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Abstract: The present study proposes a maximum power point tracking (MPPT) method in which
improved teaching-learning-based optimization (I-TLBO) is applied to perform global MPPT of
photovoltaic (PV) module arrays under dissimilar shading situations to ensure the maximum power
output of the module arrays. The proposed I-TLBO enables the automatic adjustment of teaching
factors according to the self-learning ability of students. Incorporating smart-tracking and self-study
strategies can effectively improve the tracking response speed and steady-state tracking performance.
To evaluate the feasibility of the proposed I-TLBO, a HIP-2717 PV module array from Sanyo Electric
was employed to compose various arrays with different serial and parallel configurations. The arrays
were operated under different shading conditions to test the MPPT with double, triple, or quadruple
peaks of power-voltage characteristic curves. Boost converters were employed with TMS320F2808
digital signal processors to test the proposed MPPT method. Empirical results confirm that the
proposed method exhibits more favorable dynamic and static-state response tracking performance
compared with that of conventional TLBO.

Keywords: maximum power point tracking; teaching-learning-based optimization; photovoltaic
module array; partial module shading

1. Introduction

A photovoltaic (PV) power generation system is composed of a PV module array, a power
conditioner, and a power transmission and distribution system. Because the output power of a PV
module array changes substantially under the effect of insolation and environmental temperature
changes [1], power conditioners not only function as inverters, but also require a maximum power
point (MPP) tracker to control the PV module array. Consequently, power loss in the PV module array
can be reduced while maintaining MPP output under different environmental conditions.

Different sets of power–voltage (P–V) characteristic curves can be generated for different
insolation and environmental temperature. To ensure the maximum power output, the duty cycles of
a power converter are commonly adopted. Concerning conventional maximum power point tracking
(MPPT) techniques, they include the most frequently adopted perturb and observe (P&O) [2–4] and
incremental conductance (INC) [5,6] methods. Although the P&O method is simple and involves
only a few parameters, a drawback of this method is that users must choose between tracking speed
and number of oscillations, in which favorable performance of one comes at the expense of the other.
By contrast, the INC method improves tracking speed but features unfavorable tracking stability
because precision sensors are required to measure the conductance. Moreover, when PV array modules
are faulty or subjected to partial shading, the corresponding P–V characteristic curves exhibit multiple
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peaks [7]. Thus, applying these two conventional MPPT methods generates local MPPs rather than
global MPPs. Shaded modules in a PV array are known to incur mismatching problems. In this context,
the global MPP cannot be successfully tracked using a typical Field MPPT, that is to say, deteriorated
power generation efficiency, due to the multiple peaks on a P–V characteristic curve. A distributed
maximum power point tracker (DMPPT) was proposed as a way to resolve this mismatching problem
and hence to elevate the overall power generation efficiency [8,9]. However, a clear disadvantage of
a DMPP tracker is a rise in the cost and more room occupied. For this sake, to develop a low cost, but
high performance, global MPP tracker to deal with the multi-peak problems on a P–V characteristic
curve for the optimal performance of a PV array is an important research effort.

In recent years, numerous scholars have investigated MPPT methods for PV module arrays
exhibiting multiple peaks under partial shading. Commonly adopted intelligent algorithms include
the differential evolution (DE) [10], the ant colony optimization (ACO) [11], and the artificial bee
colony (ABC) algorithms [12]. The DE algorithm, similar to a genetic algorithm [13,14], performs real
number coding on selected groups to search for a global optimal solution through the differential
calculation of variance and one-to-one competitive survival strategies. However, as demonstrated
in [15], only simulation results were presented. In addition, individual mutation strategies were
based on a total of five equations proposed by Storn [16], which not only increases tracking-time
calculations, but also requires a more accurate comparison between population codes during crossover
coding with microcontrollers. The ACO algorithm is a probabilistic path optimization algorithm
based on the foraging behaviors of ants. The pheromones that ants lay down when they find food are
used as a food-source indicator, with which other ants can determine the optimal food-finding path;
this conserves time otherwise spent on random searching. In [17], pheromone update equations
were expressed as exponential functions that yielded random values for transitioning between
controlling the pheromone density and path length. Although this approach eliminates the possibility
of identifying local optimal solutions, calculating the path length by using exponential functions
requires considerably longer tracking time. The ABC algorithm transmits information regarding the
quality and position of a food source through the “dance” performed by employed bees, which are
responsible for finding larger food sources to increase profitability during the colony food-finding
optimization process [18]. However, the employed bee phase relies on random values, resulting in
an unstable searching capacity. In addition, in the scout phase, the number of bees selected affects
the tracking speed and steady-state performance. As mentioned in [18], obtaining the statistical
results of ABC and particle swarm optimization (PSO) algorithms requires 5–6 s, indicating that
the tracking response speed can be improved. Moreover, scholars have proposed incorporating
intelligent algorithms with conventional MPPT algorithms [19–22], such as incorporating PSO or
genetic algorithms with P&O. Although the incorporated methods can successfully identify global
optimal solutions, the dynamic response speed is too slow.

To address these problems, the present study incorporated a novel teaching-learning-based
optimization (TLBO) method [23,24] to track the MPPs of a PV module array subjected to partial
shading. The proposed method is advantageous because of its independence from population
optimization, high adaptability, few design parameters, simple algorithm, and ease of understanding.
In the present study, a conventional TLBO algorithm [25] was modified to improve the convergence
and reduce the tracking time to obtain a more efficient algorithm than extant MPPT algorithms.
The proposed algorithm improves MPPT tracking effectiveness for PV module arrays exhibiting
multiple peaks in their P–V characteristic curves.

2. Fault and Shading Characteristics of PV Module Arrays

To increase the power output of a PV power generation system, PV modules are generally
combined in serial and parallel configurations. However, external environments can cause shading
because of dust, stains, and tall buildings, which generates nonlinear changes and multiple peaks in
P–V characteristic curves. To examine the P–V and I–V output characteristics of serial and parallel
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PV module arrays subjected to partial shading, the SANYO HIP 2717 module [26] was adopted and
various shading ratios were used. In addition, various arrays of serial and parallel configurations were
tested. Table 1 lists the electricity parameter specifications of a single module under standard test
conditions (i.e., air mass of 1.5, irradiance of 1000 W/m2, and PV module temperature of 25 ◦C) [26].

Table 1. Electricity parameter specifications of the SANYO HIP 2717 PV module.

Parameter Value

Rated maximum power output (Pmp) 27.8 W
MPP current (Imp) 1.63 A
MPP voltage (Vmp) 17.1 V

Short-circuit current (Isc) 1.82 A
Open-circuit voltage (Voc) 21.6 V

Module dimensions 496 mm × 524 mm

2.1. PV Module Simulator Circuit

The present study adopted the circuit of a PV module simulator with adjustable shading ratios [27],
as shown in Figure 1. The circuit structure primarily comprises a Darlington amplifier, a current
limiting circuit, and a voltage regulator for attaining PV module output characteristics under varying
shading ratios, which were created by adjusting variable resistors VRIsc and VRVoc. The variable
resistor VRVoc shown in Figure 1 controls the open-circuit voltage of the PV module. When the circuit
is open, a current-limiting transistor Q3 is operated at the cutoff region. The open-circuit voltage is
calculated using Equation (1):

Voc = VPV −VCE2 −VDBlocking (1)

Short-circuit currents can be calculated by adjusting VRIsc to operate the current limiting transistor
Q3 at the saturation region when the VBE3 voltage drop crosses over RD. The short-circuit current is
calculated using Equation (2):

Isc = I = VBE3 ×
RD + VRISC

RD × RC
(2)

If the VPV power source is not provided, the PV module simulator generates zero power output,
which is equivalent to the fault situation of the PV module. Using a bypass diode DBypass can ensure that
PV module arrays generate a certain amount of power during fault events. Accordingly, the electricity
parameters of PV modules can be employed to set the required PV module output characteristics.
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2.2. PV Module Array Fault and Shading Characteristics Analysis

2.2.1. PV Module Array Characteristics without Faults or Shading

When a PV module array has M serial and N parallel arrays without shading or faults and the
MPP voltage, MPP current, and MPP power are respectively denoted as Vmp, Imp, and Pmp, the MPP
voltage, MPP current, and MPP power of the M serial and N parallel arrays are expressed as M × Vmp,
N × Imp, and M × N × Pmp, respectively.

2.2.2. PV Module Array Characteristics with Faults or Shading

In a PV module array, fault or shading incidences in a module can decrease the power output of
the array. Similar to an actual module, a PV module simulator enables a fault module to form a loop
through a bypass diode. Using a bypass diode not only ensures that the PV module array maintains
a certain level of power generation, but that it also has little effect on the MPPT. However, when the
module is under partial shading, the output voltage and current decrease, causing multiple peaks in
the P–V characteristic curves of the PV module array, which prevents conventional MPP trackers from
controlling the module array to operate at the actual MPPs.

Given the aforementioned features of PV module arrays, the SANYO HIP 2717 module simulator
was used to compose PV module arrays with different serial and parallel configurations under distinct
shading ratios to perform a MPPT test. As shown in Figures 2 and 3, SANYO HIP 2717 PV modules,
built using the Solar Pro software [28], were adopted to compose a four-serial and one-parallel array.
The P–V characteristic curves of an array with different numbers of muddles under a shading ratio of
30% were simulated. According to Figures 2 and 3, partial shading of the modules in the array resulted
in multiple peaks on the P–V characteristic curves, and the maximum power point (MPP) decreased
with an increase in the number of modules under shading.
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3. Teaching-Learning-Based Optimization (TLBO) Method

TLBO was proposed by Rao, Savsani, and Vakharia [29] in 2011. The concept of TLBO is to
simulate the learning process between a teacher and students, the aim of which is to improve the grades
of the entire class through teacher instruction and mutual learning between students. The students
are comparable to individuals in an evolutionary algorithm and the teacher represents the optimal
individual according to the fitness values.

3.1. Conventional TLBO Method

The steps of the traditional TLBO algorithm are as follows:

Step 1: Set the values for the number of students Np, subjects m, and iterations E.
Step 2: Initialize a class S and define the following parameters:

(a) Random student: Xk ⊂
{

X1, X2, X3, . . . , XNP

}
(b) Random subject: Xj ⊂ {X1, X2, X3, . . . , Xm}
(c) Target grade of student k in subject j: Gj,k

Step 3: In the teaching phase, learning step ri, teaching factor TF, and students with the highest grades
Xj,k_best are given. The mean of a class is calculated according to Equation (3) and substituted
into Equation (4) to determine the student mean difference value. Finally, student grades are
updated according to Equation (5) to identify the new target grade for each student in the
teaching phase:

M =
NP

∑
k=1

Xk
NP

(3)

Di f f erent_Meanj,k = ri(Xj,k_best − TF ×M) i = 1, 2, . . . , E (4)

Xj,k(new) = Xj,k(old) + Di f f erent_Meanj,k (5)

Step 4: In the learning phase, we assume that two random students XP and XQ participate in mutual
learning, in which the student with the lower grade learns from the one with a higher grade.
Adjustments were made using Equation (6):
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X′ j,k(new) = Xj,k(new) +

{
ri(Xj,P(=k) − Xj,Q( 6=k)
ri(Xj,Q(=k) − Xj,P( 6=k)

}
, i f Xj,P > Xj,Q
, i f Xj,Q > Xj,P

XP, XQ ⊂
{

X1, X2, X3, . . . , XNP

} (6)

Step 5: Repeat steps 3 and 4 until the iteration is completed.

Parameters used in conventional TLBO are explained as follows:

Number of students (Np): Total number of participating students.
Number of iterations (E): Number of teaching and learning phases that the students experience.
Subject grade (Xj,k): Grade of student k in subject j. Five subjects were used in the present study.

Class mean (M): Mean grade of the class.
Teaching step (ri): Parameter for diversifying the student mean difference with a random value
between 0 and 1.
Teaching factor (TF): Teachers’ ability to teach the students. The parameter randomly generates a value
of 1 or 2.

In conventional TLBO, the teaching factors (TF) used in the teaching phase generally comprise
two fixed teaching capabilities (1 or 2). However, in real teaching situations, students’ levels differ
and their learning capacity varies. Using fixed teaching factors may reduce learning effectiveness.
In addition, learning from others (chosen at random) without conforming to students’ individual
learning levels might not optimize their learning effectiveness. Thus, this study proposes an improved
TLBO (I-TLBO) to solve the problems with conventional TLBO.

3.2. The Proposed I-TLBO Method

In the proposed I-TLBO, Steps 3 and 4 in conventional TLBO are modified through the following
three improvements:

Modification 1: The teaching factors TF were modified to be automatically adjustable according to the
students’ learning capacity. The adjustment method is expressed in Equation (7):

TF =
Xj,k

Xj,k_best
(7)

Modification 2: In the learning phase, a student selects another student who could benefit their learning
the most in order to boost their learning effectiveness.
Modification 3: A self-study process was incorporated into the learning phase to enable each student
to adjust their self-learning according to their previous experience, as expressed in Equation (8):

X′′ j,k(new) = X′ j,k(new) + ri(X′ j,k(new) − X′ j,k−1(new)) i = 1, 2, . . . , E (8)

In Equation (4), if Xj,k_best and M remain unchanged, then Different_Meanj,k increases as TF
decreases. According to the actual MPPT process of PV module arrays, the tracking increment
is directly proportional to the distance between the individual student grades and the MPP. Therefore,
if the student grades in Improvement 1 are X1 (i.e., power value P1) and X′1 (i.e., power value P′1),
then the teaching factors TF of the student with the highest grades among all the students Xj,k_best (i.e.,
MPP value tracked so far Pk_best) are modified using Equations (9) and (10):

TF1 =
P1

Pk_best
(9)

TF2 =
P′1

Pk_best
(10)



Energies 2016, 9, 986 7 of 18

As depicted in Figure 4, the TF1 value decreases as the Different_Mean value increases when
student grade is distant from the MPP (e.g., X1 position), thereby increasing the number of tracking
steps needed to approach the maximum value rapidly. By contrast, when the student grade is close to
the MPP (e.g., X′1 position), the TF2 value increases as the Different_Mean value and number of tracking
steps decrease to approach the maximum value slowly. Thus, the students can adjust their tracking
steps according to their learning capacity. In improvements 2 and 3, students can spontaneously learn
from a student who is helpful to them. The term X′j,k-1(new) represents the student’s previous learning
abilities, which is used as a basis for the other student’s self-study. In summary, the self-learning
method not only accelerates the learning progress, but also escapes local solutions and reaches global
convergence. A flowchart of the proposed I-TLBO MPPT is shown in Figure 5.
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3.3. MPP Tracker

Figure 6 depicts the MPP tracker architecture of the PV module array based on the proposed
I-TLBO. The architecture mainly comprises two subsystems: a DC/DC boost converter and
I-TLBO-based MPPT controller. When employed in a DC/DC boost converter, a synchronous
rectification is known to outperform a diode rectification in terms of the conversion efficiency as
well as the thermal performance [30], while a diode rectification is adopted instead in this work due to
the reliability concern. As stated previously, the I-TLBO-based MPPT controller controls the duty cycle
of the boost converter, enabling the PV module array to generate the maximum power output under
partial shading.

Table 2 lists the DC/DC boost converter parameter settings [31] and Table 3 lists the conventional
TLBO parameter settings. The component choices are made according to [31]. Without extra
effort, components available in our laboratories but with over specified ratings, are directly taken to
implement the DC/DC boost converter. In I-TLBO, the TF in Table 3 is replaced with the parameter
setting in Table 4 whereas all other parameters remain unchanged. Subsequently, the PV module array
was tested under five distinct operating situations, as shown in Table 5.
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Table 2. DC/DC boost converter component parameters.

Component Model Number and Specifications

Inductance (Lm) 3.3 mH
Input capacitance (Cin) 220 µF/160 V

Output capacitance (Cout) 390 µF/450 V
Switching frequency (fs) 20 kHz

Power MOSFET (S) IRF460 (500 V/20A)
Diode (D) DSEP30-12A (1200 V/30A)

Table 3. Conventional TLBO parameter settings.

Parameter Setting

Number of students (NP) 4
Number of iterations (E) 40

Teaching step (ri) Random value between 0 and 1
Teaching factor (TF) 1 or 2

Table 4. I-TLBO Parameter Settings.

Parameter Setting

Teaching factor (TF) TF =
Xj,k

Xj,k_best

Table 5. Cases of the five selected serial and parallel configurations and the shading situations.

Case Serial and Parallel Configurations and Shading Situations Number of Peaks in the P–V
Characteristic Curves

1 One-serial and one-parallel with 0% shading Single

2 Two-serial and one-parallel with 0% and 40% shading Double

3 Three-serial and one-parallel with 0%, 40%, and 70% shading Triple

4 Four-serial and one-parallel with 0%, 30% shading, 50%, and
70% shading Quadruple

5 Two-serial and two-parallel with (30% and 0% shading)//(0%
and 50% shading) Double

Note: “//” parallel connection.
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4. Measurement Results

The PV module simulator circuit in Figure 1 was employed to compose the module array
configurations under five operating situations as listed in Table 5. The P–V and I–V characteristic
curves of PV module arrays under different shading ratios were measured using an MP 170 I–V
checker by EKO Instruments CO. Ltd (Tokyo, Japan). The aim is to tell whether the global MPPs in the
5 testing cases listed in Table 5 can be tracked as expected using I-TBLO MPPT. Subsequently, a digital
signal processor TMS320F2808 [32] was used to perform MPPT by using conventional TLBO and the
proposed I-TLBO. The tracking performance of the two methods was also compared.

4.1. PV Module Array Characteristics under Different Operating Situations

Figures 7–11 depict the I–V and P–V characteristic curves of the PV module arrays under the five
operating situations listed in Table 5. Figure 7 shows the output characteristics of a single PV module.
The output characteristic curve reveals that the parameters related to the output characteristics of
modules not affected by shading or faults are identical to the electricity parameter specifications
listed in Table 1. The module in Figure 7 was used as a basis for testing the serial configurations (i.e.,
Cases 1–4) as well as the serial and parallel configurations (Case 5), as listed in Table 5. Different shading
ratio conditions were set to produce multiple peaks in the characteristic curves to exemplify the
exceptional performance of the proposed I-TLBO on MPPT. Figures 8–10 reveal that double, triple,
and quadruple peaks occur in Cases 2 to 4. Thus, we inferred that N peaks would appear in P–V
characteristic curves when N modules in a serial array were under different shading ratios. Figure 11
shows the I–V and P–V characteristic curves measured on the two-serial and two-parallel configuration
module array of Case 5. Although two modules in each serial module were subjected to different
shading ratios, the parallel connection between the two-serial modules generated double peaks only in
the P–V characteristic curve.
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Figure 7. I–V and P–V characteristic curves of one-serial and one-parallel module array with
0% shading.
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4.2. MPPT Measurement of PV Module Arrays

The measurement architecture is shown in Figure 6. First, the output voltage VPV and current IPV
of the PV module arrays were extracted through sensors and signal conversion circuits and entered
into the TMS320F2808 digital signal processor. Subsequently, TLBO was applied to perform MPPT.
The resulting optimal duty cycle trigger signal was sent to the boost converter to control the on time of
power transistors, thereby controlling the maximum power output of the PV module array.

Figures 12–16 show the waveforms of output voltage VPV and current IPV measured on the PV
module arrays. The power curves are demonstrated as the product of voltage and current through the
internal computation functions of the oscilloscope. In the 40th iteration, the quality of the conventional
TLBO and the proposed I-TLBO tracking response speed were observed and compared when the
power curve approached a stable value.

4.2.1. Case 1 (One-Serial and One-Parallel: 0% Shading)

Figure 12a,b depict the MPPT waveforms of Case 1 (0% shading) measured by using the
conventional TLBO and the proposed I-TLBO, respectively. The results revealed that under standard
test conditions, the output characteristics of the PV module simulator were identical to the electricity
parameter specifications in Table 1. In addition, the tracking time between time points t0 and t1 in
Figure 12 showed that the proposed I-TLBO (2.5 s) converged faster than did conventional TLBO (3.5 s).
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Figure 12. Measurement results of the one-serial and one-parallel module array with 0% shading by
using (a) conventional TLBO (Pmp = 27.4 W) and (b) the proposed I-TLBO (Pmp = 27.8 W).

4.2.2. Case 2 (Two-Serial and One-Parallel: 0% and 40% Shading)

Figure 13a,b depict the MPPT waveforms of Case 2 measured by using conventional TLBO and
the proposed I-TLBO, respectively. The two-serial and one-parallel configuration was composed on
the basis of the single module of Case 1. One module in Case 2 was under 40% shading. The empirical
results revealed that under partial shading, the PV module array generated a double-peaked P–V
characteristic curve (Figure 8). Although both the conventional and proposed methods tracked
the actual MPP, the proposed I-TLBO (2.4 s) was faster than conventional TLBO (2.7 s) in MPPT
response speed.
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Figure 13. Measurement results of the two-serial and one-parallel module array (0% and 40% shading)
by using (a) conventional TLBO (Pmp = 35.1 W) and (b) the proposed I-TLBO (Pmp = 35.8 W).

4.2.3. Case 3 (Three-Serial and One-Parallel: 0%, 30%, and 70% Shading)

Figure 14a,b depict the MPPT waveforms Case 3 measured by using conventional TLBO and
the proposed I-TLBO, respectively. The empirical results revealed that three modules under different
shading ratios generated triple peaks in the P–V characteristic curve and a long tracking time under
conventional TLBO (3.4 s). By contrast, the proposed I-TLBO (2.7 s) tracked the real MPPT in less time.
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4.2.4. Case 4 (Four-Serial and One-Parallel: 0%, 30%, 50%, and 70% Shading)

Figure 15a,b show the MPPT waveforms of Case 4 measured by using conventional TLBO and
the proposed I-TLBO, respectively. The empirical results revealed that the proposed I-TLBO required
only 2.2 s, whereas conventional TLBO required 3.4 s of tracking time (t0 to t1) to track the MPP.
This validates that the proposed I-TLBO outperformed conventional TLBO in tracking.
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4.2.5. Case 5 (Two-Serial and Two-Parallel: (0% and 30% Shading)//(0% and 50% Shading))

Figure 16a,b show the MPPT waveforms of Case 5 measured by using conventional TLBO and
the proposed I-TLBO, respectively. The empirical results revealed that adopting the random teaching
factor TF in conventional TLBO slowed the MPPT. By contrast, the proposed I-TLBO identified the real
MPP within a short time (3.5 s).
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Figure 16. Results of the two-serial and two-parallel module array [(0% and 30% shading)//(0% and
50% shading)] measured by using (a) conventional TLBO (Pmp = 66.5 W) and (b) the proposed I-TLBO
(Pmp = 66.7 W).

4.2.6. Comparison of the Case Measurements

Table 6 gives the performance comparison in terms of the average tracking time and the average
MPP for 40 iterations among the proposed I-TBLO, a typical TLBO, ACO [17] and PSO [21], both
referred to in the Introduction section. This proposal is obviously found to outperform the counterparts
in terms of dynamic tracking response and static performance for the five cases investigated in the
present study underwent MPPT.

Table 6. Comparison between the measurement results of the five cases obtained using ACO, PSO,
conventional TLBO and the proposed I-TLBO.

Case P–V Curve
Peaks

ACO [17] PSO [21] Conventional TLBO Proposed I-TLBO

Average
Tracking

Time

Average
MPP

Average
Tracking

Time

Average
MPP

Average
Tracking

Time

Average
MPP

Average
Tracking

Time

Average
MPP

1 Single 4.3 s 27.5 W 3.4 s 27.3 W 3.3 s 27.0 W 2.5 s 27.8 W
2 Double 4.8 s 35.3 W 3.0 s 35.0 W 2.8 s 35.1 W 2.4 s 35.8 W
3 Triple 5.1 s 37.5 W 3.8 s 37.0 W 3.4 s 37.2 W 2.7 s 38.5 W

4 Quadrupe 5.6 s 43.2 W Tracking
failed 35.7 W 3.6 s 43.0 W 2.2 s 43.4 W

5 Double 5.8 s 66.3 W 5.2 s 64.7 W 4.8 s 66.1 W 3.7 s 66.7 W
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5. Conclusions

In this study, an I-TLBO was proposed to perform MPPT of PV module arrays. To enhance the
TLBO tracking efficiency and performance, an intellectual teaching factor adjustment method was
adopted to facilitate automatic adjustments of TLBO teaching factors. In addition, in the learning
phase, the students automatically tracked the targets benefiting their learning. Eventually, each
student expedited their tracking speed through self-study according to their individual experience.
The empirical results verified that the proposed I-TLBO can more rapidly identify the real MPP
compared with conventional TLBO, ACO and PSO when certain modules in a PV module array are
under partial shading. The results of the measurements of the designed five cases of shading confirmed
that the proposed I-TLBO tracked the global MPP within a shorter period than conventional TLBO,
ACO and PSO can. These results confirm the feasibility of applying the proposed I-TLBO in PV module
array MPPT, particularly in situations where multiple peaks occur on the P–V characteristic curves
because of partial shading. This proposed high performance tracking algorithm can be also directly
applied to track the MPP for each single PV module using a DC/DC converter, and to track the MPP
on a one-peak P–V curve using a central inverter.
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