(
error+p,s + error−p,s

)
; (1)

subject to:

errorp,s = error+p,s − error−p,s; (2)

error+p,s ≤ m · yp,s; (3)

error−p,s ≤ m ·
(
1− yp,s

)
; (4)

error+p,s ≥ 0; (5)

error−p,s ≥ 0; (6)

ê+p,s = ê f orecasts
p,s · zp,s; (7)

ê−p,s = −ê f orecasts
p,s ·

(
1− zp,s

)
; (8)

ê±p,s = ê+p,s − ê−p,s; (9)

ê+p,s ≥ 0; (10)

ê−p,s ≥ 0; (11)

λ̂p = ∑
s

(
λ

f orecasts
p,s · βp,s

)
; (12)

∑
s

βp,s = 1; (13)

errorp,s = λ̂p −
(

λp,s + ê±p,s

)
; (14)

βp,s ∈ [0, 1]; yp,s ∈ {0, 1} ; zp,s ∈ {0, 1} . (15)

where the objective is to minimize the variables related to the errors (1), positive error+p,s or negative
error−p,s, in each period p and scenario s. The error variables of (1) are both positive, as shown in
(5) and (6); errorp,s can be positive or negative, as shown in (3) and (4), which are not zero through
binary variable yp,s; depending on (5) or (6); if yp,s = 1, errorp,s = error+p,s, whereas, if yp,s = 0,
errorp,s = −error−p,s (negative). Constant m is a big enough value.

There are three input data, each one being a parameter, namely the forecasted errors ê f orecasts
p,s ,

the forecasted trends λp,s and the forecasted prices λ
f orecasts
p,s .

The forecasted error (parameter) is an error that corrects the forecasted trends and the forecasted
prices, i.e., ê f orecasts

p,s . This parameter is the possible distance between the real price and the forecasted

value. When the real price is lower than the forecasted price, ê f orecasts
p,s is negative, and variable ê−p,s is

positive (11), i.e., zp,s binary variable is zero, so ê±p,s = −ê−p,s. The opposite case is zp,s = 1 and ê±p,s = ê+p,s,
where ê+p,s is a positive variable, as shown in (10).

The forecasting portfolio is evaluated in (12), where λ
f orecasts
p,s is the parameter whose values are

the forecasts made; one scenario for this parameter is a forecast per period, where variable λ̂p is the

final price of the portfolio created by the forecasts, λ
f orecasts
p,s , and the weight that has to be decided,
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βp,s, whose sum, ∑s βp,s, has to be equal to one, as shown in (13). ∑s βp,s could be different from one,
even being an interval, and the model should decide what is the best value. In this paper, ∑s βp,s is
used as in (13).

Equation (14) decides the value of λ̂p variable; this variable comes from the multiplication of

λ
f orecasts
p,s and the weight βp,s, being λ̂p the final price from (12). Equation (14) reduces the error whose

value is the difference between the variable λ̂p and the parameters that are the input data of the model,

such as λ
f orecasts
p,s , λp,s and ê±p,s. The parameter λp,s represents the trend of the price; thus, more forecasts

provide more information for the possible behavior of the real unknown price. On the other hand,
the differences between λ̂p and λp,s can be corrected through parameter ê±p,s, but also, ê±p,s tries to
reduce the imbalance between λ̂p and the real unknown price. Therefore, the forecasting portfolio

could improve the ordinary forecasts, but always following parameter λ
f orecasts
p,s .

To sum up, the stochastic programming model is composed of three kinds of input data.
These input data are: (i) forecasted prices; (ii) errors of the forecasts that show the differences between
the real price (unknown), forecasted price and the trend; and (iii) the trend of the prices (it could
be obtained through more forecasts) in order to describe the possible evolution of the price. On the
other hand, the variables of the model, Θ =

{
errorp,s, error+p,s, error−p,s, ê±p,s, ê+p,s, ê−p,s, λ̂p, βp,s, yp,s, zp,s

}
,

depend on the input data and can be calculated through different techniques.
Index p represents the hour, from Hour 1 spanning the time horizon of forecasting, and index s is

the scenario of the stochastic programming model; nevertheless, each s scenario of each input datum
can be achieved using any technique to forecast the prices, the error and the trend.

3. Case Study

The forecasts are obtained for the Spanish electricity market prices. The prices are quite different
for each year; Table 1 shows a summary of the statistics, and Table 2 presents the correlation matrix of
the Spanish electricity prices from 2010–2015 [33]. The high standard deviation of prices of years 2013
and 2014 is remarkable, whose values are e20.73/MWh and e21.14/MWh, respectively. These values
are two-times the standard deviation of the prices of 2011. This analysis is made using ECOTOOL
(2016) [34], a forecasting toolbox in MATLAB R© (R2011b) [35].

Table 1. Summary statistics of the Spanish electricity prices (e/MWh) of 2010–2015.

Statistics 2010 2011 2012 2013 2014 2015

Data points 8760 8760 8760 8760 8760 8760
Minimum 0.0 0.0 0.0 0.0 0.0 4.0

10% percentile 15.13 38.57 30.49 10.0 10.0 33.99
25% percentile 30.08 45.93 40.77 34.00 30.50 43.10

Mean 37.00 49.92 47.21 44.26 43.09 50.32
Geometric mean - - - - - 48.24
Harmonic mean 10.85 24.70 13.99 4.86 6.48 44.54

Median 40.00 52.00 50.00 47.00 44.83 51.20
75% percentile 46.41 55.23 55.0 55.96 56.17 60.00
90% percentile 51.50 60.18 60.12 65.13 67.16 64.88

Maximum 145.00 91.01 90.13 112.00 113.92 85.05
Interquartile range 16.33 9.29 14.23 21.96 25.67 16.90

Range 36.37 21.60 29.63 55.13 57.16 30.89
Standard deviation 14.69 10.60 13.13 20.73 21.14 12.37

Variance 216.02 112.45 172.64 429.99 447.00 153.03
Mean absolute deviation 11.10 7.17 9.86 15.44 16.17 9.81

Median absolute deviation 7.77 3.99 6.52 10.32 12.34 8.50
Mean/Standard deviation 2.51 4.70 3.59 2.13 2.03 4.06

Skewness −0.60 −1.33 −1.18 −0.29 −0.07 −0.71
Kurtosis 1.18 4.86 1.98 0.45 0.12 0.64
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Table 2. Correlation matrix of the Spanish electricity prices of 2010–2015.

Years 2010 2011 2012 2013 2014 2015

2010 1 0.49 0.26 0.50 0.57 0.53
2011 0.49 1 0.30 0.31 0.40 0.28
2012 0.26 0.30 1 0.33 0.25 0.31
2013 0.50 0.31 0.33 1 0.58 0.37
2014 0.57 0.40 0.25 0.58 1 0.46
2015 0.53 0.28 0.31 0.37 0.46 1

Figure 1 portrays the scatter plots and the histograms of all of the hourly prices of each one
of the six years. Red lines in the histograms indicate the shape of the normal distribution, whilst
the green lines describe the real shape of the distribution that follows those data. Figure 2 depicts
the sample of 2016, from 1 January–10 June 2016; the mean price is equal to e29.17/MWh, and the
standard deviation of prices is e12.35/MWh. The time series of the day-ahead electricity market prices
is transformed using a logarithmic transformation to make the dispersion constant.

Figure 1. Scatter plot of the Spanish electricity prices of 2010, 2011, 2012, 2013, 2014 and 2015.
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Figure 2. Prices from 1 January–10 June 2016 of the Spanish electricity prices.
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3.1. Input Data for the SP Model

As presented in Section 2, there are three input data: forecasted prices, forecasted errors and
forecasted trends. This section shows how these input data are calculated to test the SP model,
achieving a portfolio of the forecasted prices, which are input data.

Figure 3 shows the three input data: forecasted prices, forecasted errors and forecasted trends;
all of them represent the information used in the SP model. Moreover, Figure 3 shows the main output
data, i.e., the final forecasted prices.

Input data

Output data

FORECASTED 

PRICES

FORECASTED 

ERROR

FORECASTED 

TRENDS

SP MODEL
(Stochastic programming model)

FINAL FORECASTED PRICES

(day d+1)

10 forecasted prices of each hour 

of 3 previous days d, d-1 and d-2;  

(10 ARIMA models x 3 days

= 30 forecasts x 24 hours)

Scenario reduction from 

30 per hour to 5 scenarios 

per hour through k-means 

using the Euclidean 

distance 

10 errors of each hour 

(real price ˗ forecasted price) 

of 3 previous days

(30 errors x 24 hours)

10 prices of each hour of 3 

previous days

(30 prices x 24 hours)

Scenario reduction from 

30 per hour to 5 scenarios 

per hour through k-means 

using the Euclidean 

distance 

5 forecasted prices of each hour of  

day d+1 (5 ARIMA models, 

5 forecasted prices x 1 day)

Figure 3. Diagram of the input data of the SP model.

Figure 3 presents how the different inputs are calculated. There are two forecasting processes;
first, some forecasts are made for the three days (d, d− 1, and d− 2) previous to the final day (d + 1)
in order to have more information; and second, some forecasts are made only for the final day (d + 1).

The first forecasting process is used to determine the behavior of the errors and trends of the
three days previous to day d + 1, where the models are similar to the models used in the second
forecasting process. The three previous days are utilized because the real prices of these days are known;
thus, the behavior of the errors and trends can be calculated from these forecasts. Thirty scenarios of
trends and errors are attained for each hour of the day, 3 days × 10 models × 24 h. The 30 scenarios
per hour are reduced to five scenarios per hour for the errors and trends. The scenario reduction from
30 scenarios per hour to five scenarios per hour is done by the k-means method using the Euclidean
distance, where the centroid is the mean of the points of the cluster of the five scenarios.
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The second forecasting process is applied to day d + 1, that is the real forecasted day, and
five forecasted prices are obtained from the first five ARIMA models of Table 3. Five ARIMA models are
used because the stochastic programming model presented in Section 2 is tested utilizing five scenarios.

Table 3. Terms of the ARIMA models.

Model Seasonal Parameters (1 − Bs
j ) AR Parameters φpj(Bsj) MA Parameters θqj(Bsj)

ARIMA1 1, 24 1, 2, 24 2, 24
ARIMA2 1, 24 1, 2, 7, 24 1, 2
ARIMA3 - 1, 2, 7, 9, 24 2
ARIMA4 - 1, 2, 7, 19, 24, 27 1
ARIMA5 - 1, 2, 3, 7, 19, 21, 24 1, 2
ARIMA6 - 1, 2, 3, 7, 9, 24, 27, 48 2
ARIMA7 - 1, 2, 3, 7, 19, 21, 24 1, 2
ARIMA8 1, 24 1, 24, 168 1
ARIMA9 1, 24 1, 2, 24, 168 1

ARIMA10 1, 24 1, 24, 168 2

Note that the forecasting processes previous to the SP model can be done by means of neural
networks, support vector machines, ensemble methods or by a mixture of all of them, with the
possibility of including other methods.

The information of the input data comes from the use of ARIMA models. The behavior of previous
days for each forecast is used in order to obtain the forecasted error and the forecasted trend.

3.2. ARIMA Models

The proposed general ARIMA formulation [34] is as follows:

yt = c +
1

(1− B)d0(1− Bs1)d1 . . . (1− Bsk )dk

×
θq0(B)
φp0(B)

θq1(Bs1)

φp1(Bs1)
× . . .×

θqk (Bsk )

φpk (Bsk )
εt. (16)

where yt is the observed time series, εt is the residual term, sj, j = 0, ..., k is a set of seasonal periods,
s0 = 1, (1− Bs

j ), j = 0, 1, ..., k are the k+ 1 differencing operators necessary to reduce the time series and
to achieve mean stationary, φpj(Bsj) and θqj(Bsj), j = 0, 1, ..., k are the AR and MA polynomials of the

back shift operator B: Blyt = yt−l of θqj(Bsj) = (1 + θ1Bsj + θ2B2sj + . . . + θjB
qjsj), and c is a constant.

Previously, the time series is transformed through logarithmic transformation to stabilize the
variance; after that, ARIMA models can be applied.

Following the formulation of (16), the indexes of each term for every ARIMA model are shown
in Table 3. The process to select each term of each ARIMA model is based on the evaluation of each
autocorrelation function (ACF) and partial autocorrelation function (PACF) of the residual component,
εt, of each ARIMA model, as shown in Figures 4 and 5.
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Figure 4. Autocorrelation function (ACF) and partial ACF (PACF) of the residual component for the
ARIMA 2 model of 5 June 2016.
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Figure 5. ACF and PACF of the residual component for the ARIMA 2 model of 6 June 2016.

Figures 4 and 5 portray the ACF and PACF of the residual terms for the ARIMA 2 model for
5 and 6 June 2016. The ARIMA model formulation of the ARIMA 2 model is presented in (17), where it
is easy to identify every term.

yt = c +
1

(1− B)(1− B24)

(1− θ1B− θ2B2)

(1− φ1B− φ2B2 − φ7B7)

1
(1− φ24B24)

εt. (17)

3.3. Forecasted Prices

Forecasted prices are obtained through ARIMA models; this case study uses five scenarios.
These five scenarios for the input data of forecasted prices are ARIMA 1, ARIMA 2, ARIMA 3,
ARIMA 4 and ARIMA 5, as presented in Table 3, where each ARIMA model represents one scenario.
An econometric toolbox of MATLAB R© [35], ECOTOOL [34], is used to obtain the forecasts. The sample
used to forecast every day with each ARIMA model is 15 days, i.e., 360 h. A sample spanning 360 h
has been selected because the sample changes every two or three weeks as a consequence of the price
volatility. The computing time increases for a sample spanning more days.
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The five scenarios of forecasted prices are depicted in Figure 6, where one week of forecasts is
shown. The forecasted days span from the 4–10 June 2016. After this, the models are verified for one
week of each season of 2014, 2015 and 2016, the forecasting horizon being 24 h using a 24-h rolling
horizon window for the next day until every day of each week is evaluated.
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Forecasted price 1
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Forecasted price 3
Forecasted price 4
Forecasted price 5

Figure 6. Input data of forecasted prices.

3.4. Forecasted Errors

Errors are the differences between the real price and the forecasted price, being positive when
the real price is higher than the forecasted price and negative otherwise. It is remarkable that, if for
the forecasting day the real price are unknown, then the error is also unknown. However, the error
can be calculated for previous days since the real price is known. Thus, the ten ARIMA models of
Table 3 are used to make forecasts of the three previous days. As a consequence of using 10 ARIMA
models in these three days, the number of scenarios of forecasted errors would be 30 (10 ARIMA
models multiplied by three days), but they can be reduced to five scenarios. Scenario reduction is
performed through the squared Euclidean distance, and each centroid is the mean of the points in the
cluster for five scenarios, reducing them from 30 down to five. The input data forecasted errors are
these five scenarios.

The five scenarios obtained from the 30 scenarios are shown in Figure 7.
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Figure 7. Input data of the forecasted errors.
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3.5. Forecasted Trends

Forecasted trends are made through the 10 ARIMA models of Table 3. The forecasted trend
is made for the three previous days, trying to recover some behaviors of previous days. Therefore,
as happened for the forecasted error input data, the forecasted trend has 30 scenarios, three days
multiplied by 10 forecasts of the 10 ARIMA models. The scenarios are reduced through the squared
Euclidean distance as done for the forecasted error. The five scenarios of forecasted trends are depicted
in Figure 8.
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Figure 8. Input data of the forecasted trends.

4. Results and Discussion

4.1. Results

This subsection shows the results obtained using this technique for the forecasting week. Firstly,
the daily average errors (%) (DAE) of the week under study are calculated in (18), where pt is the real
price, p̂t is the forecasted price and p̄ is the average real price of the 24 hours. Secondly, the errors (18)
from 1–10 June 2016 are presented in Table 4. Several input data are calculated through the forecasts of
the three previous days, and due to that, Days 1, 2 and 3 of June are presented in Table 4, as well.

DAE(%) = eday(%) =
1
24

24

∑
t=1

|pt − p̂t|
p̄

· 100. (18)

Table 4. Daily average error (%) of 1–10 June 2016, for ARIMA Models 1–10.

Model/Day of June (%) 1 2 3 4 5 6 7 8 9 10

ARIMA 1 5.56 14.16 23.33 16.09 6.24 10.49 8.03 9.47 8.03 18.08
ARIMA 2 13.05 16.33 11.42 7.28 5.55 9.31 8.31 8.28 4.54 13.74
ARIMA 3 20.22 21.67 21.17 13.16 4.61 15.48 3.35 12.01 7.73 10.48
ARIMA 4 21.38 22.17 21.15 11.56 5.72 16.81 3.43 13.58 7.65 10.39
ARIMA 5 20.01 20.11 23.97 3.10 5.04 11.53 6.36 8.98 6.94 9.92
ARIMA 6 21.55 7.56 15.50 8.43 7.78 15.59 5.11 12.76 6.26 9.43
ARIMA 7 20.01 20.11 23.97 3.10 5.04 11.53 6.36 8.98 6.94 9.92
ARIMA 8 16.34 11.93 15.56 6.38 12.25 10.71 11.15 6.37 4.40 9.13
ARIMA 9 15.73 12.91 15.87 6.38 12.42 10.33 10.60 6.42 6.23 8.68

ARIMA 10 16.08 12.82 15.78 6.27 11.87 9.97 11.45 6.40 4.46 9.09
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DAE for the SP model of Table 5 can be lower and higher than the average price forecasting
(AVG), but this depends on the forecasted errors and trends used as input data, where the final error
is lower when the forecasted trend and forecasted error follow the forecasted price. The differences
between forecasted price, trend and error can increase or reduce the final error.

Table 5. Daily average error (%) of 4–10 June 2016, for the SP model, average, and ARIMA Models 1–5.

Model/Day of June (%) 4 5 6 7 8 9 10

SP 7.36 2.91 11.93 2.99 7.55 7.84 9.16
Average 7.17 3.15 12.73 3.36 7.92 5.57 12.19

ARIMA 1 16.09 6.24 10.49 8.03 9.47 8.03 18.08
ARIMA 2 7.28 5.55 9.31 8.31 8.28 4.54 13.74
ARIMA 3 13.16 4.61 15.48 3.35 12.01 7.73 10.48
ARIMA 4 11.56 5.72 16.81 3.43 13.58 7.65 10.39
ARIMA 5 3.10 5.04 11.53 6.36 8.98 6.94 9.92

Note that the numbers in bold indicate that the SP model has the lowest error compared to the average model.

The forecasted week of June of 2016 is portrayed in Figure 9, and Table 6 shows the weight of
each forecasted price, λ

f orecasts
p,s , introduced in the SP model for the second and third forecasted days,

the best and worst forecasted day of the SP model, respectively.
For this case study, βp,s ∈ [0, 1], but this value could be different allowing for an increase or

a decrease in the forecasted price weight. The main dissimilarity between βp,s of Table 6 is for the
best day; the percentage of each forecasted price of the input data is more distributed between
two scenarios of the input data.
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Figure 9. Prices of the SP model, average forecasted price (AVG) and real prices for the week of
4–10 June 2016.
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Table 6. β ∈ [0, 1] values in each scenario of the forecasted price for the second and third days of
the week.

Hour/Scenario 1 2 3 4 5 Hour/Scenario 1 2 3 4 5

25 0.94 0.06 0 0 0 49 0.53 0 0 0.47 0
26 0.60 0.40 0 0 0 50 0.04 0.96 0 0 0
27 0.53 0.47 0 0 0 51 0.21 0.79 0 0 0
28 0.65 0.35 0 0 0 52 0.16 0.84 0 0 0
29 0.35 0.65 0 0 0 53 0.24 0.76 0 0 0
30 0.28 0.72 0 0 0 54 0.43 0.57 0 0 0
31 0.27 0.73 0 0 0 55 0.81 0.19 0 0 0
32 0.37 0.63 0 0 0 56 0.28 0 0 0.72 0
33 0.82 0.18 0 0 0 57 0.49 0 0 0.51 0
34 0 0.54 0 0.46 0 58 0.70 0 0 0.30 0
35 0.73 0 0 0.27 0 59 0.78 0 0 0.22 0
36 0.70 0 0 0.30 0 60 0.26 0 0 0.74 0
37 0.75 0 0 0.25 0 61 0.38 0 0 0.62 0
38 0.62 0.38 0 0 0 62 0.41 0 0 0.59 0
39 0.36 0.64 0 0 0 63 0.90 0 0 0.10 0
40 0.15 0.85 0 0 0 64 0.32 0.68 0 0 0
41 0 0.75 0 0 0.25 65 0 0 0 0.28 0.72
42 0 1.00 0 0 0 66 0.89 0 0 0 0.11
43 1.00 0 0 0 0 67 1.00 0 0 0 0
44 0.80 0 0 0.20 0 68 0.93 0 0 0.07 0
45 0.47 0 0 0.53 0 69 0.59 0 0 0.41 0
46 0.40 0 0 0.60 0 70 0.51 0 0 0.49 0
47 0 0.76 0 0.24 0 71 0 0.46 0 0.54 0
48 0.35 0 0 0.65 0 72 0.44 0 0 0.56 0

After showing one week for the spring season of the current year, 2016, and in order to evaluate
the forecasts per season, Tables 7–10 show several error measures, such as DAE, FMSE and the error
variance. The studied seasons are winter, spring, summer and autumn for the last three years, 2014,
2015 and 2016. The SP model is presented together with the average of the first five ARIMA models
of Table 5 and the naïve model (see [10]), whose forecasts for Monday, Saturday and Sunday are the
previous Monday, Saturday and Sunday, respectively, while for Tuesday, Wednesday, Thursday and
Friday, the forecasts are their previous days, respectively.

The errors of Tables 7–10 are calculated in (18)–(21):

DAE = eday =
1
24

24

∑
t=1

|pt − p̂t|
p̄

; (19)

eday
FMSE =

√√√√ 1
24

24

∑
t=1

(pt − p̂t); (20)

σ2
e,day =

1
24

24

∑
t=1

(
|pt − p̂t|

p̄

)2
−
(

e2
day

)
. (21)
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Table 7. eday (%), eday
FMSE and σ2

e,day of winter of 2016, 2015 and 2014 for the SP model, average (AVG)
and naïve models.

Winter (January 2016)

Day
SP AVG Naïve

eday % eday
FMSE σ2

e,day eday % eday
FMSE σ2

e,day eday % eday
FMSE σ2

e,day

Saturday 19.03 7.95 0.0151 10.52 4.84 0.0080 22.24 10.74 0.0441
Sunday 13.44 6.16 0.0093 18.29 7.99 0.0126 68.60 25.78 0.0083
Monday 16.34 8.04 0.0093 20.31 9.90 0.0133 39.30 18.26 0.0311
Tuesday 20.34 11.97 0.0116 32.87 19.48 0.0322 18.82 11.18 0.0108
Wednesday 15.11 9.17 0.0071 23.33 14.45 0.0197 3.58 2.61 0.0012
Thursday 17.29 10.23 0.0102 9.67 5.95 0.0042 7.04 4.61 0.0032
Friday 6.67 3.94 0.0025 16.92 9.22 0.0095 10.38 5.69 0.0038

Winter (January 2015)

Day
SP AVG Naïve

eday % eday
FMSE σ2

e,day eday % eday
FMSE σ2

e,day eday % eday
FMSE σ2

e,day

Saturday 8.85 5.60 0.0066 11.95 6.56 0.0056 21.75 11.28 0.0113
Sunday 14.60 8.02 0.0138 13.97 7.30 0.0096 18.06 8.78 0.0095
Monday 11.31 7.32 0.0069 22.39 13.66 0.0185 14.64 8.58 0.0056
Tuesday 10.31 7.87 0.0062 10.42 6.93 0.0023 13.87 9.73 0.0066
Wednesday 12.78 9.14 0.0144 14.38 9.95 0.0158 20.94 12.79 0.0164
Thursday 9.58 5.66 0.0033 12.53 7.34 0.0053 15.12 8.93 0.0082
Friday 4.40 3.14 0.0015 6.64 4.13 0.0015 6.36 4.46 0.0029

Winter (January 2014)

Day
SP AVG Naïve

eday % eday
FMSE σ2

e,day eday % eday
FMSE σ2

e,day eday % eday
FMSE σ2

e,day

Saturday 19.65 10.94 0.0087 13.69 9.38 0.0161 90.07 46.07 0.0286
Sunday 27.86 11.92 0.0227 9.04 4.77 0.0079 89.13 33.98 0.0193
Monday 22.83 11.08 0.0294 23.16 11.68 0.0370 72.07 31.79 0.1515
Tuesday 43.30 16.27 0.0225 45.91 18.26 0.0536 45.27 18.13 0.0906
Wednesday 25.24 14.41 0.0199 21.99 12.16 0.0112 34.03 20.63 0.0555
Thursday 14.90 7.08 0.0066 18.42 9.00 0.0125 21.29 10.14 0.0136
Friday 24.22 11.33 0.0189 46.91 21.30 0.0539 11.94 7.05 0.0157

Table 8. eday (%), eday
FMSE and σ2

e,day of spring of 2016, 2015 and 2014 for the SP model, average and
naïve models.

Spring (June, 2016)

Day
SP AVG Naïve

eday % eday
FMSE σ2

e,day eday % eday
FMSE σ2

e,day eday % eday
FMSE σ2

e,day

Saturday 7.36 3.30 0.0015 7.17 3.18 0.0013 40.20 16.30 0.0068
Sunday 2.91 1.57 0.0007 3.14 1.68 0.0008 68.09 27.73 0.0232
Monday 11.93 5.63 0.0019 12.72 5.85 0.0012 20.39 9.73 0.0065
Tuesday 2.99 1.67 0.0004 3.36 1.77 0.0003 3.86 2.06 0.0005
Wednesday 7.55 3.75 0.0021 7.92 4.00 0.0026 9.01 4.73 0.0043
Thursday 7.84 3.93 0.0028 5.56 2.73 0.0012 5.05 2.90 0.0024
Friday 9.16 4.75 0.0057 12.18 5.82 0.0063 7.93 3.85 0.0030
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Table 8. Cont.

Spring (June 2015)

Day
SP AVG Naïve

eday % eday
FMSE σ2

e,day eday % eday
FMSE σ2

e,day eday % eday
FMSE σ2

e,day

Saturday 12.78 7.72 0.0091 10.62 6.47 0.0066 8.86 5.15 0.0035
Sunday 9.98 5.95 0.0067 11.51 6.62 0.0074 7.64 4.09 0.0020
Monday 8.92 5.81 0.0028 11.35 7.20 0.0037 1.66 1.37 0.0003
Tuesday 10.00 6.57 0.0032 6.58 4.00 0.0005 2.42 1.78 0.0003
Wednesday 3.13 2.25 0.0005 4.45 3.44 0.0016 5.35 3.81 0.0016
Thursday 5.38 3.59 0.0005 5.17 3.52 0.0006 6.04 4.05 0.0008
Friday 3.52 2.75 0.0009 5.92 4.25 0.0018 5.71 3.89 0.0012

Spring (June 2014)

Day
SP AVG Naïve

eday % eday
FMSE σ2

e,day eday % eday
FMSE σ2

e,day eday % eday
FMSE σ2

e,day

Saturday 15.33 10.34 0.0115 10.88 7.03 0.0044 25.18 14.90 0.0093
Sunday 7.26 4.66 0.0030 8.40 5.04 0.0026 61.46 31.95 0.0123
Monday 14.12 10.28 0.0064 18.05 12.79 0.0081 35.02 24.02 0.0210
Tuesday 3.49 3.03 0.0009 5.77 3.86 0.0002 4.20 4.10 0.0023
Wednesday 11.86 8.77 0.0102 10.82 7.57 0.0063 15.56 11.41 0.0169
Thursday 2.68 2.05 0.0004 7.13 4.60 0.0007 6.76 5.41 0.0035
Friday 7.06 5.57 0.0029 5.84 4.12 0.0008 7.77 6.51 0.0047

Table 9. eday (%), eday
FMSE and σ2

e,day of summer of 2016, 2015 and 2014 for the SP model, average
and naïve models.

Summer (August 2016)

Day
SP AVG Naïve

eday % eday
FMSE σ2

e,day eday % eday
FMSE σ2

e,day eday % eday
FMSE σ2

e,day

Saturday 12.74 6.17 0.0060 7.56 3.74 0.0024 11.98 5.40 0.0026
Sunday 8.99 4.18 0.0035 16.09 7.08 0.0073 15.70 6.46 0.0030
Monday 4.52 2.13 0.0006 4.69 2.32 0.0009 9.22 4.12 0.0015
Tuesday 9.19 5.20 0.0050 7.09 4.17 0.0036 9.20 5.63 0.0073
Wednesday 3.17 1.60 0.0003 2.12 1.32 0.0004 3.87 2.37 0.0015
Thursday 4.02 2.01 0.0005 4.27 2.11 0.0005 3.53 1.88 0.0006
Friday 3.45 1.78 0.0005 3.88 1.90 0.0005 4.64 2.39 0.0011

Summer (August 2015)

Day
SP AVG Naïve

eday % eday
FMSE σ2

e,day eday % eday
FMSE σ2

e,day eday % eday
FMSE σ2

e,day

Saturday 6.97 5.48 0.0051 7.89 5.53 0.0039 3.76 2.72 0.0011
Sunday 20.27 10.64 0.0114 14.25 7.64 0.0068 5.99 3.25 0.0013
Monday 6.50 5.22 0.0033 11.97 7.87 0.0027 4.38 3.65 0.0017
Tuesday 3.34 2.85 0.0009 5.91 4.06 0.0007 3.44 3.42 0.0019
Wednesday 5.11 4.50 0.0031 5.12 3.99 0.0019 4.99 4.36 0.0029
Thursday 9.22 6.29 0.0060 7.80 5.03 0.0032 13.81 8.48 0.0072
Friday 11.27 7.09 0.0038 12.91 8.46 0.0068 11.36 7.55 0.0058
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Table 9. Cont.

Summer (August 2014)

Day
SP AVG Naïve

eday % eday
FMSE σ2

e,day eday % eday
FMSE σ2

e,day eday % eday
FMSE σ2

e,day

Saturday 11.80 6.61 0.0048 10.67 5.71 0.0026 8.89 5.34 0.0043
Sunday 11.81 6.19 0.0062 8.25 4.27 0.0028 5.93 3.63 0.0034
Monday 4.71 3.29 0.0020 7.88 5.21 0.0043 5.46 3.59 0.0020
Tuesday 4.82 3.01 0.0015 5.52 3.41 0.0019 5.58 4.07 0.0040
Wednesday 14.48 7.66 0.0087 11.65 6.31 0.0065 10.10 6.14 0.0088
Thursday 8.28 5.14 0.0040 13.72 8.06 0.0077 10.65 6.32 0.0050
Friday 7.19 4.29 0.0038 9.05 4.61 0.0022 13.71 7.26 0.0070

Table 10. eday (%), eday
FMSE and σ2

e,day of autumn of 2016, 2015 and 2014 for the SP model, average
and naïve models.

Autumn (October 2016)

Day
SP AVG Naïve

eday % eday
FMSE σ2

e,day eday % eday
FMSE σ2

e,day eday % eday
FMSE σ2

e,day

Saturday 15.16 8.15 0.0089 15.21 7.98 0.0075 8.26 4.77 0.0041
Sunday 9.24 5.59 0.0065 8.72 6.02 0.0098 7.04 4.89 0.0065
Monday 17.35 12.08 0.0114 13.74 9.64 0.0076 10.52 6.69 0.0016
Tuesday 11.64 7.37 0.0028 7.65 4.67 0.0007 5.40 3.55 0.0008
Wednesday 8.71 5.90 0.0023 6.08 3.88 0.0005 3.24 2.11 0.0002
Thursday 2.56 1.65 0.0001 3.80 2.46 0.0002 2.63 2.10 0.0005
Friday 1.96 1.58 0.0003 5.71 3.58 0.0003 2.35 1.80 0.0003

Autumn (October 2015)

Day
SP AVG Naïve

eday % eday
FMSE σ2

e,day eday % eday
FMSE σ2

e,day eday % eday
FMSE σ2

e,day

Saturday 18.66 10.40 0.0110 11.77 6.63 0.0048 5.69 3.48 0.0019
Sunday 6.94 3.78 0.0017 8.37 4.70 0.0030 19.95 10.82 0.0132
Monday 6.95 3.79 0.0014 6.15 3.45 0.0014 14.06 7.64 0.0057
Tuesday 9.92 5.43 0.0019 10.47 5.63 0.0017 6.25 3.84 0.0020
Wednesday 2.38 1.34 0.0001 5.30 2.84 0.0004 2.06 1.21 0.0001
Thursday 8.82 5.35 0.0019 10.59 6.55 0.0034 8.35 5.13 0.0020
Friday 8.71 5.62 0.0018 5.03 3.44 0.0009 8.16 6.88 0.0074

Autumn (October 2014)

Day
SP AVG Naïve

eday % eday
FMSE σ2

e,day eday % eday
FMSE σ2

e,day eday % eday
FMSE σ2

e,day

Saturday 7.07 4.94 0.0026 8.65 6.07 0.0040 27.77 16.96 0.0126
Sunday 16.01 10.23 0.0179 11.65 7.42 0.0093 12.76 7.72 0.0085
Monday 6.93 5.87 0.0036 18.27 13.71 0.0124 16.94 14.54 0.0227
Tuesday 8.35 5.64 0.0016 12.59 8.18 0.0023 5.75 4.87 0.0031
Wednesday 7.63 6.22 0.0038 14.81 10.63 0.0061 5.20 4.64 0.0026
Thursday 5.81 4.25 0.0012 9.92 6.95 0.0023 5.19 4.66 0.0028
Friday 12.93 7.25 0.0032 10.08 7.04 0.0086 22.69 12.13 0.0042

The naïve errors presented in the previous tables are neither very high, as in winter (January 2014),
nor low, as in autumn (October 2016). The SP model displays a more stable error than the AVG and
naïve models, i.e., lower volatility across several errors. Furthermore, the error variance shows lower
values. For example, in Table 10, for Friday, autumn (October 2014), the SP model produces a higher
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eday(%) error than the AVG model; nevertheless, σ2
e,day is more than two-times lower than the AVG

error variance. This behavior is present for some days of the representative weeks per season. Table 11
shows the average values of ēday (%), ēday

FMSE and σ̄2
e,day of each season for 2016, 2015 and 2014.

Table 11. Average values of ēday (%), ēday
FMSE and σ̄2

e,day of each season for 2016, 2015 and 2014 in order
to evaluate the SP model, average and naïve models.

Season & Year
SP AVG Naïve

ēday % ēday
FMSE σ̄2

e,day ēday % ēday
FMSE σ̄2

e,day ēday % ēday
FMSE σ̄2

e,day

Winter (January, 2016) 15.46 8.20 0.0093 18.84 10.26 0.0142 24.28 11.26 0.0146
Winter (January, 2015) 10.26 6.67 0.0075 13.18 7.98 0.0084 15.82 9.22 0.0086
Winter (January, 2014) 25.42 11.86 0.0184 25.58 12.36 0.0275 51.97 23.97 0.0535

Spring (June, 2016) 7.10 3.51 0.0022 7.43 3.57 0.0020 22.07 9.61 0.0067
Spring (June, 2015) 7.67 4.94 0.0034 7.94 5.07 0.0032 5.38 3.44 0.0014
Spring (June, 2014) 8.82 6.38 0.0050 9.55 6.43 0.0033 22.27 14.04 0.0100

Summer (August, 2016) 6.58 3.29 0.0023 6.52 3.23 0.0022 8.30 4.03 0.0025
Summer (August, 2015) 8.95 6.01 0.0048 9.40 6.08 0.0037 6.81 4.77 0.0031
Summer (August, 2014) 9.01 5.17 0.0044 9.53 5.36 0.0040 8.61 5.19 0.0049

Autumn (October, 2016) 9.51 6.04 0.0046 8.70 5.46 0.0038 5.63 3.70 0.0020
Autumn (October, 2015) 8.91 5.10 0.0028 8.24 4.74 0.0022 9.21 5.57 0.0046
Autumn (October, 2014) 9.24 6.34 0.0048 12.28 8.57 0.0064 13.75 9.36 0.0081

Note that the numbers in bold indicate that the SP model has the lowest ēday (%) value compared to the average
and naïve models.

The SP model has lower errors than the other models, and the errors are low in general. The naïve
method has very low errors in some cases as a consequence of some days being very similar and with
low prices [33].

4.2. Discussion

The forecasted prices of the SP model depend on the input data, where the main idea comes from
Figure 10, which shows three lines: real price, forecasted price and forecasted trend of the real price.
Thus, if we focus on Hour 13, Figure 10 shows the errors that are affecting the input data for the SP
model. Hence, two errors are described, etrend

p,s and eprice
p,s . Thus, ê±p,s of Equation (14) is defined in (22).

The final error could be increased or reduced; etrend
p,s is evaluated from the forecasted trend, and eprice

p,s
comes from the forecasted price. In this way, if both errors tend to reduce the final error, the SP model
will have a low final error, whilst if the error goes in the opposite way, in order to reduce the error,
the SP model could produce a worse forecast with a high final error, as happens on the third day of the
week studied, because the error will be the minimum of the sum of both errors, etrend

p,s and eprice
p,s .

ê±p,s = etrend
p,s + eprice

p,s . (22)

A summary of the input data that affect the final error is presented as follows:

• pt > p̂t: the real price is higher than the forecasted price:

Final error > 0: where λ̂p < pt as a result of λ
f orecasts
p,s , λp,s and ê±p,s influence λ̂p through βp,s.

• pt < p̂t, otherwise:

Final error < 0: where λ̂p > pt as a result of λ
f orecasts
p,s , λp,s and ê±p,s influence λ̂p through βp,s.

In short, λ̂p follows λ
f orecasts
p,s , whilst λp,s and ê±p,s influence βp,s, increasing or decreasing βp,s,

the percentage of each forecasted price of the five ARIMA models.
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Figure 10. Description of ê±p,s.

For this reason, the input data can change the final forecasted price by means of β. Moreover,
the βp,s value lies in the interval βp,s ∈ [0, 1] where each value per period depends on λ

f orecasts
p,s ,

λp,s and ê±p,s. If βp,s is equal to zero for a specific scenario and period, the contribution of that scenario
as a forecasted price is null, whilst for βp,s > 0, it can contribute to the final price, λ̂p, and the sum of
all βp,s terms for all scenarios has to be equal to one, as shown in (13).

5. Conclusions

In this paper, a new approach to improve the day-ahead electricity market price forecasting
has been presented, where the error of the portfolio model can considerably reduce the final error,
which depends on the quality of input data for the portfolio model. If the input data correctly follow
the trend of prices and the error of the models used to create the portfolio, the final error may be
very low. In contrast, with the average model, it would not be possible to achieve a perfect forecast.
A portfolio approach could attain a zero final error if one input datum or a mix of forecasts closely
follow the final error. Due to having more input data than the other models, this approach has higher
flexibility. However, a drawback could be the incorrect creation of input data, increasing the final error.
Hence, future work could be related to the creation of a better trend, error and forecasting data.
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